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Abstract: Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely
used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a
drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative
bacteria, mainly due to the inhibition of bacterial gyrase and topoisomerase IV enzymatic actions.
The high efficacy of this molecule has been demonstrated in the treatment of various animals on
farms and other locations. However, the use of enrofloxacin causes severe adverse effects, including
skeletal, reproductive, immune, and digestive disorders. In this review article, we present in detail
and discuss the advantageous and disadvantageous properties of enrofloxacin, showing the benefits
and risks of the use of this compound in veterinary medicine. Animal health and the environmental
effects of this stable antibiotic (with half-life as long as 3–9 years in various natural environments)
are analyzed, as are the interesting properties of this molecule that are expressed when present in
complexes with metals. Recommendations for further research on enrofloxacin are also proposed.

Keywords: enrofloxacin; antibiotic; safety; efficacy; adverse effects; toxicity

1. Introduction

Enrofloxacin is an antibiotic that belongs to the fluoroquinolone group, more specifi-
cally the 6-fluoro-7-piperazinyl-4-quinolones [1]. This antibiotic is widely used in veterinary
medicine as an antibacterial agent, showing high activity against both Gram-negative and
Gram-positive bacteria. This compound is a chemotherapeutic, and it was first synthe-
sized in 1983 from nalidixic acid, while the first enrofloxacin-based medicinal product was
marketed in 1991 as an oral drug for poultry by Bayer under the trade name Baytril® [2,3].
Currently, the product is approved by the European Medicines Agency (EMA) in both
injectable and tablet forms [4].

Chemically, enrofloxacin is defined as a quinoline monocarboxylic acid that is 1,4-
dihydroquinoline-3-carboxylic acid substituted by an oxo moiety at position 4, with a fluoro
moiety at position 6, a cyclopropyl moiety at position 1, and a 4-ethylpiperazin-1-yl moiety
at position 7. Moreover, this antibiotic is a quinoline monocarboxylic acid, a quinolone, an
organofluorine compound, an N-alkyl piperazine, and a member of the cyclopropanes [5].
Enrofloxacin is highly lipophilic, and the addition of a carboxylic acid and a tertiary amine
contributes to its amphoteric properties [6]. Its crucial chemical and physical properties are
shown in Table 1.

Int. J. Mol. Sci. 2022, 23, 3648. https://doi.org/10.3390/ijms23073648 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23073648
https://doi.org/10.3390/ijms23073648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3746-8726
https://orcid.org/0000-0002-0820-7204
https://orcid.org/0000-0003-3634-6567
https://orcid.org/0000-0003-4042-7466
https://orcid.org/0000-0002-3073-2814
https://doi.org/10.3390/ijms23073648
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23073648?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 3648 2 of 22

Table 1. Selected physicochemical properties of enrofloxacin (data based on ref. [5]).

Property Value

Molecular formula C19H22FN3O3

Molecular weight 359.3 g/mol

Chemical safety Irritant, health hazard, environmental hazard

Color/form Pale yellow crystals

Melting point 220 ◦C

2. Mechanism of Action

The targets of enrofloxacin, like other quinols, are enzymes that control DNA topology:
gyrase and topoisomerase IV. Their activities facilitate the processes of DNA replication,
recombination, and gene expression [7]. As heterotetramers, these enzymes are composed
of two GyrA and two GyrB subunits, in the case of gyrase, or their homologs ParC and
ParE in topoisomerase IV [7,8]. The GyrA and ParC subunits have a tyrosine residue in the
active site that is involved in DNA strand breakage, while the GyrB and ParC subunits have
the domains required for DNA strand re-ligation. DNA gyrase, by introducing negative
supercoils, alleviates topological stresses, allowing replication complexes to move along the
DNA. It works by coiling DNA into a positive supercoil and then moving the duplex region
accordingly, breaking and rejoining. The speed of the process is regulated by the availability
of ATP (the abundance of this nucleotide accelerates the process) [9,10]. Topoisomerase
IV activity differs from gyrase activity. Although it can remove positive and negative
supercoils, it cannot actively unwind dsDNA. In addition, it has a greater ability to resolve
DNA strands [11].

The disruption of enzymatic activities described above is associated with the formation
of complexes between DNA and gyrase or topoisomerase IV. When conformational changes
occur, quinolone prevents the rejoining of torn DNA strands, and the enzyme itself is
trapped on the DNA [12]. In the case of gyrase, rapid inhibition occurs, which is associated
with activity upstream of the replication fork. A different situation—the subsequent
inhibition of replication—occurs with quinolone–topoisomerase IV-DNA complexes. This
is related to the activity of the enzyme downstream of the replication fork. Complex
formation is reversible, which is responsible for the bacteriostatic action of the compounds.
In contrast, bactericidal activity is considered to be a separate phenomenon from complex
formation. The first proposal of the bactericidal effect of enrofloxacin based on free DNA
end release, not just complex formation, came from a sedimentation analysis of isolated
bacterial nucleoids [13].

Two molecules of enrofloxacin bind non-covalently to the DNA-topoisomerase com-
plex (II or IV) near the tyrosine residue in the active site [7,14]. After binding, enrofloxacin
induces conformational changes in the enzyme. This results in the formation of an
enrofloxacin–gyrase/topoisomerase IV-DNA complex. The natural consequence of this
process is the inhibition of DNA replication [15]. Low concentrations of the antibiotic can
trigger the SOS response (a bacteriostatic effect), while concentrations of the antibiotic can
fragment the bacterial chromosome, leading to cell death (a bactericidal effect) [16].

In S. pneumoniae, topoisomerase IV is the primary target for another quinol, ciprofloxacin,
which is, but for variants with a substitution at the C-8 position, the primary target is
gyrase [17]. In addition to the structure itself, the difference in the effect of quinolones is
due to the fact that gyrases from Gram-positive bacteria are less susceptible to inhibition
by quinolones than gyrases from Gram-negative bacteria. Other mechanisms of resistance
are worth considering. It was demonstrated that the low level of resistance to quinolones
is associated with changes in porins, such as structural changes in OmpF or mutational
changes in marA, sox, and rob genes that affect the efflux pump activity [18].

The mechanism of enrofloxacin action is shown in Figure 1.
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inhibition of DNA replication due to cleavage and the inefficient ligation of DNA. Cell death or 
DNA repair mechanisms and the S.O.S. response is/are activated depending on concentration. Re-
produced according to ref. [19], with modifications. 
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as age, body condition, physiological status, species, drug form, or route of administration 
[20]. Here, we consider the kinetics of enrofloxacin from the time of drug intake to the 
time of excretion from the body. 

