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Background: With advances in high-throughput computational mining techniques,
various quantitative predictive models that are based on ultrasound have been
developed. However, the lack of reproducibility and interpretability have hampered
clinical use. In this study, we aimed at developing and validating an interpretable and
simple-to-use US nomogram that is based on quantitative morphometric features for the
prediction of breast malignancy.

Methods: Successive 917 patients with histologically confirmed breast lesions were
included in this retrospective multicentric study and assigned to one training cohort and
two external validation cohorts. Morphometric features were extracted from grayscale US
images. After feature selection and validation of regression assumptions, a dynamic
nomogram with a web-based calculator was developed. The performance of the
nomogram was assessed with respect to calibration, discrimination, and clinical
usefulness.

Results: Through feature selection, three morphometric features were identified as being
the most optimal for predicting malignancy, and all regression assumptions of the
prediction model were met. Combining all these predictors, the nomogram
demonstrated a good discriminative performance in the training cohort and in the
two external validation cohorts with AUCs of 0.885, 0.907, and 0.927, respectively.
In addition, calibration and decision curves analyses showed good calibration and
clinical usefulness.

Conclusions: By incorporating US morphometric features, we constructed an
interpretable and easy-to-use dynamic nomogram for quantifying the probability of
breast malignancy. The developed nomogram has good generalization abilities, which
may fit into clinical practice and serve as a potential tool to guide personalized treatment.
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Our findings show that quantitative morphometric features from different ultrasound
machines and systems can be used as imaging surrogate biomarkers for the
development of robust and reproducible quantitative ultrasound dynamic models in
breast cancer research.
Keywords: breast cancer, models, quantitative imaging, nomogram, morphometrics, ultrasound
INTRODUCTION

Globally, breast cancer is the leading cause of cancer-associated
death in women (1). Effective screening approaches have the
ability to reduce cancer-related mortality rates (2, 3). Due to its
safety and wide availability, US examination is recommended as a
supplemental screening tool for women of all ages (4). In
asymptomatic women, the ability of US to detect breast cancer
is comparable to that of mammography (5–7). Over the years, a
structured reporting and classification system has been widely
adopted for qualitatively describing breast US findings in routine
clinical practice (e.g., ACR BI-RADS) (8). However, image
interpretation for the traditional structured classification is
generally subjective and is possibly affected by radiologists’
experience (9–11). Moreover, predictions of malignancies by the
classification system are not always precise, and there are
significant differences between hospitals. As reported in the
literature, BI-RADS category 4 lesions have a broad range of
malignancy rates (3-94%) (12). Thus, the US capacity for detecting
breast malignancy still needs to be upgraded considerably.

In the precision medicine context, quantitated methods
provide the unique potential for making breast cancer screening
more rapid and accurate using artificial intelligence and machine
learning algorithms (13). Many studies are evaluating the
applicability of US prediction models that are based on
quantitated methods (e.g., radiomics) (14–17). These models
have been developed to mine high-throughput quantitative
image features fusing image pixels and morphology through
machine learning methods to improve cancer diagnosis and
prognosis (18). However, to varying degrees, reproducibility of
quantification features derived from image pixels is sensitive to
image preprocessing (19), particularly for US technology, which
has the distinct inherent characteristic of operator- and device-
dependent, not to mention that such pixel-based features often
lack interpretability (20). This may lead to limitations in usability
for real end-users, impeding their large-scale clinical applications.

Morphometrics, which are associated with tumor histological
findings (21), refers to the quantified assessment of shape
variations of organisms and their covariations with other
variables. Unlike image pixel-based features, morphometric
features characterize the shape and contour of lesions and are
nearly independent of the different system settings and US
machines (22). We hypothesized that a set of quantified
morphological features are related to malignant breast lesions
and may, therefore, act as independent predictive markers,
without the involvement of pixels-based features. We tested
this hypothesis and further build an interpretable and simple-
to-use US nomogram for predicting breast malignancy.
2

MATERIALS AND METHODS

Study Population
In this multicenter retrospective study, patients were recruited
from three tertiary medical centers; The First Affiliated Hospital
of Wannan Medical College in Anhui Province (Center A),
Shandong Provincial Third Hospital Affiliated to Cheeloo
College of Medicine, Shandong University (Center B), and
Linyi People’s Hospital in Shandong Province (Center C). The
training cohort for nomogram development was obtained from
among the patients at Center A between January 2020 and
September 2021 while the external validation cohorts were
derived from Centers B and C between January 2021 and
September 2021.

