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Abstract: Many of the essential oils obtained from medicinal plants possess proven antimicrobial
activity and are suitable for medicinal purposes and applications in the food industry. The aim of the
present work was the chemical analysis of 19 essential oils (EOs) from seven different Cymbopogon
species (C. nardus, C. citratus, C winterianus, C. flexuosus, C. schoenanthus, C. martinii, C. giganteus).
Five different chemotypes were established by GC/MS and TLC assay. The EOs, as well as some
reference compounds, i.e., citronellol, geraniol and citral (neral + geranial), were also tested for their
antimicrobial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA) by
the microdilution method and direct bioautography. The toxicity of EOs was evaluated by Danio rerio
‘Zebrafish’ model assay. All examined EOs showed moderate to high activity against MRSA, with
the highest activity noted for C. flexuosus—lemongrass essential oil, both in microdilution and direct
autobiography method. Significant difference in the toxicity of the examined EOs was also detected.

Keywords: Cymbopogon; TLC-bioautography; antibiofilm activity; essential oil; zebrafish; GC/MS

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) has become a significant problem
worldwide. Infection prevalence differs geographically due to its virulence and lack of
active antibiotics. This strain is invasive and is often responsible for serious infections,
especially skin infections, pneumonia, blood stream or surgical site infections [1,2]. Since
resistant strains of different pathogenic bacteria are being reported more and more fre-
quently [3–5], it is important to seek new therapeutics which are both effective and safe.
Offering better biocompatibility and fewer side effects on the human body, plant essential
oils (EOs) are regarded as potential alternatives to synthesis-based antibiotics [6].

Genus Cymbopogon belongs to the Poaceae family and consist of more than 140 culti-
vated species [7], most of which are represented by perennial plants, although there are
some annuals. The genus is native to Africa, South Asia and Australia, and was introduced
to South America. The most common representative of genus is C. citratus (DC.) Stapf. That
particular species is widely used for flavoring in the countries of its natural origin. It not
only enhances the flavor of certain foods, but also affects digestion in a positive way. Even
a small addition of its products, e.g., fresh or dried leaves, powder, tea, or essential oil,
significantly increases the durability of food against some foodborne bacteria and fungi, as
well as representing a natural source of vitamins A, B1, B2, B3, B5, B6, C and minerals such
as calcium, potassium, phosphorous, magnesium, copper, iron, and zinc [7–9]. Although
commonly used as a spice, especially in Asian cuisine, Cymbopogon representatives are
also used as insect repellents (e.g., C. nardus (L.) Rendle) and soil conservatives, among
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others. Cymbopogon, as a therapeutic agent, has been used throughout human history for
anti-inflammatory [10,11], antibacterial [12–14], antihelmintic [15], antiproliferative [16–18],
antihyperlipidemic and antihyperglycemic [19] purposes. These properties are attributed
mainly to the essential oils (EOs) that Cymbopogon species contain. The most characteristic
components of these EOs are citral (mixture of neral and geranial), citronellal, geraniol,
nerol, limonene and myrcene [7,18,20]. The specific compounds and their concentrations
differ by species, making Cymbopogon genus an interesting material to investigate as a
potential anti-MRSA (methicillin-resistant Staphylococcus aureus) agent.

The thin layer chromatography-direct bioautography (TLC-DB) technique seems to
be promising and reliable to the determine antibacterial activity of essential oils, and
so far, has been successfully used to evaluate the activity of EOs from clove, cinnamon,
lemongrass, peppermint, lavender, thyme and Croton lechleri against pathogens such as
Listeria monocytogenes, Salmonella typhimurium, Aspergillus niger, Salmonella choleraesuis, Pseu-
domonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, Haemophilus parainfluenzae,
Staphylococcus epidermidis, Staphylococcus saprophyticus and Escherichia coli [20–24]. TLC-DB
is relatively quick and uncomplicated method with which to evaluate the antimicrobial
properties of mixtures of compounds, with the advantage of indicating which component
of an examined mixture is the most active. It is useful to examine both Gram-positive and
-negative strains, and is very flexible [25].

Essential oils are a popular choice for the treatment of a wide variety of ailments, but
at the same time, data indicate that people are increasingly putting their health at risk when
they turn to these fragrant, volatile plant products. To evaluate the toxicity of EOs, the
zebrafish (Danio rerio) model can be used. The zebrafish model is well characterized and
widely used in toxicity assays due to the rapid development of zebrafish embryos [26–28].
The Danio rerio genome was sequenced in 2013, and shows 75% similarity with the human
genome [29]. Embryos are transparent, simple to maintain and show high sensitivity to
toxicants. As such, they represent an optimal model with which to evaluate the influence of
compounds at early life stages of development. Pioneering studies suggest that chemicals
can, in many cases, have very similar toxicological and teratological effects in zebrafish
embryos and humans [28]. The effect of C. citratus EO on zebrafish has been examined in
some research, in which promising activity on the central nervous system, i.e., anxiolytic,
anticonvulsant and neuroprotective effects, were reported [30,31].

The aim of the present study was the phytochemical analysis of 19 essential oils from
seven different Cymbopogon species originating from Hungary, Japan, Poland and South
Africa. TLC and GC/MS were used to determine the chemical composition of these EOs.
In parallel, these studies sought to evaluate the anti-MRSA activity of Cymbopogon essen-
tial oils by thin layer chromatography-direct bioautography and the broth microdilution
method. The toxicities of the EOs were also tested.