3.1. Absorption 
Enrofloxacin has high bioavailability and rapid absorption after intramuscular, sub-

cutaneous, and oral administration in most species [21]. However, it has been noted that 
there are some discrepancies after the oral administration of enrofloxacin in ruminants 
[20]. Moreover, the bioavailability of the antibiotic may be affected by the nutrition status 
of the animals, as the bioavailability value in fasted pigs was significantly higher than that 
in fed pigs [22]. Another factor to consider is the interaction of the antibiotic with ions [23]. 
Sumano et al. showed a severe decrease in the bioavailability of enrofloxacin in broilers 
that received the antibiotic dissolved in water with a high content of calcium and magne-
sium ions [24]. 

New technologies have been proposed for more efficient drug release and absorp-
tion. Prem Kumar et al. used an inert polymer polyvinylpyrrolidone, which, due to its 
excellent hydrophilic properties, caused a more efficient release of enrofloxacin [25]. On 
the other hand, Karakurt et al. presented a transdermal sustained release system for en-
rofloxacin, which is based on a matrix of chitosan and vanillin-crosslinked polyvinyl al-
cohol [26]. 
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The drug efficacy depends on its distribution, especially the spread in its unmetabo-

lized form in the blood and body tissues. It varies depending on the chemical properties 

Figure 1. Mechanism of enrofloxacin action. Enrofloxacin binds to the DNA-topoisomerase complex
at the cleavage–ligation site. This leads to conformational changes in the enzyme, resulting in the
inhibition of DNA replication due to cleavage and the inefficient ligation of DNA. Cell death or DNA
repair mechanisms and the S.O.S. response is/are activated depending on concentration. Reproduced
according to ref. [19], with modifications.

3. Pharmacokinetics of Enrofloxacin

The pharmacokinetics of enrofloxacin may be influenced by individual factors, such as
age, body condition, physiological status, species, drug form, or route of administration [20].
Here, we consider the kinetics of enrofloxacin from the time of drug intake to the time of
excretion from the body.

3.1. Absorption

Enrofloxacin has high bioavailability and rapid absorption after intramuscular, sub-
cutaneous, and oral administration in most species [21]. However, it has been noted that
there are some discrepancies after the oral administration of enrofloxacin in ruminants [20].
Moreover, the bioavailability of the antibiotic may be affected by the nutrition status of
the animals, as the bioavailability value in fasted pigs was significantly higher than that in
fed pigs [22]. Another factor to consider is the interaction of the antibiotic with ions [23].
Sumano et al. showed a severe decrease in the bioavailability of enrofloxacin in broilers that
received the antibiotic dissolved in water with a high content of calcium and magnesium
ions [24].

New technologies have been proposed for more efficient drug release and absorption.
Prem Kumar et al. used an inert polymer polyvinylpyrrolidone, which, due to its excellent
hydrophilic properties, caused a more efficient release of enrofloxacin [25]. On the other
hand, Karakurt et al. presented a transdermal sustained release system for enrofloxacin,
which is based on a matrix of chitosan and vanillin-crosslinked polyvinyl alcohol [26].

3.2. Distribution

The drug efficacy depends on its distribution, especially the spread in its unmetabo-
lized form in the blood and body tissues. It varies depending on the chemical properties of
the drug as well as the individual characteristics of the patient [27]. The results of recent
analyses that demonstrated the distribution of enrofloxacin in various organs are presented
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in Table 2. Additionally, enrofloxacin is a concentration-dependent drug and its distribution
is affected by protein binding [28].

Table 2. Penetration of enrofloxacin into various organs of animals (nd—not determined).

Confirmed Presence of
Enrofloxacin in Organs

Volume of
Distribution (Vd) (L/kg) Animal Model Reference

Serum, liver, kidney, lung, brain, breast
muscle, thigh muscle, spleen, and heart 5.07 Broiler chicken [29]

Plasma, muscle, skin, and liver 2.21 Largemouth bass [30]

Plasma, hepatopancreas, muscle, gill,
and ovary nd Ridgetail white prawn [31]

Plasma, skin, muscle, liver, kidney, and gut nd Rainbow trout [32]

Plasma, skin, muscle, gill, kidney, liver, bile,
and gut nd Yellow river carp [33]

3.3. Metabolism

The metabolism of enrofloxacin may vary among species, although it is biotransformed
to ciprofloxacin in most animals. Enrofloxacin also has other metabolites, but they are
not active [6]. The biotransformation process of enrofloxacin includes N-dealkylation, glu-
curonide conjugation to the nitrogen in the para position of the piperazinyl ring, oxidation
in the ortho position of the substituted amine, and the opening of the piperazinyl ring [34].
The maximum concentrations of enrofloxacin and its major metabolite ciprofloxacin in
enrofloxacin-treated animals are shown in Table 3.

Table 3. Maximum concentrations (Cmax) of enrofloxacin and ciprofloxacin in enrofloxacin-treated
animal models.

Applied Dose of
Enrofloxacin

(mg/kg)

Cmax
Ciprofloxacin

(µg/mL)

Cmax
Enrofloxacin

(µg/mL)

Administration
Method Animal Model Reference

7.5 0.36 2.59 Intramuscular Green sea turtles [35]

5 no data 2.33 Intramuscular Freshwater crocodiles [36]

10 0.24 12.31 per os Asian house geckos [37]

10 <0.1 67.90 Subcutaneous Eastern box turtles [38]

20 2.28 5.36 Subcutaneous Prairie dogs [39]

10 <0.1 90.92 Intracelomic Green sea urchin [40]

3.4. Elimination

The elimination of enrofloxacin varies widely among species. For comparison, the elim-
ination half-life (t1/2) after intravenous administration was as follows: in cows,
1.5 h [41], dogs, 2 h [42], sheep, 4.31 h [43], cats, 5.6 h [44], pigs, 9.64 h [45], horses, 9.9 h [46],
broilers, 12.84 h [47], African penguins, 13.67 h [48], American alligators, 21.05 h [21], and
Atlantic horseshoe crabs, 27.9 h [49].