All consecutive female patients with US findings of breast
lesions who fulfilled the inclusion/exclusion criteria were enrolled.
The inclusion criteria were: i. The definitive pathological diagnosis
was available from the breast lesion, either by biopsy or surgery; ii.
US examination performed before biopsy or surgery; and iii.
Breast lesions classified as BI-RADS US category 4 or 5
according to the second edition of the ACR BI-RADS US atlas.
The exclusion criteria were: i. Indeterminate pathological results
(difficult to distinguish between “benign” and “malignant”), ii.
Incomplete clinical information, iii. Patients administered with
radiotherapy or chemotherapy before US examination, and iv.
Patients whose longest diameter of the lesion was beyond the
display range of the US transducer. For patients with more than
one lesion, only the lesion with confirmed pathological diagnosis
was included for quantitative analysis.

The First Affiliated Hospital of Wannan Medical College
Review Board, Shandong Provincial Third Hospital Review
Board and Linyi People’s Hospital Review Board approved this
retrospective study. Patient consent was waived due to the use of
retrospective, de-identified information from the image database.

Ultrasound Examination
Five different high-resolution US scanners equipped with a linear
array transducer, including Esaote Mylab 90 (Genova, Italy) with
a 4-13 MHz transducer, Siemens Acuson S3000 (IL, USA) with a
4-9 MHz transducer, Philips IU22 (PA, USA) with a 3-12 MHz
transducer, Philips EPIQ5 (PA, USA) with a 5-12 MHz
transducer, and Mindray Resona 7T (SZ, China) with 5-14
MHz transducer were used in this study.

All lesions were examined by 7 sonographers who had over 5
years of experience in breast US scanning. Parameters were
adjusted to optimize image quality, then, the grey-scale image
of the longest diameter section of target lesions was documented
in the JPG format for further quantification analysis.
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Outcome Measures
The outcome was the definitive histopathologic diagnosis by
biopsy or surgery. Pathological results were reported
independently by the pathologist of the participating hospitals
and grouped into malignant and benign lesions. Histological
processing was performed in the accredited Department of
Pathology and conducted using a standardized procedure to
ensure reproducibility.

Data Quality Control
Imaging and clinical data were collected by an independent
investigator from respective hospitals. A radiologist with more
than eight years of experience in breast US reviewed the results of
data collecting and further confirmed the final datasets according
to the inclusion/exclusion criteria. These data were anonymized
and randomly attached with a number ID. Images of benign and
malignant lesions from the training cohort were mixed and
stored in a single folder for quantification analysis, so were
those from the validation cohorts.

Morphometric analyses of images were independently
performed by three sonographers who were not involved in
data collection. Three identical lap-tops with 1920 × 1280
resolution were used, and each image was magnified by the
delineate process so that the lesion occupied at least half of the
display area. Lesions from the training cohort were measured by
sonographer QL, while those from the validation cohorts were
respectively measured by sonographers TB and YY. All the
sonographers had 4 years of work experience in breast US. At
the beginning of the study, they were uniformly trained on the
use of the image quantification software. In addition, they were
blinded to the clinical information and pathologic results as well
as on the ratios of malignant to benign lesions.

Morphometric Feature Extraction
Image morphometric analysis was performed using the ImageJ
software (https://imagej.nih.gov/ij, version 1.52p, NIH, USA).
First, grey-scale US images of all target lesions were exported
from the machines and imported into the ImageJ software. For
each lesion, only one image was extracted. Next, using the Set
Scale function of the Analyze Tab menu in ImageJ, lesion sizes
were calibrated according to depth bar on each US image to
obtain the actual size value. Finally, the contour of each lesion
was manually delineated as the region of interest (ROI).