2. Results
2.1. Chemical Composition of Essential Oils

TLC and GC/MS analyses of Cymbopogon EOs showed the differences in the chemical
compositions of the tested oils (Figures 1 and 2 and Table 1). Based on these differences, the
analyzed EOs can be divided into five chemotypes (ChT I–V). Two of the seven analyzed
Cymbopogon species were classified as chemotype I (ChT I), i.e., C. nardus (EO1, EO18)
and C. winterianus (EO4, EO11, EO13, EO15). These two species produce citronellal as
the major component of their respective EOs. The relative content of this monoterpene
aldehyde ranges from 24 to 37%. Two monoterpene alcohols, geraniol and citronellol, are
also very important components of this chemotype. The monoterpene aldehydes neral and
geranial are the most significant compounds found in chemotype II (ChT II). This group
includes the following Cymbopogon species: C. citratus, C. flexuosus, and C. schoenanthus,
represented by EOs: 2, 3, 5, 7, 9, 12, 14, 16 and 17. In all EOs of this chemotype, geranial
was the most abundant compound, with over 40% of the relative percentage, followed by
neral, with a concentration of about 30%. Essential oils from C. martinii var. motia (EO8)
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and C. nardus (EO6) originate from South Africa were included in chemotype III (ChT III).
Both EOs are rich in geraniol and geranyl acetate. EO8 showed the highest concentration
of a single compound of all of the examined EOs, with geraniol making up as much as
70.1%. EO6 contains only 26.3% of geraniol, but both EOs are characterized by similar
amounts of geranyl acetate, i.e., 14.0% and 11.5% respectively. Chemotype IV (ChT IV) is
represented by EO10, obtained from South African C. giganteus. The major components of
this EO are trans-p-mentha-1(7),8-dien-2-ol (=isocarveol) (23.7%), trans-p-mentha-2,8-dienol
(17.9%), cis-p-mentha-1(7),8-dien-2-ol (16.8%) and limonene (13.8%). Palmarosa essential oil
(C. martini) was classified as chemotype V (ChT V); its major components are monoterpene
alcohols, citronellol (33.6%) and geraniol (28.8%).

Figure 1. The most characteristic components of the analyzed essential oils.
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Figure 2. TLC separation of essential oils from Cymbopogon species (chromatogram above) and detection of anti-MRSA
activity by direct bioautography (chromatogram below). Adsorbent, silica gel 60 F254. Solvent, hexane–ethyl acetate, 9 + 1
(v/v). Detection of upper chromatogram, alcoholic vanillin–sulphuric acid reagent. For EO numbering, see Table 4.

Among the analyzed essential oils, the one obtained from the South African C. gi-
ganteus (EO10) is characterized by the most distinct chemical composition. The major
components are monocyclic monoterpenoids, the structures of which are presented in
Figure 1. The chemical compositions of essential oils obtained from C. nardus, C. citratus,
C winterianus, C. flexuosus, C. schoenanthus, and C. martinii are dominated by acyclic monoter-
penes. In comparison to C. giganteus EO, in this group, we observed a greater variety of
types of chemical compounds. Besides alcohols, aldehydes and esters are also present.
There is one other difference in the chemical composition of the EO from C. giganteus,
namely, the presence of sesquiterpenoids. As shown in Table 1, no sesquiterpenes were
identified in the essential oil from C. giganteus.

2.2. Direct Bioautography and Thin Layer Chromatography

The anti-MRSA activity of all examined Cymbopogon essential oils was evaluated by
thin layer chromatography-direct bioautography. The data are presented on Figure 2. All
of the investigated EOs showed zones of inhibition of bacterial growth.

As shown in Figure 2, ChT I (EO1, 4, 11, 13, 15, 18) was the only chemotype that
did not show any inhibition zones at Rf = 0. All chemotypes showed inhibition zones
corresponding to Rf = 0.12, which was identified as geraniol and citronellol. Only ChT
IV had an active zone at Rf = 0.2, which corresponded to isocarveol. Spots at Rf = 0.34
were identified as neral and geranial, and have six representatives, all of which were in
ChT II. Geranyl acetate was detected at Rf = 0.42, while only two essential oils, EO5 and
EO7 (representing ChT II) showed visible inhibition in that area. Regarding Rf = 0.48,
this inhibition zone had only one representative, i.e., EO5 in ChT II; the corresponding
compound was identified as citronellal. EOs 7, 9, 14, 16, 17, all from ChT-II, merged the
Rf = 0 and Rf = 0.12 inhibition zones. Limonene, found at Rf = 0.9, had no active spots in
any of the examined EOs.
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Table 1. Relative percentages of volatile components identified in the examined essential oils. Essential oils were sorted according to recognized chemotypes (ChT). For EO numbering,
see Table 4.