Moreover, the elimination times of enrofloxacin and ciprofloxacin are different. Poap-
olathep et al. observed that in green sea turtles, after the intravenous administration of
enrofloxacin (7.5 mg/kg), its elimination time was 50.4 h, while the elimination time of
ciprofloxacin was 22.6 h. The main reasons for this phenomenon are the different mecha-
nisms of their elimination. The elimination of enrofloxacin is renal, while ciprofloxacin is
eliminated by both renal and hepatic pathways. However, Trouchon and Lefebvre reported
that both enrofloxacin and ciprofloxacin undergo intestinal recirculation via bile excre-
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tion [3]. In their recent report, Yang et al. showed that in Yellow River carp, bile excretion
might be the primary elimination route of enrofloxacin [33].

4. Efficacy of Enrofloxacin in Veterinary Medicine

Enrofloxacin is an antibacterial agent with a broad spectrum of activity covering many
Gram-negative and Gram-positive bacterial species. This antibiotic is commonly used to
treat dogs, cats, cows and calves, domestic chickens and turkeys, and exotic animals such
as parrots, alligators, and snakes, but it is not approved for use in humans [21,50–56]. The
latter decision is due to the toxic effects of enrofloxacin in humans, especially neurotoxicity,
genotoxicity, and building up in the cartilage, as well as because of low solubility and low
bioavailability [25,57]. Therefore, it is unlikely that this compound might be used to treat
patients, as the risk of severe adverse effects would be too high, especially as relatively
large doses would have to be employed. Nevertheless, other fluoroquinolones, including
an enrofloxacin metabolite called ciprofloxacin, have been approved as drugs for humans,
as they appear to be less toxic and possess more favorable pharmacological parameters.
The target sites for the treatment of the bacterial infections of animals with enrofloxacin are
shown in Figure 2.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 23 
 

 

broilers, 12.84 h [47], African penguins, 13.67 h [48], American alligators, 21.05 h [21], and 
Atlantic horseshoe crabs, 27.9 h [49]. 

Moreover, the elimination times of enrofloxacin and ciprofloxacin are different. 
Poapolathep et al. observed that in green sea turtles, after the intravenous administration 
of enrofloxacin (7.5 mg/kg), its elimination time was 50.4 h, while the elimination time of 
ciprofloxacin was 22.6 h. The main reasons for this phenomenon are the different mecha-
nisms of their elimination. The elimination of enrofloxacin is renal, while ciprofloxacin is 
eliminated by both renal and hepatic pathways. However, Trouchon and Lefebvre re-
ported that both enrofloxacin and ciprofloxacin undergo intestinal recirculation via bile 
excretion [3]. In their recent report, Yang et al. showed that in Yellow River carp, bile ex-
cretion might be the primary elimination route of enrofloxacin [33]. 

4. Efficacy of Enrofloxacin in Veterinary Medicine 
Enrofloxacin is an antibacterial agent with a broad spectrum of activity covering 

many Gram-negative and Gram-positive bacterial species. This antibiotic is commonly 
used to treat dogs, cats, cows and calves, domestic chickens and turkeys, and exotic ani-
mals such as parrots, alligators, and snakes, but it is not approved for use in humans 
[21,50–56]. The latter decision is due to the toxic effects of enrofloxacin in humans, espe-
cially neurotoxicity, genotoxicity, and building up in the cartilage, as well as because of 
low solubility and low bioavailability [25,57]. Therefore, it is unlikely that this compound 
might be used to treat patients, as the risk of severe adverse effects would be too high, 
especially as relatively large doses would have to be employed. Nevertheless, other fluo-
roquinolones, including an enrofloxacin metabolite called ciprofloxacin, have been ap-
proved as drugs for humans, as they appear to be less toxic and possess more favorable 
pharmacological parameters. The target sites for the treatment of the bacterial infections 
of animals with enrofloxacin are shown in Figure 2. 

 
Figure 2. Diseases of animals that can be treated with enrofloxacin. 

The minimum inhibitory concentration (MIC) value for various bacteria is relatively 
low. Escherichia coli strains isolated from the bovine uterus showed MIC values ≤ 0.25 
µg/mL, which was analogous to the results obtained by Liu et al. for E.coli strains causing 
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The minimum inhibitory concentration (MIC) value for various bacteria is relatively low.
Escherichia coli strains isolated from the bovine uterus showed MIC values ≤ 0.25 µg/mL,
which was analogous to the results obtained by Liu et al. for E. coli strains causing thigh
infections in mice [58,59]. For Salmonella strains, the MIC value varied between 0.06
and 0.25 µg/mL [60,61]. Significantly higher MIC values were obtained for Pseudomonas
aeruginosa strains, ranging between 1 and 4 mg/mL [60,62].

Enrofloxacin is highly effective in the treatment of respiratory, urinary, gastrointesti-
nal, and skin inflammation in dogs and cats [3]. Westropp et al. tested the potential of
enrofloxacin against urinary tract infections caused by aerobic bacteria in dogs. Infected
animals (103 CFU/mL) received the antibiotic per os at a dose of 18–20 mg/kg for 3 days.
Of all infected animals treated with enrofloxacin, up to 88.6% of individuals recovered [63].
One recurrent skin disease in dogs is pyoderma, caused by Staphylococcus intermedius. It has
been demonstrated that the use of enrofloxacin at a dose of 5 mg/kg for a minimum of one
week can be an effective treatment for this disease [64]. Conjunctivitis in cats, caused by
Chlamydophila felis, can also be effectively treated with enrofloxacin. This was demonstrated
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by Gerhardt et al. who, using a dose of 5 mg/kg, observed that 92% of affected cats
recovered [65].

In cattle, enrofloxacin has been used to control bacterial infections of the mastitis,
respiratory, and gastrointestinal tracts [34]. Mannheimia haemolytica is the bacterium most
commonly isolated from cattle suffering from bovine respiratory disease (BRD). It was
shown that the subcutaneous application of enrofloxacin (at 7.5 mg/kg) is effective against
this bacterial pathogen [52]. Initial attempts to treat mastitis with enrofloxacin were unsuc-
cessful [66,67]. However, a recent study by Alfonseca-Silva et al. confirmed the effectiveness
of this antibiotic in the treatment of mastitis, although the authors used a slightly different
approach. The antibiotic (in the form of hydrochloride dihydrate) was administered twice
daily for 5 days via intramammary infusions (infusions into the udder) at a dose of 300 mg.
The authors showed that 65% of cattle treated with enrofloxacin recovered, while the
additional introduction of ceftiofur-HCl led to a 100% recovery [68].