After delineating the ROI of lesions, thirteen morphometric
features were automatically calculated and extracted:
(1) Perimeter, the length of the outside boundary of the ROI;
(2) Bounding Rectangle Width (BRW), the width of the smallest
rectangle enclosing the ROI; (3) Bounding Rectangle Height
(BRH), the height of the smallest rectangle enclosing the ROI;
(4) Major Axis (MaA), the primary axis of the best fitting ellipse
to the ROI; (5) Minor Axis (MiA), the secondary axis of the best
fitting ellipse to the ROI; (6) Angle, the angle between the Major
Axis and a line parallel to the x-axis of the US image, its range is
0 -180 degrees; (7) Circularity, a morphological feature that can
mathematically indicate the degree of similarity to a perfect
circle, taking into consideration the smoothness of the
perimeter. This means that circularity is a measure of both
Frontiers in Oncology | www.frontiersin.org 3
lesion shape and roughness, the further away from a perfectly
round and smooth circle, the lower the circularity value of the
target lesion; (8) Axis Ratio (AR), the ratio of Major Axis and
Minor Axis; (9) Roundness (Round), a value of 1.0 indicates a
perfect circle. It is similar to circularity but is insensitive to
irregular borders along the perimeter of the target lesion, also
takes into consideration the major axis of the best fit ellipse; (10)
Solidity, the ratio of contour area to its convex hull area,
describes the extent to which a target lesion morphology is
convex or concave. As lesion morphology becomes rough, the
solidity value approaches zero. Conversely, very smooth,
rounded lesions have solidity values that approach one; (11)
Feret Diameter (FD), the longest distance between any two
points along the ROI boundary, also known as a maximum
caliper; (12) Min Feret (MinF), the minimum caliper diameter;
(13) Feret Angle (FA), the angle between the Feret
Diameter and a line parallel to the x-axis of the US image, its
range is 0 -180 degrees. Figure 1 shows illustrations of all the
morphometric features.

Assessment of Intra- and
Inter-Rater Reliability
Based on the calculated sample size (23), 80 lesions from the
training cohorts were randomly selected to assess intra- and
inter-rater reliability. Using the same procedure, the original
assessor QL and another assessor TB performed the second
measurements, three weeks after the first one.

Feature Selection
Feature selection was performed on the training cohort. A two-
step feature selection procedure was used to generate optimal
feature subsets. First, the features were ranked by the wrapper
method Boruta algorithm (24). Boruta assesses if the importance
of each individual feature is significantly higher than the
importance of a random feature by iteratively fitting the
Random Forest algorithm until all predictor features are
classified as “confirmed,” “tentative,” or “rejected”. Features
“confirmed” by Boruta were deemed available for further
analyses. Second, if two features are highly correlated among
themselves, they provide redundant information in regards to
the outcome, so a filter method that is based on Spearman’s
correlation was conducted to further reduce the dimensionality.
A correlation matrix was created with all the Boruta “confirmed”
features. Highly correlated features (Spearman’s correlation
coefficients > 0.75) were identified and removed, after which
the final selected features were used to construct the nomogram.

Development of the Nomogram
Data from the training cohort was used to develop the
nomogram. First, univariate and multivariate logistic
regression analyses were performed to determine the
independent predictor of breast malignancy. Candidate factors
included results from feature selection and patient age. Non-
linear relationships between continuous predictors and
malignancy risk were assessed, and continuous predictors with
significant non-linearity were transformed into categorical
variables using restricted cubic splines (RCS) with three
April 2022 | Volume 12 | Article 868164
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knots (25). Factors with p value < 0.2 in univariable analyses were
entered in multivariable analyses, which were conducted using
stepwise logistic regression with backward elimination at an a
level of 0.05.

Basic assumptions that must be met for logistic regression
model include linearity between each predictor and outcome,
absence of high multicollinearity among predictors, and no
strongly influential outliers. To ensure that all logistic
regression assumptions were valid, multicollinearity and
influential outliers were also assessed. Multicollinearity was
estimated by variance inflation factor (VIF), VIF values greater
than 4 were an indication of multicollinearity problems (26).
Influential outliers were checked by visualizing Cook’s distance
(27) and standardized residuals, cases with Cook’s distance of ≥
0.05 or standardized residuals of ≥3 (28) were considered to be
outliers that had unduly large influences on the results.
Therefore, they were further analyzed to determine whether
they could be excluded from the model.