Compounds RIlit RIexp

ChT I ChT II ChT III ChT IV ChT V

EO1 EO4 EO11 EO13 EO15 EO18 EO2 EO3 EO5 EO7 EO9 EO12 EO14 EO16 EO17 EO6 EO8 EO10 EO19

Tricyclene 927 924 1.5
α-Pinene 936 935 0.2 2.7

Camphene 950 952 1.1 0.9 0.2 0.5 0.8 1.2 1.0 1.8 0.9 9.8
β-Pinene 978 975 0.2
Sulcatone 978 985 0.9 1.6 1.8 1.1 1.2 1.6 1.5 1.7 1.2 1.7 0.1
Myrcene 987 990 0.2

p-Cymene 1015 1028 0.7
Limonene 1025 1032 5.3 0.8 3.6 5.6 3.6 2.9 0.9 0.3 12.1 2.3 5.7 1.6 1.0 1.0 10.0 0.2 13.8 0.7

1,8-Cineole 1024 1035 0.5 0.7
(Z)-β-Ocimene 1029 1035 0.4
(E)-β-Ocimene 1041 1048 0.2

2-Nonanone 1074 1073 0.9 1.0 0.6 1.3 0.9 1.1 1.0
2,6-Dimethylstyrene 1077 1094 0.6

Linalool 1076 1103 0.5 1.1 0.9 0.7 1.0 1.0 1.2 1.1 2.7 2.5 1.3 1.1 1.1 1.3 1.1 3.8 3.4
trans-p-Mentha-2,8-dienol 1120 1129 17.9
cis-p-Mentha-2,8-dien-1-ol 1125 1144 8.6

Citronellal 1129 1155 37.1 24.0 37.2 36.7 33.2 24.2 0.5 0.6 1.3 0.5 0.4 0.2 0.6 0.7 2.9
β-Terpineol 1130 1157 0.7

4-Isopropenylcyclohexanone 1132 1162 0.6
cis-Verbenol 1132 1163 0.7 0.7 0.8 0.6
Isopulegol 1132 1166 0.5 0.5 0.8

endo-Borneol 1148 1182 7.0
m-Methylacetophenone 1159 1192 0.5

trans-p-Mentha-1(7),8-dien-2-ol 1176 1196 23.7
α-Terpineol 1176 1203 0.2 0.7 0.9 1.8 4.8
γ-Terpineol 1188 1208 0.5

5-Isopropenyl-2-methylcyclopent-1-
enecarboxaldehyde 1196 1218 0.8

cis-Carveol 1210 1227 3.3
Citronellol 1213 1230 16.4 12.1 13.4 13.9 15.3 11.4 3.4 33.6

Neral 1215 1243 1.4 7.1 1.1 31.0 31.9 34.0 30.2 27.2 30.5 28.0 28.1 27.8 1.4 2.7
cis-p-Mentha-1(7),8-dien-2-ol 1217 1239 16.8

Carvone 1229 1251 3.7
Geraniol 1235 1255 20.6 31.1 21.0 22.2 21.4 23.5 6.8 6.6 1.5 5.1 5.9 4.8 2.7 1.8 3.1 26.3 70.2 28.8
Geranial 1244 1271 1.8 10.3 0.4 1.6 0.7 41.2 41.0 40.4 45.7 40.9 40.8 42.0 41.1 41.5 1.5 2.6 4.9

Bornyl acetate 1270 1289 1.1
Linalyl formate 1270 1299 0.4 0.5 0.5 0.8 0.8 0.9 1.3 1.9 0.5

Citronellyl acetate 1340 1349 3.0 1.8 3.4 2.9 3.7 4.0 1.1
Nerolic acid 1342 1359 0.6 1.9 2.2

Limonene-1,2-diol 1346 1359 1.0
Eugenol 1348 1360 0.5 0.8 0.6 1.0 1.0 0.5 2.7

Geranyl acetate 1362 1378 4.5 4.6 3.8 3.9 3.5 6.3 6.6 6.2 1.0 4.9 7.2 4.8 9.0 9.8 8.5 11.5 14.0 12.0
β-Elemene 1389 1396 1.1 0.4 2.5 2.0 3.0 4.8 1.3

β-Caryophyllene 1421 1432 0.3 2.9 2.8 2.5 0.5 0.5 0.9 0.4 2.3 0.9
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Table 1. Cont.

Compounds RIlit RIexp

ChT I ChT II ChT III ChT IV ChT V

EO1 EO4 EO11 EO13 EO15 EO18 EO2 EO3 EO5 EO7 EO9 EO12 EO14 EO16 EO17 EO6 EO8 EO10 EO19

trans-Isoeugenol 1429 1458 0.4 0.4 0.6
α-Humulene 1455 1468 0.4 0.3 0.3

trans-α-Bergamotene 1461 1491
Germacrene D 1479 1491 1.2 0.3 2.1 1.1 2.6 0.3 2.6

Isoeugenyl methyl ether 1486 1500 7.9
α-Muurolene 1496 1508 0.4 0.8 0.5 0.8 0.9
γ-Cadinene 1507 1524 0.5 0.5 0.6 0.4 0.7 0.7 1.2 1.4 1.6 0.7 1.3 1.1
β-Cadinene 1526 1528 1.4 0.6 2.4 1.8 2.8 2.5 0.7 0.7 0.4

Geranyl isobutyrate 1550 1555 2.3 0.3 1.3
Elemol 1559 1561 2.4 0.3 3.7 3.1 3.8 7.5 2.0 1.9

Germacrene D-4-ol 1576 1592 0.8 0.2 0.6 0.4 0.6
Caryophyllene oxide 1578 1599 0.6 0.6 0.3 1.0 1.5 3.8 3.0 2.2 3.1 1.2

Cadinol T 1633 1659 0.8 0.6 0.8 1.1
α-Cadinol 1643 1672 0.5 0.8 0.5 0.8 1.0
β-Eudesmol 1641 1674 0.3 0.6 0.5 0.6 1.5

TOTAL 100.0 99.4 100.0 100.0 99.6 95.1 98.5 98.4 97.6 97.2 97.9 96.3 95.0 91.3 94.6 100.0 96.7 92.0 93.9
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2.3. Assessment of Minimum Inhibitory Concentrations and Minimum Bactericidal Concentrations

Based on the data obtained from thin layer chromatography-direct bioautography,
one representative from each of the recognized chemotypes were chosen and subjected to
examination by the broth dilution method, together with reference compounds citronellol,
geraniol, and citral. The data are presented in Table 2.