The effect of enrofloxacin has also been confirmed in bacterial diseases of poultry,
such as salmonellosis, colibacteriosis, and pastelosis [3]. Marien et al. administered this
antibiotic to animals in drinking water at a dose of 10 mg/kg for 3 or 5 days. The au-
thors confirmed the efficacy of enrofloxacin in treating turkeys triple infected with E. coli,
Ornithobacterium rhinotracheale, and avian pneumovirus (APV). Moreover, they demon-
strated that enrofloxacin was a more effective bactericide than florfenicol (at 20 mg/kg
per 5 days) or amoxicillin (at 20 mg/kg per 5 days) [69]. Similar results for the efficacy
of enrofloxacin in the eradication of O. rhinotracheale were obtained by Garmyn et al. [70].
Enrofloxacin is particularly effective against Salmonella strains. Li et al. demonstrated that
a seven-day administration of the antibiotic at a dose of 100 mg/kg not only effectively
treated salmonellosis, but additionally minimized the possibility of resistance development
in S. Typhimurium [71].

Enrofloxacin has also been used in controlling bacterial infections in exotic animals [34].
Asian house geckos are endangered by Enterococcus lacertideformus, a pathogen that causes
a systemic infection that is usually fatal. Agius et al. treated infected animals with en-
rofloxacin per os, once daily at a dose of 10 mg/kg for 21 days. The authors showed that
the use of this antibiotic was effective in 83.6% of geckos, while the effectiveness of treat-
ment with amoxicillin–clavulanic acid was 58.2%, rifampicin 45.5%, and clarithromycin
26.5% [72]. This antibiotic has also been used to treat lung disease in sea turtles and Indian
pythons [73,74].

It is important to note that enrofloxacin should only be used in justified situations.
Particularly, it can be employed to treat infections resistant to other antibacterial agents
after testing the susceptibility of infecting bacterial strains. The caution is necessary as this
antibiotic may affect the gut microbiome as well as increase the risk of developing resistance
by bacteria. Morales-Barrera et al. showed that the prophylactic use of enrofloxacin
in turkeys at a dose of 50 mg/kg increased the susceptibility of animals to Salmonella
infections [75]. A recent study by Janssen et al. indicated that the use of enrofloxacin may
affect the development of the resistance of commensal E. coli strains in pigs [76]. Analogous
results were obtained by Lin et al., who noted an increase in the number of ciprofloxacin-
resistant E. coli strains in pigs treated with enrofloxacin [77], and Kaspersen et al., who
found that even a single treatment with enrofloxacin significantly increased the probability
of developing quinolone resistance in commensal E. coli strains [78]. Pomorska-Mól et al.
also observed that the use of enrofloxacin at the time of vaccination for Aujeszky’s disease
significantly delayed the humoral response and decreased the level of IFN-γ in pigs [79].

5. Mechanisms of Resistance to Enrofloxacin

The ability of bacteria to develop resistance to antibiotics, including fluoroquinolones,
is becoming a global public health problem across the world. The main causes of this
phenomenon are the inappropriate incorporation of antibiotics in treatment, as well as the
misuse of huge amounts of antibiotics for preventive purposes in animal breeding [80].
The use of enrofloxacin in veterinary treatment is quite controversial. The increase in
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enrofloxacin-resistant strains led to the withdrawal of the use of this antibiotic in the
United States in 2005 [81], while its use in food-producing animals was never allowed in
Australia [82,83]. Nevertheless, the presence of strains resistant to fluoroquinolones has
been reported in the following years in these countries [84]. Enrofloxacin is accepted by
the European Medicines Agency (EMA) for veterinary use in injectable and tablet forms.
However, on 14 February 2018, the Agency’s Committee for Veterinary Medicinal Products
(CVMP) stated that medicinal products containing enrofloxacin should no longer be used
in chickens and turkeys for the treatment of E. coli infections [85].

In bacteria, the development of resistance mechanisms to fluoroquinolones is caused
by (i) the presence of resistance genes (qnr) in plasmids, protecting the target topoisomerase,
(ii) the presence of efflux pump systems encoded by plasmids, (iii) the presence of a gene
(aac(6′)-Ib-cr) encoding an enzyme that modifies fluoroquinolones, and (iv) the appearance
of mutations in the quinolone resistance determinant region (QRDR) within the subunits
forming topoisomerases II and IV [86–91]. These mechanisms can be either chromosome-
or plasmid-borne [88].

The plasmid-borne fluoroquinolone resistance gene (qnr) codes for a 219-aa protein
that protects both DNA gyrase and topoisomerase IV from the antibiotic by destabilizing
the gyrase–antibiotic complex [92]. Three major plasmid gene families are known to encode
the proteins responsible for fluoroquinolone resistance: qnrA, qnrB, and qnrS [93]. The
presence of these genes was identified in enrofloxacin-resistant E. coli strains [94–96].

The efflux pump system decreases the intracellular concentration of fluoroquinolones
by transporting the antibiotic from the cell to the environment. The mechanisms of re-
sistance to enrofloxacin associated with the increased expression of efflux pumps have
been identified in S. Typhimurium [97], S. Entiritidis [98], E. coli [99,100], and Enterococcus
strains [101].

The aminoglycoside acetyltransferase AAC(6′)-Ib-cr is an enzyme capable of N-
acetylating piperazine-substituted quinolones, leading to reduced bacterial sensitivity
to antibiotics, including enrofloxacin [102]. AAC(6′)-Ib-cr has two amino acid changes,
Trp102Arg and Asp179Tyr, which together are necessary for the enzyme’s ability to acety-
late the antibiotic [103]. The presence of a gene encoding AAC(6′)-Ib-cr was confirmed in
clinical enrofloxacin-resistant strains of E. coli [104] and S. Indiana [105].

The genes encoding the topoisomerase II (gyrA) and IV (parC) subunits contain spe-
cific domains called quinolone resistance determinant regions (QRDRs). Resistance to
quinolones arises due to amino acid substitutions within these sequences, which leads
to the abnormal conformation of the subunits and the reduced binding affinity of the
drug to the DNA-gyrase or DNA-topoisomerase IV complex [15,89]. The presence of such
mutations was demonstrated in enrofloxacin-resistant strains of Pseudomonas aeruginosa
isolated from companion dogs [106]. Mutations within the gyrB and parE genes can also
cause resistance to quinolones, but they occur less frequently than mutations within gyrA
and parC [15].