Finally, based on findings from the above logistic regression
analysis, a web-based interactive nomogram was formulated.
Validation of the Nomogram
Internal and external validations were used to measure the
nomogram’s performance. The training cohort was used for
internal validation while the two validation cohorts were used
for external validation.

Performance was assessed using tests for discrimination,
calibration, and clinical usefulness. The discriminative capacity
was evaluated via receiver operating characteristic (ROC) curve
analysis and measured by the area under the receiver operating
characteristic curve (AUC). Calibration performance was
visually assessed using a calibration plot (29), representing the
agreement between observed outcomes and predicted
probabilities. The Hosmer–Lemeshow test (30) was performed
to assess goodness-of-fit. Finally, decision curve analysis (31, 32)
Frontiers in Oncology | www.frontiersin.org 4
was used to evaluate the clinical benefit of the nomogram by
quantifying net benefits at different threshold probabilities.
Data Analysis
All data analyses and plots were performed and established using
R Studio software (R version 4.0.2). The reported statistical
significance levels were all two-sided, with p value < 0.05 being
the threshold for significance, unless otherwise indicated.

Normality of distributions of continuous variables was
assessed using the Shapiro–Wilk test. Continuous variables are
expressed as medians and ranges, while categorical variables are
shown as numbers and percentages. Comparisons between
groups were performed using the Chi-square test for
categorical variables, while the Wilcoxon test or Student’s t-test
were used for continuous variables.

Sample size estimation for reliability analysis was performed
using “ICC Sample Size” in R. Inter-rater and intro-rater
reliability was calculated using a single-rating, absolute-
agreement, 2-way random-effects correlation coefficients (ICCs,
model A,1). Reliability was classified as excellent (ICC > 0.90),
good (ICC = 0.76–0.90), moderate (ICC = 0.51–0.75), or poor
(ICC < 0.50) (33).

Feature selection was performed using “Boruta” in R.
Correlations between any two morphological features were
measured by Spearman rank correlation coefficient while
“ggcorrplot” in R was used for visualization of the correlation
matrix. The 3D scatter plots were produced using “plotly” in R.

The “glm” function in R was used to fit the multivariate logistic
regression model. Regression diagnostics were used to assess the
validity of themodel, RCS analyseswere performed using the “rms”
package, multicollinearity was tested by calculating VIF using the
“car” package, while influential outliers were graphly inspected by
Cook’s distance using the “broom” package. The “rms” and
“DynNom” packages were used to develop the nomogram and
the web-based calculator, respectively.
FIGURE 1 | Illustrations of the morphometric features.
April 2022 | Volume 12 | Article 868164
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Performance evaluation, including visualizations of ROC,
Calibration, and DCA, were generated with R packages
“ggplot2”, “Caret” and “rmda”. The “pROC” package was used
to measure AUCs and conduct the Delong test, while the
“ResourceSelection” package was used for the Hosmer–
Lemeshow test.
RESULTS

Basic Information
The flow chart of the study population is presented in Figure 2.
In total, 917 breast lesions from 917 women were assessed in the
study. The final histopathological diagnoses revealed 502
(54.74%) benign and 415 (45.26%) malignant lesions. The
training cohort had 520 patients, the external validation cohort
Frontiers in Oncology | www.frontiersin.org 5
from Center B (cohort 1) had 191 patients, while the external
validation cohort from Center C (cohort 2) had 206 patients.
Table 1 presents an overview of demographics and baseline
characteristics for these study cohorts. While the cohorts did not
show significant differences in patients’ age and maximum
diameters of lesions, there were significant differences with
regards to proportions of benign and malignant lesions among
the cohorts. As shown in Table 1, the predominant histology of
malignant lesions for each cohort was invasive ductal carcinoma,
the majority of benign lesions in this study had a breast
tumor histology described as fibroadenoma, followed by
mammary adenosis.

Morphometric Features
All of the morphometric feature data are available on GitHub
(see Data Availability). Figure 3 shows the findings obtained
A B C

FIGURE 2 | Flow chart of study population. (A) training cohort, (B) external validation cohort 1, and (C) external validation cohort 2.
TABLE 1 | Comparisons of patient demographics and baseline characteristics in the training and validation cohorts.