Table 2. Activity data of the examined EOs or their main compounds against the reference strain of Methicillin-resistant
Staphylococcus aureus ATCC 43300. For EO numbering, see Table 4.

Examined EO or Compound
(chemotype/EO)

The Activity Data against MRSA

MIC *
(mg/mL)

MBC
(mg/mL)

MBC/MIC
Value

MBIC
(mg/mL)

MBEC
(mg/mL)

I/11 4 4 1 4 >16
II/14 0.5 0.5 1 1 >16
III/8 2 2 1 2 >16

IV/10 2 2 1 2 >16
V/19 1 2 2 2 >16

Citronellol 0.25 0.25 1 0.5 >16
Geraniol 1 1 1 1 >16

Citral 0.5 1 2 1 >16

* Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC)
and minimum biofilm eradication concentration (MBEC).

The selected EOs showed some antimicrobial effect against Methicillin Resistant
Staphylococcus aureus ATCC 43300. The examined EOs exhibited activity towards S. aureus,
with MIC ranging from 0.5 mg/ml to 4 mg/mL. The MBC was similar. Among five EOs,
the highest antistaphylococcal activity was observed with EO14 (C. flexuosus), classified in
chemotype II with MIC = MBC = 0.5 mg/mL. EO19 (ChT V) showed slightly lower activity
with MIC = 1 mg/mL and MBC = 2 mg/mL. S. aureus was also inhibited and killed by EOs 8
(ChT III) and 10 (ChT IV) at the same concentration, i.e., 2 mg/mL. The weakest activity was
demonstrated for EO 11, representative of chemotype I, with MIC = MBC = 4 mg/mL. All
of the examined EOs exhibited bactericidal effect (MBC/MIC = 1–2) against the reference
MRSA strain. Additionally, high activity was observed for three tested EO compounds:
citronellol, geraniol, and citral. Citronellol indicated high antibacterial activity with MIC
= MBC = 0.25 mg/mL. In the case of citral, the minimal concentrations which inhibited
the growth of staphylococci and killed them were 0.5 mg/mL and 1 mg/mL, respectively.
In turn, geraniol showed both inhibitory and killer activity against staphylococci at a
concentration of 1 mg/mL. These compounds also exhibited a bactericidal effect with
MBC/MIC = 1–2.

Assessment of Minimum Bio-Film Inhibitory Concentrations and Minimum Bio-Film
Eradication Concentrations

The results presented in Table 2 show that the EOs from Cymbopogon spp. exhibited
anti-biofilm action. Their minimum biofilm inhibitory concentration (MBIC) ranged from
1 mg/mL to 4 mg/mL for the reference MRSA strain. These values were the same as
MBC for all chemotypes, except for representative of chemotype II. In this case, the MBIC
was twice as high. Similar MBIC values were demonstrated for the reference substances,
i.e., citronellol, geraniol and citral—0.5 mg/mL, 1 mg/mL and 1 mg/mL, respectively.
However, lemongrass EOs and their main compounds did not remove already formed
biofilms (MBEC) at any of the concentrations tested, i.e., 0.5–16 mg/mL.

2.4. Toxicity Assay

The toxicity of selected EOs (one representative of each chemotype) were tested
by use of the zebrafish (Danio rerio) model. In the first range of concentration, i.e.,
0.04–0.46 mg/mL, embryos in solutions of EOs representing ChT I and ChT V survived
up to day 3; however, cardiac development was disrupted, which resulted in changes in
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heartbeat and heart oedema, especially at higher concentrations. Because of the severe
toxicity of EOs, a second range of concentrations, i.e., 0.004–0.0046 mg/mL, was evaluated.
Cardiotoxicity and shortened tail after 48 h of treatment for chemotype I–III above a con-
centration 0.02 mg/mL were observed. After 72 h of treatment, all fish were alive; however,
they developed cardiac toxicity at some of the highest concentrations. A summary of
toxicity results is presented in Table 3. All of the examined EOs in concentrations above
the maximum tolerated concentration (MTC) resulted in more or less severe cardiotoxicity.
Higher concentrations disrupted the development of embryos, resulting in shortened tails
and slower development compared to controls. The most toxic of the examined essential
oils was oil number 8, obtained from South African C. martinii var. motia. This EO was
about 20 times more toxic than the least toxic EO, i.e., number 13 (C. winterianus).

Table 3. Toxicity evaluation for chemotype representatives on zebrafish after 72 h of incubation. For
EO numbering, see Table 4.

Chemotype/EO
Maximum Tolerate

Concentration (MTC)
[mg/mL]

Outcomes for MTC after 72 h

I/13 <0.086 Slightly shortened tails, mild cardiac changes
II/9 0.0090 Slightly slowed development
III/6 0.022 Shortened tails
III/8 0.0041 Not different from control

IV/10 0.0463 Not different from control
V/19 0.0084 Shortened tails, slowed development

3. Discussion

Essential oils are used for their biological properties, including effects on humans,
animals, plants, insects, and microorganisms, as well as in nutrition as food preservatives
or flavorings, in cosmetics as odorants, and in medicine as pharmacologically active
ingredients [32,33]. The biological properties of essential oils are due to their chemical
composition. Variations in the chemical profiles of essential oils can occur from plant to
plant, even in the same species. These changes in the composition are associated with,
among other things, abiotic and biotic factors and postharvest treatment [33].