It is important to stress that resistance to one fluoroquinolone (like enrofloxacin) usu-
ally means the insensitivity of bacterial cells to other antibiotics from this group. This
phenomenon is due to the structural identity of the fluoroquinolone backbone present in
all these compounds, which determines the mechanisms of the resistance developed by
bacteria. Thus, products of the qnr genes, a family of the pentapeptide repeat proteins, can
effectively protect DNA gyrase and topoisomerase IV, targets of fluoroquinolones, against
any compounds from this group [93]. Similarly, specific efflux pumps can remove all
fluoroquinolones from bacterial cells. The aac(6′)-Ib-cr gene product is an enzyme capable
of modifying the fluoroquinolone backbone, irrespective of the side moieties present in
different antibiotics belonging to this group. Finally, since all fluoroquinolones interact with
the same region of topoisomerases (called QRDR), mutations causing changes in the tertiary
structures of this region of the enzymes prevent the binding of any fluoroquinolone-like
molecules. Many examples confirm this statement. It has been observed that selection pres-
sure caused by the use of enrofloxacin has led to resistance to many of the fluoroquinolones
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used in veterinary and medicine [107,108]. It has been reported that Campylobacter strains
resistant to enrofloxacin were also resistant to ciprofloxacin and other fluoroquinolones
used in medicine, as isolates from enrofloxacin-treated hens developed the p.Asp90Asn
mutation in the gyrA gene, leading to the development of bacterial resistance to other
fluoroquinolones [109]. Moreover, Salmonella strains treated with enrofloxacin developed
resistance to nalidixic acid and ciprofloxacin [110]. In fact, the incidences of quinolone-
resistant Salmonella increased significantly after the approval of the use of quinolones in
livestock [110]. Importantly, it was suggested that the use of enrofloxacin in the food of
animals affects the occurrence of ciprofloxacin resistance in zoonotic Salmonella, resulting
in human infections [111].

Irrespective of the mechanisms of resistance to enrofloxacin, the appearance of re-
sistant bacteria should be considered to be a potentially dangerous phenomenon. Since
enrofloxacin is considered to be a strong antibacterial compound, it might be potentially
used under conditions when other antibiotics fail to eliminate pathogenic bacteria [3].
However, the overuse of this drug can likely lead to the selection and spread of antibiotic-
resistant bacteria, which could potentially lead to a decrease in its general efficacy as a
treatment for animals. The appearance of enrofloxacin-resistant bacterial mutants and their
spread has been reported after the use of this antibiotic for the treatment of chicken [108] or
ducks [112]. Especially problematic is the development of resistance under sub-inhibitory
concentrations of enrofloxacin [98], as such conditions may occur in places with its ther-
apeutic use. This is particularly dangerous, since bacteria resistant to enrofloxacin are
also resistant to other fluoroquinolones [98]. Therefore, despite the fact that enrofloxacin
has been approved for use only in veterinary medicine, not in humans [34], the spread of
resistant bacteria is problematic as other fluoroquinolones, like ciprofloxacin, are antibiotics
employed in the treatment of humans. In this light, one might predict that virulent bac-
terial strains which gained resistance when present in animals might transfer to humans,
causing hard-to-treat infections. Moreover, since fluoroquinolone-resistance mechanisms
can be plasmid-borne [88–101], this feature can be easily transferred in the environment to
other bacterial strains or even species, possibly causing the selection of dangerous human
pathogens insensitive to a large group of antibiotics.

6. The Safety of Enrofloxacin Use

There is no doubt that enrofloxacin is an effective antibacterial agent. However,
organisms treated with this antibiotic are prone to many adverse effects. The most common
adverse effects of enrofloxacin include changes in the skeletal, reproductive, gastrointestinal,
immune, and nervous systems [3]. However, it should be kept in mind that the occurrence
of adverse effects is mainly dependent on the dose used and the frequency of antibiotic
administration. In this chapter, we will discuss the known adverse effects of enrofloxacin
in farm animals and in the environment.

6.1. Adverse Effects in Farm Animals
6.1.1. Skeletal System

One of the most commonly confirmed adverse effects of enrofloxacin are changes in the
skeletal system. The confirmed in vitro and in vivo changes mainly concern arthropathy,
tendon damage, and the destruction and degeneration of articular cartilage [3].

Among the most common enrofloxacin-induced degenerations are articular cartilage
lesions in young animals. Histopathological analyses have confirmed that this antibiotic
causes a decrease in matrix proteoglycans, total cartilage thickness, a decrease in the
number of chondrocytes, the appearance of spindle cells, and an increase in the number
of gaps and voids in the articular cartilage matrix in young lambs [113]. Moreover, safety
studies of enrofloxacin confirmed that the use of this antibiotic causes a drastic decrease
in the viability of chondrocytes, induces their apoptosis and DNA fragmentation, causes
an increase in pro-inflammatory factors, such as Il-1β, TNF, and MMP3, and can affect the
shape of the actin and vimentin cytoskeleton [114–117]. Analogous results were obtained in
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safety studies of enrofloxacin in growing hens. It was shown that the use of this antibiotic
led to morphological changes in chondrocytes within the cytoplasm and cell nucleus, as
well as a loss of proteoglycan [118].

Enrofloxacin is also an agent that causes pathological changes in tendon cells. It
has been shown that the use of the antibiotic in horses inhibits cell proliferation and also
induces morphological changes, including cell membrane perforation [119]

It is also worth noting that enrofloxacin negatively affects bone marrow cells. Han
and Joo demonstrated that the use of enrofloxacin causes a decrease in metabolic activity
and stimulates the death of mouse bone marrow cells, as well as decreasing the number of
CD11b + Gr1+ neutrophils [120].

Despite such severe adverse effects, the potential of enrofloxacin has been successfully
exploited in canine osteosarcoma studies. Won Seo et al. demonstrated that the antibiotic
induces apoptosis and inhibits p21(WAF1) expression in osteosarcoma cells, which resulted
in decreased cell proliferation [121].

6.1.2. Reproductive System

Enrofloxacin shows deleterious effects mainly on the male reproductive system; how-
ever, the exact mechanism of this process is not known [122–124]. Aral et al. performed
one of the first studies on the effects of enrofloxacin on semen quality in mice. The authors
showed that the application of this antibiotic at a dose of 150 mg/kg caused a decrease
in motility and sperm count, as well as an increase in the number of abnormal sperm.
Moreover, histopathological examination confirmed the degeneration of seminal tubules,
incomplete spermatogenesis, and a decreased sperm concentration in seminal tubules [123].
Analogous results were obtained by Rugsung et al. in a rat model, further demonstrating
that enrofloxacin is able to decrease testosterone levels [124].