Training Cohort
(n = 520)

External Validation Cohorts P-value

Cohort 1
(n = 191)

Cohort 2
(n = 206)

Age, years (Md (IQR)) 51.5 (44.0, 58.0) 52.0 (45.0, 60.0) 54.0 (46.0, 58.0) 0.430
Maximum diameter (n,%) 0.786
<10 mm 34 (6.54) 15 (7.85) 9 (4.37)
10-20 mm 201 (38.65) 71 (37.17) 77 (37.38)
20-30 mm 150 (28.85) 59 (30.89) 68 (33.01)
≥30 mm 135 (25.96) 46 (24.09) 52 (25.24)

Pathological outcome (n,%) 0.010
Benign lesions 295 (56.73) 113 (59.16) 94 (45.63)
Malignant lesions 225 (43.27) 78 (40.84) 112 (54.37)

Histologic subtypes (n,%), Benign
Fibroadenoma 135 (25.96) 52 (27.23) 44 (21.36)
Mammary adenosis 97 (18.65) 42 (21.99) 41 (19.90)
Intraductal papilloma 53 (10.19) 17 (8.90) 7 (3.40)
Mastitis 8 (1.54) 2 (1.05) 2 (0.97)
Benign phyllodes tumor 2 (0.38) 0 (0.00) 0 (0.00)

Histologic subtype (n,%), Malignant
Invasive ductal carcinoma 192 (36.92) 75 (39.27) 102 (49.51)
Ductal carcinoma in situ 22 (4.23) 2 (1.05) 4 (1.94)
Mucous carcinoma 6 (1.15) 0 (0.0) 2 (0.97)
Invasive lobular carcinoma 3 (0.58%) 1 (0.52) 2 (0.97)
Solid papillary carcinoma 2 (0.38%) 0 (0.0) 1 (0.49)
April 2022 | Volume 12 | Article
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from preliminary analysis of morphometric features in the
training cohort. Apart from Angle and FA, the other
morphometric features were significantly different between
benign and malignant groups. Perimeter, BRW, BRH, MaA,
MiA, Round, FD, and MinF values of benign lesions were
significantly lower than those of malignant lesions (p < 0.001),
while Circularity, AR, and Solidity were significantly higher than
those of malignant lesions (p < 0.001). Morphometric features of
the validation cohorts are presented in Supplementary
Figures 1, 2, respectively.

Reliability of Morphological
Feature Measurements
Inter- and intra-rater reliability of measurement as estimated by
the ICC was good or excellent for all morphometric features,
apart from inter-rater reliability of Circularity, which was
moderate. The ICCs for all morphological features are shown
in Supplement Material Page 6, 7.

Feature Selection
Figure 4 shows the feature selection results. The Boruta
algorithm and Spearman’s correlation analysis identified 3
features as important and less correlated variables. The results
are presented by interactive three-dimensional scatter plots
(https://chart-studio.plotly.com/~qingling.go/5/#plot). The
selected features were Solidity, AR, and MiA, which were then
fed into the nomogram as inputs.

Development of the Nomogram
Univariate and Multivariate Analyses
We used restricted cubic splines to flexibly model and visualize
the associations between age and morphometric features with
malignancy risk (Figure 5). Since all these variables showed non-
Frontiers in Oncology | www.frontiersin.org 6
linear relationships with malignancy risk, we transformed them
into categorical variables. The points where odds ratio (OR) ≈
1.00 were chosen as the cutoff value according to the trend and
knots position of the RCS curve; more importantly, these cut
points showed the best performance in the following model fit
test. As shown in Figure 5, for age < 51 years, malignancy risk
gradually increased with age, while above 51 years, the risk was
relatively flat, reaching the highest at around 59 years and
gradually decreasing thereafter. When AR < 1.75 or Solidity <
0.92, malignancy risk decreased sharply and then leveled off.
Regarding the strong inverted-U-shaped relationship between
MiA and malignancy risk, the plot showed a substantial increase
in the risk, which was highest at around 16, and decreased
thereafter. After multiple comparisons of model fits, we found
that the model with MiA cutoff at 11 and 25 can achieve the
smallest Akaike information criterion (AIC), suggesting the best
model fit.

Table 2 shows the results of univariate and multivariate
analyses in the training cohorts. Morphometric features (AR,
MiA, Solidity, and age) of patients were all identified as
independent predictors for breast malignancy (all p < 0.05).