Chromatographic analysis of 19 EOs obtained from seven different Cymbopogon species
showed significant differences in chemical composition, and five chemotypes were dif-
ferentiated. The obtained results were in accordance with the literature data. The major
components of the Cymbopogon essential oils were citral (neral + geranial), citronellol,
citronellal, geraniol, geranyl acetate, and isocarveol [24,34,35]. The aforementioned ter-
penoids are the chemical markers of the following recognized chemotypes (ChT): (I) ChT
1–citronellal, (II) ChT 2–citral, (III) ChT 3–geraniol and its acetate, (IV) ChT 4–isocarveol,
(V) ChT 5–citronellol.

The global threat of antimicrobial resistance (AMR) and infections caused by AMR
bacteria has brought about the need for urgent therapeutic discoveries, improvement of
existing infection control or antimicrobial practices, and increased interest in alternative
treatments [36]. Methicillin-resistant Staphylococcus aureus is a major cause of community
and hospital-associated infections. It can cause mild infections, often associated with skin
or soft tissue, but also more severe conditions such as pneumonia, osteomyelitis, cerebral
abscess and sepsis, resulting in high rates of morbidity or mortality and high economic
burden. Since MRSA is one of the main causes of persistent human infections, it has been
categorized as a high-priority pathogen by the World Health Organization (WHO) [37].
MRSA is one of the main pathogens causing chronic infections, mainly due to its capacity
to form biofilms. It has been suggested that biofilms are responsible for nearly 80% of
all human infections; one of their most critical features is their high level of resistance to
antibiotics, host immune defenses, disinfectants and environmental stress [37]. The biofilm-
forming capacity of bacterial strains is a trait which is strongly associated with bacterial
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persistence and virulence. The resistance of biofilm-associated organisms is estimated to
be 50–500 times greater than that of planktonic cells [36]. These structures are complex
bacterial communities formed by the adhesion of microorganisms to a surface (biotic or
abiotic) embedded in an exopolymeric matrix [38]. The treatment of these infections is
often ineffective, and as such, there is a need to devise new therapies.

Moreover, foodborne diseases are among the main causes of public health problems
globally. These diseases are spread through the ingestion of contaminated water and/or
food. They are also responsible for high rates of morbidity and mortality, and for high
costs of medical care [13]. One of the factors that exacerbates this issue is the lack of appro-
priate handling conditions and hygiene, which leads to surface and food contamination.
S. aureus is the predominant bacteria that form surface biofilms in the food industry, and
is responsible for numerous cases of food poisoning [13]. One way to combat biofilms
is to use sanitizers. Numerous studies are being carried out to develop new sanitizing
products that are more effective and less toxic to humans. EOs and their major components
stand out as new strategies to combat biofilms, with potential applicability in the food
industry [13]. Moreover, EOs are being studied in the search for new antimicrobial drugs
and antibiofilm strategies.

According to literature data, the effects of EOs and their main compounds on S. aureus
and its biofilms are quite varied. In our data, MICs for tested Cymbopogon EOs ranged from 1
to 4 mg/mL against a reference MRSA strain. In turn, the activity of citronellol, geraniol and
citral was slightly higher, at 0.25–1 mg/mL. The MBC values were the same or two times
higher. Some authors [39,40] indicated different activity for one of the main constituents
of Cymbopogon EOs. i.e., citral, toward MRSA strains. Viktorová J. et al. [40] showed that
citral was up to 100 times more active than lemongrass EOs. Similarly, both citral and
EOs inhibited bacterial communication and adhesion during MRSA biofilm formation.
However, the biofilm prevention activity of citral was significantly higher. In turn, a study
by Oliveira et al. of antistaphylococcal activity [41] indicated that the lowest concentration
of citral that inhibited MRSA growth was 5 mg/mL, while the highest was 40 mg/mL,
whereas bactericidal concentrations varied between 10 mg/mL and 40 mg/ mL. Oliveira
et al. [41] showed the bioflm formation capacity of MRSA in a quantitative way in MRSA
isolates using citral in the initial phase of bioflm formation from 0 to 24 h, along with the
addition of citral in the mature phase of the bioflm, corresponding to 24 h after inoculation.
A concentration of 25 mg/mL of citral was more effective in isolates with citral added in
the initial phase of bioflm formation than in the mature phase. In the initial phase, there
was a significant reduction in biofilm formation (93.6% reduction). In turn, after 24 h of
growth, the observed reduction was very low (≤51.2% reduction). In these studies, as
in ours, it was observed that using citral in the initial phase of biofilm formation yielded
better results. According to the results of Gao et al. [39], the MIC of citral is 0.0313% (v/v)
against S. aureus.