However, it is important to note that enrofloxacin can also affect the cells of the female
reproductive system. Tkachenko et al. demonstrated that the use of the antibiotic adversely
affects oocytes in the common marmoset. They observed both a decrease in the number
of oocytes and morphological changes, including the abnormal structure of the meiotic
spindle [125]. Additionally, it was observed that enrofloxacin induced cytotoxicity in bovine
cumulus cells, as evidenced by changes in mitochondrial activity [126].

Enrofloxacin may also adversely affect avian embryonic development. The cardiotoxic
effect of the antibiotic on chicks was demonstrated. The accelerated heart rate of embryos
resulted in chicks hatching too fast, and thus their drastically low survival rate. Moreover,
some of the chicks showed joint deformities, as well as abnormal blood biochemical
parameters, such as hyperproteinemia, mild hyperglycemia, and increased blood urea
nitrogen/uric acid ratio [127].

In specific cases, enrofloxacin can be used to treat infections in pregnant animals. The
short-term administration of enrofloxacin to late pregnant mares (at 260 days of gestation)
has been shown to cause placental penetration of enrofloxacin; however, it was not toxic to
the fetus [128].

Extreme caution should be exercised when using enrofloxacin during the reproductive
period. As outlined above, enrofloxacin may affect not only the quality of germ cells and
the normal anatomy of the reproductive system, but also fetal development.

6.1.3. Retinopathies

Enrofloxacin is one of the agents that causes retinopathy and blindness in domestic
cats. The characteristic pathological change associated with the toxic effects of the antibiotic
is a reduction of the outer nuclear membrane of the retina [3,129]. Moreover, histopatholog-
ical studies have shown that the antibiotic leads to the loss of photoreceptors, as well as
the hypertrophy and proliferation of the retinal pigment epithelium. Sometimes, a return
of vision is observed; however, retinal degeneration persists or progresses [130,131]. Inter-
estingly, retinopathic changes are not seen in non-domestic cats. Newkirk et al. analyzed
the effect of enrofloxacin on the thickness and morphology of the retinal layer in lions and
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panthers. They showed that the antibiotic had no toxic effects on the retina and could be
safely used in these animals [129].

6.1.4. Hepatotoxicity

The liver is the main organ responsible for detoxification and is, therefore, exposed to
many adverse substances. Enrofloxacin at high concentrations can accumulate in the liver,
leading to a number of hepatotoxic changes, and can also alter liver enzyme activity [132].
Studies on grass carp liver cells have shown that this antibiotic is able to induce hepatocyte
apoptosis through a mitochondrial-dependent pathway, as well as cause a drastic change
in the values of biochemical parameters, such as an increase in the levels of lactate de-
hydrogenase (LDH) and malondialdehyde (MDA), a decrease in the total mitochondrial
membrane potential (DJm), the generation of reactive oxygen species (ROS) (at a dose of
200 µg/mL), and a decrease in the total antioxidant capacity (T-AOC) [132]. Enrofloxacin
may also interfere with the activity of cytochrome P450 enzymes, which are responsible for
drug metabolism [133,134]. This antibiotic has been shown to be able to inhibit CYP1A2
in rats [135], CYP3A in sea bass and hens [136,137], and also CYP3A4 and CYP2E1 in
pigs [134]. Furthermore, it is capable of upregulating microsomal NADPH-cytochrome C
reductase (NCCR) and inhibiting microsomal erythromycin N-demethylase (ERND) and
aminopyrine N-demethylase (AND) activities. Additionally, a proteomic analysis revealed
the increased expression of carboxylesterase (CES) and alpha-enolase (ENO1) proteins as a
response to enrofloxacin-induced stress [138].

6.1.5. Immune System

The use of enrofloxacin can also induce an inflammatory response at the injection site
and affect the cell count and protein levels of the immune system. Enrofloxacin has both
cytotoxic and genotoxic effects on the lymphocyte population. It has been shown to affect
the formation of chromosomal aberrations, mainly chromatid and chromosome breaks,
as well as chromosomal gaps in human lymphocytes [139]. Moreover, the in vitro effects
of enrofloxacin-induced bovine lymphocyte death and DNA damage, regardless of the
concentration used, have been reported [126]. The exposure of common carp macrophages
to enrofloxacin resulted in the activation of the NF-κB pathway and the induction of an NF-
κB-based immune response that included reactive oxygen species formation and cytokine
expression [140].

An inflammatory response at the site of antibiotic injection has been confirmed in
pigs [3]. Recent studies indicated that this effect could also occur in fish. The intramuscular
injection of enrofloxacin in striped bass led to hemorrhage, necrosis, and inflammation [141].

6.2. Other Adverse Effects in Veterinary Medicine

The list of adverse effects caused by enrofloxacin is vast. It is important to note that
enrofloxacin is also able to affect the nervous system, heart function, vitamin levels in the
body, and behavior. The induction of epileptic seizures and interaction with serum albumin
were also noted. A list of studies in which adverse effects caused by the use of enrofloxacin
have been observed is presented in Table 4.

Table 4. Studies in which adverse effects caused by the use of enrofloxacin were observed.

Study Type Animal Model Observed Effect Reference

in vitro
Cattle Toxic interaction with serum albumin [142]

Cattle Cytotoxicity on embryonic limb bud cells and
midbrain cells [143]
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Table 4. Cont.

Study Type Animal Model Observed Effect Reference

in vivo

Rats Slight decrease in liver vitamin A and E levels [144]

Elephants Anorexia, decreased water intake, constipation,
depression, ataxia, limb paresis, and tremors [145]

Genetic Absence Epilepsy
Rats from Strasbourg

(GAERS)
Induction of clonic seizures [146]

Dogs
Alteration of cardiac ventricular depolarization

and repolarization, as well as increasing the
risk of ventricular arrhythmias.

[147]

Acipenser baerii Structural damage to liver, kidney, and
cartilage [148]

Danio rerio
Changes in the catalytic activity of glutathione

peroxidase
and glutathione S-transferase

[149]

6.3. Environmental Adverse Effects

Enrofloxacin, like many antibiotics, is considered to be an environmental toxin. Due to
the overuse and misuse of antimicrobial compounds, elevated levels of this antibiotic have
been increasingly observed in various environments, such as soils, groundwater, sewage
treatment plants, and farms [150]. The half-life of enrofloxacin, which ranges between
1155 and 3466 days (depending on environmental conditions), appears to be extremely
dangerous [3,151]. One of the main sources of enrofloxacin contamination is poultry litter,
which is widely used as an agricultural fertilizer due to its high content of micro- and
macro-elements and its ability to improve soil pH [152]. The negative effect of enrofloxacin
on the population of soil and aquaculture organisms has been confirmed.