Logistics Regression Diagnostics
(1) Nonlinear relationships. Nonlinear relationships between
predictors and pathological outcomes were resolved by RCS
analyses. (2) Multicollinearity. All VIF values are below the
threshold value of 2 (Age, VIF = 1.02; AR, VIF = 1.04, MiA,
VIF = 1.23, Solidity, VIF = 1.20), indicating the absence of
collinearity among predictors. (3) Influential outliers. As
shown in Supplementary Figures 3, 4, no outliers were
identified by Cook’s distance or standardized residuals. The
above findings indicate that all logistic regression assumptions
for our model were met.
FIGURE 3 | Comparisons of morphological features between benign and malignant groups in the training cohort. Boxplots grouped by pathology show median
(horizontal bars), IQR (boxes), and 95% CI (whiskers). Raw data points for each group are shown at the bottom of each box plot. Data were normalized and
centered by Z-score transformation to appear on the same scale. Statistical analysis was performed using the Wilcoxon rank-sum test (all features except Round)
and Student’s t test (Round). ***p < 0.001, ****p < 0.0001, ns, not significant.
April 2022 | Volume 12 | Article 868164
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Nomogram and Web-Based Calculator
Figure 6A shows the nomogram for predicting breast
malignancy based on independent risk factors, including US
morphometric features AR, MiA, and Solidity. Based on the
above nomogram, we established an online risk calculator to
facilitate the use of the nomogram by clinicians, which can be
freely accessed at https://qingling.shinyapps.io/DynNomapp/
(Figure 6B). Using quantitative values of lesion morphological
features, the calculator can individually predict the risk of breast
malignancy. For instance, for patients aged > 51 years whose
AR ≤ 1.75, MiA 11-25 and Solidity ≤ 0.92, the risk probability of
malignancy was approximately 91.5% (95% CI 86.0–94.9%).

Validation of the Nomogram
Discrimination
The AUCs of the nomogram in the training and validation
cohorts were 0.885, 0.907, and 0.927, respectively (Figure 7A).
There were no significant differences in AUCs between any two
Frontiers in Oncology | www.frontiersin.org 7
cohorts (DeLong test, p > 0.05 for each comparison,
Supplementary Table 2). Therefore, our nomogram performed
well in all the training and validation cohorts.

Calibration
Calibration curves of the nomogram are close to the diagonal line
in the training and validation cohorts, demonstrating that the
predictive probability has good agreement with observed
outcomes (Figure 7B). The Hosmer–Lemeshow test yielded a
non-significant statistic (p = 0.94), indicating a good fit.

Clinical Utility
DCA curves of the training and validation cohorts revealed clinical
usefulness of the nomogram (Figure 7C). From this figure, it can be
seen that in all the training and validation cohorts, the nomogram
has a higher net benefit than both “treat all” and “treat none” across
the range of threshold probabilities 10-90%, indicating that the
nomogram was clinically useful, that is, the nomogram would
A

B C

FIGURE 4 | Feature selection. (A) Selection of relevant morphometric features for discrimination between benign and malignant groups in the training cohort using
the Boruta algorithm. Boxplots of features were sorted by increasing importance according to Z-scores. Blue boxes (Shadow) correspond to minimal, mean, and
maximal importance, calculated from randomly permuted features. (B) Correlation matrix plot shows pairwise positively stronger correlations (blue) or negatively
stronger correlations (red). Non-significant correlations (p > 0.05) are marked with a cross. (C) 3D scatter plots for final selected feature combinations displaying
separations of benign and malignant groups.
April 2022 | Volume 12 | Article 868164
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improve patient outcome irrespective of patient or doctor
preference for a reasonable threshold probability.
DISCUSSION

In this retrospective multicenter study of 917 patients with breast
lesions, we analyzed US morphometric features and developed a
simple-to-use nomogram for predicting cancer. The newly
developed nomogram performed well, and its predictive value
was validated using data from other hospitals in a different
Frontiers in Oncology | www.frontiersin.org 8
geographic region. Our nomogram has three ultrasonic
morphometric features that are easy to generate using ImageJ
software and that radiologists can easily understand and
interpret. The nomogram can adapt to different ultrasonic
instruments and settings, and it has a high generalization
ability and practicality. To make the nomogram user-friendly,
we have availed it as a free web-based calculator. Consequently,
the nomogram developed in this study will potentially be a
valuable tool in clinical practices.