Other research has described the activity of C. citratus oil toward S. aureus. Oliveira JB et al. [42]
showed susceptibility of S. aureus strains isolated from newborns to this oil. The minimum
inhibitory and bactericidal concentrations for EO were 0.625 mg/mL in all strains tested.
According to Tadtong S. et al. [43], the MIC of C. citratus EO against these bacteria is 0.5%
(v/v). High activity towards S. aureus was also revealed by Mickienė et al. for C. citratus L.
with bactericidal concentrations of 0.8% [44]. Additional data indicated an antistaphyloccal
effect of lemongrass oils. Ahmad A. et al. [45] showed that the MIC of Cymbopogon EOs
against S. aureus ranged from 0.032 mg/ml to 1 mg/ml. The results of Adukwu et al. [36]
indicated that these EOs at low concentrations, i.e., between 0.03 and 0.06% (v/v), were
effective at inhibiting the growth of S. aureus strains, and at 0.125% (v/v), the effect of
lemongrass EO was bactericidal. These results are consistent with the study of Barbosa
et al. [46], in which it was demonstrated that lemongrass EO inhibited the growth of S.
aureus at a concentration of 0.05% (v/v). According to Pontes et al. [13], the MICs of C.
nardus EO and geraniol for S. aureus were 0.5 mg/mL and 0.25 mg/mL, respectively. Their
data showed that both EO and geraniol exhibit bacteriostatic activities at the concentrations
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stated above. The MBC values for S. aureus bacteria were as follows: 4 mg/mL for EO
and 2 mg/mL for geraniol. The MIC of C. nardus EO toward S. aureus in this study was
in agreement with results reported by Silveira et al. [47]. Those authors evaluated the
antistaphylococcal activity of C. nardus EO at 0.6 mg/mL. Finally, the results of Coutinho
et al. [48] confirmed the MIC of geraniol to be 0.24 mg/mL for S. aureus.

In our study, Cymbopogon EOs and their main compounds, at twice the MBC and at the
same concentration as the MBC (0.5–4 mg/mL), prevented biofilm formation, highlighting
antimicrobial activity as well as potential as antibiofilm agents. Unfortunately, they had
no effect on biofilm eradication, even at a concentration of 16 mg/mL. Therefore, it has
been suggested that biofilm prevention is preferable to disruption and removal. The
inability of antimicrobial compounds to remove biofilm deposits has also been observed
by other authors [36,41]. As biofilms develop, the cells undergo irreversible attachment,
leading to maturation. At this point, removal of biofilms is said to be difficult. The use of
essential oils and their byproducts may become a major strategy to combat the formation
and development of S. aureus biofilms [13]. For the food industry, the presence of these
structures entails serious economic losses, and the use of essential oils is a new alternative
for the disinfection of industrial surfaces. As biofilm formation is a survival mechanism, but
one which contributes to virulence and persistence, it has been suggested that preventing
biofilm attachment is a good way of dealing with the problem of biofilms in the food
industry [13,36]. Therefore, considering the results presented here, there may be potential
for lemongrass EO use in food processing environments.

These results confirm that the antimicrobial and antibiofilm properties of Cymbopogon
EOs provide another option for future antistaphylococcal therapeutic interventions in both
clinical and industrial applications.

It is believed that because essential oils are natural, they are therefore also safe for
human consumption. Essential oils are not safe at all, and can cause significant poisoning,
even if small amounts are ingested. The use of undiluted essential oils on sensitive skin
or in the nostrils can irritate or burn. Susceptible people may also develop an allergic
reaction and a skin rash. Among Cymbopogon essential oils, C. citratus and C. flexuosus are
GRAS EOs (Generally Recognized As Safe by the Food and Drug Administration (FDA)).
However, investigations concerning the toxicity of other EOs are necessary.

The zebrafish model is widely used in toxicity assays; however, to our knowledge,
this is the first report on the toxicity of different kind of EOs from Cymbopogon based on
this model. Besides two scientific reports [30,31] about Cymbopogon activity on the central
nervous system, no study to date has been published on the activity of Cymbopogon on
any zebrafish model. However, there are many reports about the anti-inflammatory or
neuroprotective activity of different EOs, such as thyme or rosemary essential oils [49–51].
Hacke et al. [30] concluded that the main compounds of C. citratus—i.e., citral (18.6%),
geraniol (22.0%), and linalool (20.6%)—were responsible for its anxiolytic effect, and that
citral and geraniol had a synergistic effect.

Based on the obtained results, the essential oils classified in chemotype I are charac-
terized by the lowest toxicity. These are EOs obtained from Cymbopogon species C. nardus
and C. winterianus; this finding is in agreement with FDA recommendations. The most
toxic among the examined essential oils was oil number 8, obtained from South African
C. martinii var. motia. This EO was about 20 times more toxic than the least toxic EO, i.e.,
number 13 (C. winterianus).

4. Materials and Methods
4.1. Essential Oils

Nineteen essential oils from seven different Cymbopogon species originating from
Hungary, Japan, South Africa, and Poland (Table 4) were the subject of the present study.
The EOs were stored in tightly sealed amber vials at 4 ◦C prior to analyses. Before analysis,
all EOs samples were randomly numbered from 1 to 19, as shown in Table 4.
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Table 4. Numeration of essential oils with their taxonomies and sources.