It has been shown that the enrofloxacin present in poultry litter has a toxic effect on
earthworms (Eisenia andrei), causing deterrence, biomass loss, and death depending on
the dose applied [153]. Similar results were found by Gao et al., who studied the effect
of enrofloxacin on growth rate and catalase activity in Eisenia fetida. The authors further
confirmed that earthworm intestinal tissues are more sensitive to enrofloxacin than body
wall muscle tissues [154].

The continued entry of enrofloxacin into the aquatic environment poses a long-term
threat to the organisms living there. The removal of enrofloxacin and other fluoroquinolone
antibiotics is a very complex process, and it is not always effective [155,156]. Therefore, the
biocontrol of organisms exposed to these antibiotics is crucial. The effects of enrofloxacin
on the growth of giant freshwater shrimp were investigated. The analysis confirmed
that enrofloxacin at the high doses to which the shrimp were exposed caused stunted
animal growth, gill and liver damage, and the induction of hepatopancreatic cell apoptosis.
Moreover, the induction of oxidative stress by enrofloxacin is believed to be a likely cause
of this phenomenon [157]. Interestingly, a safety analysis of this antibiotic on anuran
amphibian larvae showed that the environmental concentration of enrofloxacin (10 µg/L)
affected the development, size, shape, and growth of larvae, as well as inhibiting the activity
of antioxidant enzymes [155]. It was also proposed that in Daphnia magna, enrofloxacin
can cause high reproductive toxicity, as well as genetic or epigenetic changes that will only
produce effects in subsequent generations [158–160].

The increased concentrations of enrofloxacin in aquatic environments pose serious
health risks to humans and livestock. Although enrofloxacin adversely affects aquacultures,
data on its concentration in various bodies of water are limited. The concentrations of
this antibiotic in several aquatic environments have been investigated, and it appears that
the main sites of accumulation of enrofloxacin are surface waters, such as rivers, where
the levels range between 12 ng/L and 4.24 µg/L [161], creeks where the concentrations
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are 17–216 ng/L [162], and ponds where the concentration is about 0.50 µg/L [163]. The
appearance of enrofloxacin in tap water at concentrations ranging from 2.0 to 4.0 ng/L
has also been reported [164]. However, the largest reservoirs of enrofloxacin are domestic
wastewaters, municipal wastewaters, as well as hospital wastewaters, where enrofloxacin
can occur at concentrations as high as 100 µg/L [165].

7. Interactions with Metal Ions

Both antibiotics and heavy metals exhibit long-term cytotoxicity to the environment.
Therefore, potential interactions between antibiotics and heavy metals are being increas-
ingly investigated. Enrofloxacin is one of the antibiotics that can interact with metal
ions. The most relevant aspects of this phenomenon to be discussed are the effects of
the antibiotic–metal mixture on microbial populations, the importance of the degradation
process of enrofloxacin in combination with metals, and the application of this phenomenon
in laboratory diagnostics.

7.1. Effects on Microbial Populations

The use of enrofloxacin in combination with metals may affect the survival of microor-
ganisms. Wei et al. conducted a study in which they examined the toxicity of enrofloxacin,
copper (Cu), and the enrofloxacin-Cu combination. The authors showed that the toxicity of
the antibiotic–metal combination on the soil bacterial population was higher than that of the
antibiotic alone, indicating a synergistic effect of the antibiotic–metal complex. However, in
fungal populations, it has been observed that a combination of enrofloxacin and metal has
a predominantly antagonistic effect [150]. A similar study was performed by Wang et al.,
who tested the toxicity of enrofloxacin in combination with cadmium. The authors showed
that the interaction between the antibiotic and the metal was antagonistic and that the
combined contamination of soil with cadmium and enrofloxacin reduced their toxic effects
on soil microorganisms [166].

A recent study by Yan et al. showed the promising therapeutic potential of enrofloxacin–
calcium complex [Ca(EFX)2(H2O)4]. This compound was tested on E. coli and S. Typhi
strains. It is noteworthy that the use of an enrofloxacin complex with calcium in a rat
model resulted in a reduction in its acute toxicity and the rate of binding to plasma, as
well as better distribution of the drug. Moreover, this complex showed greater efficacy
against E. coli in the chicken model than enrofloxacin alone (cure rates were 88% and 78%,
respectively) [167].

The following facts have also been confirmed: the interaction of enrofloxacin with
Cu2+ ions via pyridone and carboxylate moieties [168], the modulation of binding of
this antibiotic to the outer membrane protein OmpF of E. coli in the presence of Mg2+

ions [169], and the increased adsorption of enrofloxacin in calcareous soil in the presence of
Zn(II) [170] have all been observed. The list of other studies reporting the significant effects
of enrofloxacin in combination with metals is presented in Table 5.

Table 5. Examples of studies in which a significant effect of metal–enrofloxacin interaction was observed.

Metal Observed Effects Reference

Co(II) and Ni(II)
(1) Broader spectrum of antibacterial and antifungal activity against: E. coli,

S. aureus, P. aeruginosa, and C. albicans
(2) No cytotoxic effect of tested complexes on L929 cell line

[171]

Cu(II) (1) Increased antibacterial activity against E. coli and Salmonella
(2) Enhanced cytotoxic potential against breast cancer cell line (MCF-7) [172]

Cd (1) Increased bioaccumulation of Cd caused by enrofloxacin in earthworms
(2) Enhancement of oxidative stress induced by Cd [173]

Cd (1) Increased cytotoxicity of the complex compared to the antibiotic alone
(2) Most of the interactions observed were antagonistic reactions [174]

Cu (1) Application of the complex increased toxicity to soil enzymes [175]
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7.2. Use of Metal–Enrofloxacin Interactions in Laboratory Diagnostics

The ability of enrofloxacin to interact with metals has also been used in applications
for laboratory diagnostics. Tong et al. proposed a synchronous fluorescence method
for the determination of enrofloxacin concentrations which is based on yttrium-induced
luminescence. When yttrium in the form of Y3+ ion is added to an enrofloxacin solution,
the fluorescence of the antibiotic is significantly enhanced. This method allows one to
determine the levels of enrofloxacin in pharmaceutical preparations, but also allows the
evaluation of the level of this antibiotic in milk [176]. Rezaei and Mokharti also proposed a
method for the determination of enrofloxacin using a flow-injection system. It is based on
the rapid reduction of Ru(phen)3

3+, which is formed in the reaction between Ru(phen)3
2+

and acidic Ce(IV) by enrofloxacin, leading to strong chemiluminescence. The method has
been used to evaluate enrofloxacin levels in plasma and poultry meat [177].