As precision medicine advances, the nomogram, which can
provide an individual patient with a quantitative risk assessment
A B

DC

FIGURE 5 | The relationship between age and morphometric features with malignancy risk. OR and 95% CI for age (A), AR (B), MiA (C), and Solidity (D). The
analyses used restricted cubic splines. Purple shaded areas, 95% CIs. Black horizontal dotted line, OR=1.00. Yellow vertical solid line, cut-off value.
TABLE 2 | Results of univariate and multivariate analyses for breast malignancy in the training group.

Univariate analysis Multivariate analysis

OR 95%CI P-value OR 95%CI P-value

Age
>51 Ref. Ref.
≤51 0.61 0.43~0.87 0.006 0.618 0.38~0.99 0.048

AR
>1.75 Ref. Ref.
≤1.75 2.37 1.66~3.38 <0.001 2.01 1.24~3.26 0.005

MiA
<11 Ref. Ref.
11-25 3.24 2.24~4.68 <0.001 3.83 2.32~6.46 < 0.001
≥25 1.95 0.78~4.89 0.156 8.02 2.65~23.83 < 0.001

Solidity
>0.92 Ref. Ref.
≤0.92 20.28 12.83~32.06 <0.001 25.81 15.47~44.80 < 0.001
A
pril 2022 | Volume 12 | Article
Factors associated with dependent variables with p < 0.2 in univariate analysis were entered into the logistic backward step-wise multivariate model.
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of a particular outcome by a graphical interface, has been
proposed as a simple and reliable means to improve disease
prediction or prognosis (34, 35). Several US-based nomograms
for predicting cancer risk or prognosis have been reported in the
literature; all of these nomograms demonstrated high predictive
performance with AUC = 0.747–0.951. Some of the nomograms
were based on subjective evaluations using qualitative descriptors
(e.g., spiculated, rounded, microcalcification, etc.), which are
highly dependent on the level of expertise and experience and
can suffer from a large intra- and inter-observer variability (36–
39). However, other nomograms were based on quantitative
methods such as radiomics, which can objectively describe
tumor phenotypes using numerical features extracted from
radiological images (14–16). These features, which are mainly
related to tumor size, shape, texture, and intensity, provide a
comprehensive tumor characterization. In this scenario,
quantitative evaluation of US images is a natural consequence
of the path towards personalized medicine.

The present study is based on quantitative features, and the
performance of our nomogram was very comparable to that of the
preceding studies, with a few notable differences. The first difference
is that we only used the morphometric features to construct the
nomogram, which was due to the following reasons. As a diagnostic
or prognostic tool, a nomogrammust be practical and generalizable
in clinical settings. However, the reproducibility of quantitative
Frontiers in Oncology | www.frontiersin.org 9
features based on image pixels, including textural features, intensity-
based features, and wavelet-based features, is affected by image
preprocessing to variable degrees (19, 40, 41). Recently, Lee SE et al.
found that the radiomics of textural features differed depending on
the type of US machine (42). Previous literature has also associated
the measurement of textural parameters with nonlinear variations
in ultrasonic system settings such as time-gain compensation, total
gain, and focal depth (43). Overall, these studies consistently
indicated that due to variations in acquisition modes, parameter
selections, or implementation procedures, the features derived from
the pixel gray-level statistics in terms of intensity and spatial
distribution have greater variability, particularly for US technique,
which is more operator- and system-dependent. In contrast, the
morphometric features characterize the shape and contour of a
lesion and are essentially independent of the system settings and
machines (22, 44). More importantly, the morphologic traits of
breast cancer are associated with histological findings (21, 45, 46),
which can provide valuable information for deriving robust
multidisciplinary models (47). In this study, we found that most
of the morphometric features differed significantly between benign
and malignant groups, and the contributions of the selected
features to the prediction model were as follows: Solidity >
Circularity > Minor Axis. These results confirmed the
association between ultrasonography morphologic features and
histopathological findings.
A