EO NO. Species Country of Origin

1 C. nardus Hungary
2 C. citratus Hungary
3 C. citratus Japan
4 C. winterianus Japan
5 C. flexuosus Japan
6 C. nardus South Africa
7 C. flexuosus South Africa
8 C. martinii var. motia South Africa
9 C. citratus South Africa
10 C. giganteus South Africa
11 C. winterianus South Africa
12 C. citratus Poland
13 C. winterianus Poland
14 C. flexuosus Poland
15 C. winterianus Poland
16 C. flexuosus Poland
17 C. schoenanthus Poland
18 C. nardus Poland
19 C. martinii (Palmarosa) Poland

4.2. GC/MS Analysis

Analyses were performed with a Shimadzu GC-2010 Plus instrument coupled to a
Shimadzu QP2010 Ultra mass spectrometer (Shim-pol, Poland). Compounds were sepa-
rated on a fused-silica capillary column ZB-5 MS (30 m, 0.25 mm i.d.) with a film thickness
of 0.25 mm (Phenomenex, Torrance, CA, USA). The following oven temperature program
was initiated at 50 ◦C, held for 3 min, then increased at the rate of 8–250 °C/min, and
held for a further 2 min. The spectrometers were operated in EI mode; the scan range was
40–500 amu, the ionization energy 70 eV, and the scan rate was 0.20 s per scan. The injector,
interface, and ion source were kept at 250, 250, and 220 °C, respectively. Split injection was
conducted with a split ratio of 1:20, and helium was used as the carrier gas at a 1.0 mL/min
flow rate. Each of the 19 EOs samples were prepared by diluting 2 µL of EO in 1 mL of
hexane. An internal standard was added to each sample. Three parallel measurements
were made. The relative percentages of each component present in the analyzed EOs were
calculated. The retention indices were determined in relation to a homologous series of
n-alkanes (C8–C24) under the same operating conditions. Compounds were identified
using computer-assisted spectral libraries (MassFinder 2.1 Hamburg, Germany; NIST 2011,
Gaithersburg, MD, USA).

4.3. Direct Bioautography and Thin Layer Chromatography Assay

The direct bioautography (DB) method was used to determine whether the selected
EOs had any antimicrobial potential, and which fraction was the most active against
methicillin-resistant Staphylococcus aureus ATCC 43300. Each EO was diluted with methanol
(1:5 v/v), and then 1µL of each sample was sprayed onto a silica gel plate (Merck, silica
gel 60 with fluorescent indicator F254) as 7-mm wide bands using a CAMAG Linomat
5 autosampler. Plates were eluted in a standing chromatographic chamber with an eluent
composed of hexane and ethyl acetate (9:1 v/v). Each plate was doubled, i.e., one to
perform DB and the other to derivate with vanillin in order to visualize spots.

The DB plate was first dipped in a chamber filled with MRSA bacterial suspension
(0,5 McF) for a couple of seconds. It was then gently dried and left for 10 min incubation at
37 ◦C in a high humidity chamber. After that, the plate was dipped for a couple of seconds
in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) aqueous solution
(0.071 g/100 mL), and then dried and left in the same conditions as described above but
for an incubation period of 24 h. Places where growth of MRSA was inhibited are called
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inhibition zones, and they are easily spotted due to their lack of color change, in contrast to
the purple color of the areas with uninhibited growth.

Each inhibition zone from each DB plate was related to a corresponding retardation
factor (Rf) on the derivated plate. That, combined with the GC/MS analysis, allowed us to
identify active compounds in the EO. All 19 EOs were examined as described earlier. TLC
plates after derivatization with vanillin (chromatograms) and DB plates (bioautograms)
were photographed. All photographs were subsequently treated with graphics programs
(MS Paint and GIMP 2.10) to obtain high-contrast images, in color for chromatograms
and black and white for bioautograms, in order to better visualize fractions and inhibition
zones, respectively. Treated chromatograms and bioautograms were arranged according
to each EO chemotype, as described in Section 2.1. According to these data, TLC plates
with all EOs were compared with another plate with the main compounds developed
under the same conditions. This allowed us to identify some of the main compounds on
the chromatograms and all of the inhibition zones on the bioautograms, as well as their
retardation factors (Rf), which were calculated by taking the distance of a spot from its
starting point and dividing it by the distance of development. Three parallel measurements
were made for both the DB and TLC plates. The best one was then photographed.

4.4. In Vitro Antimicrobial Assay

Five of the examined EOs, i.e., 8, 10, 11, 14, and 19—were chosen as representatives
of each of the identified chemotypes (see Table 1), and selected components of the EOs,
i.e., citronellol, geraniol and citral, were screened in vitro for antibacterial activities us-
ing the broth microdilution method according to European Committee on Antimicrobial
Susceptibility Testing (EUCAST) [52] and Clinical and Laboratory Standards Institute
guidelines [53] against a reference Staphylococcus aureus ATCC 43300 MRSA strain. This
microorganism came from American Type Culture Collection (ATCC), routinely used for
evaluations of antimicrobials. The microbial cultures were first subcultured on nutrient
agar at 35 ◦C for 18–24 h. Both Mueller-Hinton broth (MHB) and Mueller-Hinton agar
(MHA) were used for the antimicrobial assay. In turn, ciprofloxacin (CIP) was used as a
reference antibacterial compound (Sigma-Aldrich Chemicals, St. Louis, MO, USA).

Microbial suspension of Staphylococcus aureus ATCC 43300 was prepared in sterile
saline (0.85% NaCl) with an optical density of 0.5 McFarland standard scale, containing
1.5 × 108 CFU/mL (Colony Forming Units/mL). Stock solutions of the examined essential
oils were dissolved in dimethyl sulfoxide (DMSO) at a concentration 50 mg/mL. Subse-
quently, the minimum inhibitory concentration (MIC) of these compounds was examined
by the microdilution broth method, using their two-fold dilutions in Mueller-Hinton broth
prepared in 96-well polystyrene plates. The final concentrations of the studied EOs ranged
from 3.91 to 8000 µg/mL. To each well containing broth and serial dilutions of EOs was
added a bacterial suspension. After incubation, the MIC was assessed spectrophotomet-
rically as the lowest concentration of the samples showing complete bacterial growth
inhibition. Next, the minimum bactericidal concentration (MBC), defined as the lowest
concentration of a compound which results in a >99.9% reduction in the CFU of the initial
inoculum, was tested. The MBC was evaluated by removing the culture used for MIC
determinations from each well and spotting onto Mueller-Hinton agar, and the plates were
incubated under the appropriate conditions. The lowest compound concentration with
no visible growth observed was assessed as a bactericidal concentration. All experiments
were repeated and representative data are presented.