7.3. Exploitation of Metal–Enrofloxacin Interaction in Antibiotic Degradation

The overuse of antibiotics in veterinary medicine has resulted in the appearance
of these drugs in the environment. The main reason for this phenomenon is the use
of contaminated animal waste as natural fertilizers. Moreover, these drugs enter the
environment through effluents from wastewater treatment plants that are unable to handle
such contaminants [178,179]. Enrofloxacin, like most fluoroquinolones, is considered to
be an environmental contaminant of increasing importance. Its presence has been found
in wastewater, agricultural soils, and animal manure [151,178,180]. Due to the potential
environmental toxicity of enrofloxacin, alternative methods are being sought to degrade
this antibiotic. Previous attempts have included biodegradation processes and physical
degradation using metals.

Alexandrino et al. used a population of soil microorganisms obtained from the rhi-
zosphere sludge of plants from experimentally constructed wetlands that were designed
to treat farm wastewater to biodegrade enrofloxacin. Metagenomic analysis identified the
major taxonomic groups that are associated with enrofloxacin degradation. Despite the
confirmation of the biodegradation of enrofloxacin, the efficiency of this process was low,
at the level of about 40–55% [178].

However, considerably higher efficiencies of enrofloxacin degradation were obtained
with physical methods using metals. One way to remove enrofloxacin from the environment
is photodegradation. This process leads to the degradation of molecules when exposed to
light. Sturini et al. examined the kinetics of the photodegradation process of enrofloxacin
in untreated river water under sunlight and under the same conditions in the presence
of titanium oxide (TiO2). The authors proved that the use of titanium oxide accelerated
the photocatalysis process two fold [166]. Similar results were obtained by Yu et al., who
confirmed the role of titanium oxide, in the form of an Fe3O4@TiO2-GO (FTG) catalyst, in
the photocatalysis of enrofloxacin [181].

Yang et al. confirmed the ability of Fe(VI) to oxidize enrofloxacin, leading to its
complete degradation. Moreover, the resulting oxidation products of the antibiotic have no
antibacterial properties, and its toxicity in source waters was removed [182]. On the other
hand, Scisenko et al. investigated the role of Fe(III) on the photolysis rate of enrofloxacin.
Interestingly, the half-life of the antibiotic bound to Fe(III) increased from about 22 min to
2.1 h. Only the addition of H2O2 resulted in a more efficient degradation of the antibiotic–
metal complex [183].

7.4. Translational Implications of Metal–Enrofloxacin Interactions

The examples described above demonstrated how important it is to study the inter-
actions between metals and antibiotics. The action of a metal–enrofloxacin complex, or a
metal–enrofloxacin interaction, can not only affect the degradation time of an antibiotic,
but also alter its toxicity and antibacterial properties. Importantly, these properties can be
either enhanced or impaired, depending on the kind of microorganisms and the nature of
the metals.
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The interactions of enrofloxacin with metal ions may affect not only the activity, but
also the bioavailability of this antibiotic. It has been observed that hard water, in which
the concentrations of Mg2+ and Ca2+ ions are extremely high, causes the formation of
complexes composed of the antibiotic with these ions. Although the formation of such a
complex compound did not affect the antibacterial activity of the antibiotic, it drastically
reduced its absorption by the epithelium of the gastrointestinal tract and lowered its
maximum concentration in plasma [24]. Such a phenomenon might lead to a decrease
in the effectiveness of the therapy, and could also increase the possibility of developing
microbial resistance to the drug. Therefore, when using enrofloxacin in animal breeding, it
is necessary to supply water of appropriate quality.

8. Concluding Remarks and Future Perspective

Enrofloxacin is undoubtedly an effective antibacterial agent, as evidenced by a huge
number of in vivo studies. However, there is often more harm than benefit in using this
antibiotic. When using enrofloxacin, there are many factors to consider that may influence
both the success of the treatment and the occurrence of potential adverse effects [184].

Consideration should be given to whether the use of this antibiotic as a first-choice
drug is warranted. The use of enrofloxacin is certainly effective due to its broad spectrum of
action, as well as its fairly favorable pharmacokinetics. However, its use can be very taxing
on the body and can cause a tremendous number of adverse effects, including skeletal,
reproductive, immune, and digestive changes. Additionally, the use of enrofloxacin may
increase the likelihood of resistance development in commensal bacteria. It is important
to note that enrofloxacin may interact with other drugs and metals, which may affect the
success of the therapy. Another aspect that should be considered is the high environmental
toxicity of enrofloxacin. This antibiotic has a long half-life and also adversely affects the
biocenosis of marine and terrestrial ecosystems.

Future research on enrofloxacin should include a search for new strategies that will
reduce the toxicity of this antibiotic, as well as allow its safer and more efficient degrada-
tion. Molecular mechanisms of enrofloxacin-mediated toxic effects on animal and human
cells should be determined to make such a search effective. Possible targeted chemical
modifications of this effective antimicrobial agent might enhance its efficacy, restrict the
possibilities of the development of bacterial resistance, and increase its safety parameters
by reducing adverse effects.

On one hand, enrofloxacin is a strong-acting antibacterial agent, which is its advantage,
but on the other hand, it is also more toxic to eukaryotic cells than other fluoroquinolones
(and many other groups of antibiotics), causing severe adverse effects in animals and
revealing high toxicity to humans. The latter feature, combined with its low solubility and
bioavailability, precludes its use to treat humans where other similar molecules, including
enrofloxacin’s metabolite, ciprofloxacin, are definitely a better choice at the moment. How-
ever, some features of enrofloxacin, especially its efficiency in killing various groups of
bacteria, both Gram positive and Gram negative, tempts us to propose that further works
should be dedicated to chemical modifications of this molecule to minimize its toxicity to
eukaryotic cells while retaining the strong antibacterial activity, which might lead to the
development of novel, promising therapeutic agent(s).
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