B

FIGURE 6 | Nomogram and online risk calculator. (A) Nomogram based on US morphometric features. Applications of the nomogram were exemplified in
Supplementary Figure 5. (B) The online calculator application version of the nomogram.
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The second difference is that in previous studies, the images
from the US were almost entirely collected in one specific US
machine and system (14–16), whereas in this study, the training
and validation data were both pooled from different US
machines and systems. Moreover, the US transducers used for
imaging had different transmission frequencies, which is more
congruent with the actual clinical settings and a significant
strength of this study. The results with the external validation
cohorts strengthened the predictive potential of the model,
increasing our confidence in the robustness and generality of
the novel nomogram. Furthermore, we built a web-based
calculator with user-friendly digital interfaces to display the
nomogram, which makes risk assessment easier. The user
inputs the details of the lesion on the web page, and the
probability of breast malignancy is calculated automatically for
the patient.

Finally, when compared to other quantification-based
nomograms (14–17), the predictor variables in our nomogram
are easily accessed and interpreted. In general, lack of
interpretability is one of the major barriers to successful
translation of predictive models from research to clinical
practice, particularly for data-driven precision medicine (20).
Frontiers in Oncology | www.frontiersin.org 10
From a clinical perspective, interpretability is critical for winning
the trust of physicians, developing a robust decision-making
system, and overcoming regulatory concerns (48). For example,
it is difficult for radiomics practitioners to interpret first-order
entropy or grey level co-occurrence matrix features and to assign
biological meaning to them (49). Physicians must be able to
interpret the nomogram model and identify the predictors
separately for rejected and accepted outcomes, and decide on
the subsequent treatment protocols (50). The morphometric
features in our nomogram are relatively non-abstract and can be
considered an extension of the analytical thinking of a radiologist.
This assists radiologists in understanding the decision process of
the nomogram and facilitates doctor–patient communication.
Furthermore, the morphometric features are relatively easy to
retrieve via the interactive freeware ImageJ, without the need to
run scripts from the command line.

This study has several limitations that are worth mentioning.
First, this was a retrospective study, which had inherent biases.
Therefore, larger, high-quality prospective studies should be
conducted in the future. Second, the distribution of pathological
subtypes of breast cancer included in this study was unbalanced,
especially for the specific pathological types such as mucinous or
A B

C

FIGURE 7 | Performance of the nomogram. (A) ROC curves of the nomogram in the training and external validation cohorts, respectively. (B) Calibration curves of
the nomogram, which depict calibration of the nomogram in terms of agreement between the predicted risk of breast malignancy and observed outcomes. The
diagonal dotted line denotes a perfect prediction, the closer the calibration curve fit is to the diagonal line, the better the predictive accuracy of the nomogram.
(C) DCA curves of the nomogram. The gray and black dotted lines represent the hypothesis that all patients had a diagnosis of breast malignancy (“treat all”) and
that no patients had a diagnosis of breast malignancy (“treat none”), respectively. X-axis indicates the threshold probability for pathological outcomes while the Y-axis
indicates the standardized net benefit for a given threshold probability.
April 2022 | Volume 12 | Article 868164
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medullary breast cancer. In addition, the sample size was relatively
small and the specific pathological types had different histological
substrates that manifest as different imaging features on US (51,
52), which may have resulted in bias. Third, large dimension
lesions were not included in this study, which could have caused
spectrum bias in patient selection. Finally, accurate segmentation
is necessary for extracting quantitative features from a tumor (53).
Although the features extracted usingmanual segmentation in this
study showed high inter-observer and intra-observer reliability,
the process was relatively time-consuming when compared to
automatic segmentation. These limitations highlight the need for
additional research to potentially improve model performance.
CONCLUSIONS

In this multicentric study, we developed an interpretable and
simple-to-use dynamic nomogram to quantify the probability of
breast malignancy based on US morphometrics. The nomogram
demonstrated good discrimination performance between
malignant and benign lesions, as well as good calibration and
clinical usefulness. Moreover, the nomogram showed high
generalization capabilities, suggesting that it may be used in
clinical practice as a tool to guide personalized treatment. Our
findings show that quantitative morphometric features from
different ultrasound machines and systems can be used as
imaging surrogate biomarkers for the development of robust
and reproducible quantitative ultrasound dynamic models in
breast cancer research.
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