Appropriate DMSO, antimicrobial compound (ciprofloxacin), growth and sterile con-
trols were carried out. The medium with no tested EOs was used also as a control [54–56].
In this study, the MBC/MIC ratio was calculated in order to determine the bactericidal
(MBC/MIC ≤ 4) or bacteriostatic (MBC/MIC > 4) effect of the studied EOs and their
components [54–56].
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4.5. Assessment of Minimum Biofilm Inhibitory Concentrations

Inhibition of biofilm formation was assessed using a method adapted from Adukwu et al.
and Pontes at al. [13,36]. Briefly, an aliquot (100 µL) from an overnight culture diluted in
TSB (Tryptic Soy Broth) supplemented with 1% glucose to 108 CFU/mL was dispensed into
each test well of a 96-well plate. Next, 100 µL of the EO at concentrations of 0.125–4 mg/mL
was added to the wells. The negative control was TSB only, whereas the positive control
contained cell cultures alone with no added EO. Following 24 h incubation at 37 ◦C, the
contents of the wells were decanted, and each well was gently rinsed twice with sterile
purified water. The plates were air dried for 30 min, stained with 2% crystal violet for
30 min at room temperature, washed three times with purified water and dried. Then, the
plates were washed again and air dried. Next, the crystal violet was then solubilized using
ethanol (96%), which was added to the wells for 20 min, and then read on a microplate
reader (Biotek, Winooski, VT, USA) at 570 nm. The MBIC was determined as the EO
concentration at which the OD ≤ negative control. Each experiment was performed
in triplicate.

4.6. Assessment of Minimum Biofilm Eradication Concentrations

The method used was similar to that described above. After biofilm formation for
24 h, the medium was discarded and the wells gently rinsed twice with sterile purified
water. A total of 200 µl of the EOs were serially diluted, ranging from 0.5 to 16 mg/mL, and
added to the wells. The plates were then incubated for 24 h at 37 ◦C, after which the wells
were washed with purified water and stained using the crystal violet (CV) staining method,
as described previously. The positive control was biofilm without EO. The concentration at
which already established biofilms were removed from the bottom of the treated wells was
determined as the MBEC [13,36].

4.7. Toxicity Assay
4.7.1. Zebrafish Husbandry

Adult wild-type (WT) zebrafish (Danio rerio) were maintained at 28.5 ◦C on a 14 h/10 h
light/dark cycle under standard aquaculture conditions. Fertilized eggs were collected by
natural spawning. Embryos were raised in embryo medium: 1.5 mmol HEPES, pH 7.1–7.3,
17.4 mmol NaCl, 0.21 mmol KCl, 0.12 mmol MgSO4, and 0.18 mmol Ca(NO3)2 at 28.5 ◦C.

4.7.2. Evaluation of Toxicity

Six EOs, i.e., 6, 8, 9, 10, 13, and 19, were selected for toxicity assays, which were
performed according to Organization for Economic Co-operation and Development (OECD)
guidelines for the testing of chemicals, with some modifications [57]. EOs that represented
each of the chemotypes were dissolved in DMSO to obtain stock solutions at concentrations
of 43.56 mg/mL (m/v). To acquire working concentrations, EOs were diluted in E3 medium,
and DMSO was added to reach final concentration of 1%. All EOs were tested in two
ranges of concentrations: 0.04356–0.4356 mg/mL and 0.4356–4.356 mg/mL. Four hours
postfertilization (hpf), embryos were placed in a 48-well plate, with 5 embryos per well
and 10 per concentration, and the tested solutions were added and changed every 24 h for
the next three days. Embryos were incubated at 28.5 ◦C for 3 days with a 14:10 light–dark
light cycle. After each 24 h period, embryos were checked under a microscope to check
for any signs of toxicity (coagulation, abnormal somite, nondetachment of tail, heart and
body development).

5. Conclusions

The obtained data indicate that the studied essential oils derived from Cymbopogon
species showed potential antistaphylococcal effect. Among them, EO 14 (C. flexuosus), classi-
fied in the second chemotype, exhibited especially high activity (MIC = MBC = 0.5 mg/mL)
against the reference MRSA. All examined EOs showed inhibition zones in direct TLC-
bioautography assay, with highest visible activity being observed with chemotype II,
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especially EOs 14, 16, and 17 (C. flexuosus, C. schoenanthus). It is also interesting to note that
studied essential oils have potential as antibiofilm agents. Unfortunately, they had no effect
on biofilm eradication, even at concentrations of 16 mg/mL. Therefore, it is suggested
that biofilm prevention is preferable to disruption and removal. The bactericidal effects
of the tested EOs may be used for the prevention and treatment of infections caused by
these microorganisms. EO 8 (C. martinii var. motia) was the most toxic agent in a zebrafish
assay, while EO 13 (C. winterianus) was the least toxic. These results show that Cymbopogon
essential oils are valuable antistaphylococcal agents.
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