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Precision health mapping is a technique that uses spatial relationships
between socio-ecological variables and disease to map the spatial distri-
bution of disease, particularly for diseases with strong environmental
signatures, such as diarrhoeal disease (DD). While some studies use GPS-
tagged location data, other precision health mapping efforts rely heavily
on data collected at coarse-spatial scales and may not produce operationally
relevant predictions at fine enough spatio-temporal scales to inform local
health programmes. We use two fine-scale health datasets collected in a
rural district of Madagascar to identify socio-ecological covariates associated
with childhood DD. We constructed generalized linear mixed models
including socio-demographic, climatic and landcover variables and
estimated variable importance via multi-model inference. We find that
socio-demographic variables, and not environmental variables, are strong
predictors of the spatial distribution of disease risk at both individual and
commune-level (cluster of villages) spatial scales. Climatic variables pre-
dicted strong seasonality in DD, with the highest incidence in colder, drier
months, but did not explain spatial patterns. Interestingly, the occurrence of
a national holiday was highly predictive of increased DD incidence, highlight-
ing the need for including cultural factors in modelling efforts. Our findings
suggest that precision health mapping efforts that do not include socio-demo-
graphic covariates may have reduced explanatory power at the local scale.
More research is needed to better define the set of conditions under which
the application of precision health mapping can be operationally useful to
local public health professionals.
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1. Introduction
Over 700 000 child deaths are attributed to diarrhoeal disease
(DD) annually [1]. The burden of DD is unequally distributed
across the globe: 73% of deaths occur in just 15 low-income
countries, driven by inequalities in water and sanitation infra-
structure and environmental conditions [2]. Understanding
the risk factors of spatio-temporal patterns of DD can be instru-
mental in designing public health interventions that target
populations most at risk. Precision health mapping is an
approach that incorporates increasingly available fine-scale
social and environmental information into spatial models to
explain and predict spatial disease patterns at resolutions
finer than those previously possible [3]. This approach has
recently emerged as a method to identify areas and popu-
lations at risk of disease and has been successfully used to
map the global distribution of diseases with strong environ-
mental signatures, such as malaria [4] and schistosomiasis
[5]. There are few examples, however, of efforts that are precise
enough and appropriately integrated with implementation to
be able to improve local public health strategies.

DD is ideal for precision health mapping because the
determinants of environmental suitability for a diarrhoeal
pathogen, such as climate [6,7] and land cover [8], are well
known. Hydrological networks, as well as infrastructure and
water, sanitation and hygiene (WASH) practices influence
transmission dynamics and individual risk of DD [8,9].
Upstream land cover has been shown to predict DD preva-
lence in rural areas of the tropics [8], with cumulative effects
for populations that are downstream of sources of water
contamination (e.g. livestock or agricultural run-off [10]).

These studies tend to rely on data extracted from large
national surveys, such as Demographic and Health Surveys,
that are powered to estimate indicators at broad spatial and
temporal scales (e.g. country or region every 5 years). When
projected to more granular geospatial data, they produce
fitted values on the assumption that relationships found at
broad spatial scales exist at fine spatial scales.However, because
these localized predictions are not typically fitted from data at
fine spatio-temporal scales, they may fail to explain patterns
of disease at those scales, limiting their ability to inform priori-
ties set by local health actors. For example, several recent
studies analysed the spatial patterns of disease and healthcare
access across Africa, incorporating datasets that included
GPS-tagged individuals and clusters [11–13].While these conti-
nent-level studies are comprehensive in their coverage across
countries, the finest resolution dataset used for Madagascar
(Demographic and Health Surveys 2008 surveys) had an aver-
age resolution of one cluster per approximately 1000 km2. To
improve local disease control, health managers in Madagascar
make decisions at very small administrative levels (Fokontany,
average size 34 km2 in Madagascar) much finer than global or
continent-wide studies are intended to address.

Localized analysis matters because socio-ecological deter-
minants of DD may be region- and pathogen-specific;
relationships identified at the global level may not hold
locally. For example, despite a proven biological pathway of
faecal–oral transmission, the effects of WASH interventions
on DD prevalence are ambiguous owing to differences in
socio-ecological context and specific aetiological agents [14].
Pathogens’ temperature responses differ between viral
(higher survival in colder environments) and bacterial
agents (lower growth in colder environments) [15], with net
effects on DD dynamics dependent on the prevailing set of
pathogens. At the national and global scale, increased forest
cover is consistently associated with lower incidence of DD
[8,16,17], but these associations have not been tested at the
fine spatial scale relevant for local action. Addressing these
inherent challenges in downscaling precision health mapping
tools is central to evaluating their use.

Here, we investigated the potential for precision health
mapping of DD at a fine-scale (village-level) in the rural
health district of Ifanadiana, in southeastern Madagascar. We
used multiple spatio-temporal datasets, including a district-
representative longitudinal cohort study and health centre
case reports in Ifanadiana, to identify the socio-ecological
variables associated with DD. We then assessed our ability to
predict disease risk at a scale relevant to public health man-
agers. The district comprises a protected tropical rainforest,
large areas of agricultural land and a steep east–west elevation
gradient. Owing to widespread poverty and low access to
improved WASH infrastructure, the population has high
exposure to diarrhoeal pathogens, with children under the
age of five and infant mortality rates at twice the national esti-
mates [18,19]. Because of the data availability, the region’s
environmental variability and the population’s high exposure
rates, Ifanadiana should be well-suited for the application and
validation of precision health mapping at a local scale.
2. Methods
(a) Study area
Ifanadiana district encompasses an area of 3970 km2 in the Vato-
vavy-Fitovinany region of southeastern Madagascar and consists
of about 210 000 people across 13 communes (the second smallest
administrative unit). The majority of the district is rural and the
dominant land cover is agricultural for rice production. The wes-
tern border includes Ranomafana National Park, a 416 km2

protected tropical rainforest. The east–west elevation gradient
slopes downwards from an altitude of 1400 m in the western
border to less than 100 m in the eastern border. This combination
of densely forested area, agricultural fields and human-developed
lands offers an ideal study system to explore how human-
modified landcover influences diarrhoeal pathogen transmission.

Beginning in 2014, the non-governmental organization PIVOT
partnered with the Ministry of Health (MoH) to establish a district-
level model health system [20]. The intervention strengthens the
public health system through a set of programmes focused on
improving system readiness (infrastructure, personnel, equipment,
supply chain), clinical programmes (maternal and child health,
emergency care, infectious diseases) and integrated information
systems at all levels of the district health system (community
health, primary care centres and hospital). Initially started in
four communes in 2014, the intervention has since reached six of
13 communes (as of 2019) and will expand to the whole of the dis-
trict by the end of 2020. In addition, a pilot initiative is underway
to upgrade the community health system to support professiona-
lized proactive community case management [21], in which
community health workers visit each household monthly and
are able treat DD, malaria and respiratory infections for children
under five to reduce geographical accessibility challenges. Central
to this agenda is optimizing the interventions geographically in the
context of heterogeneous disease burdens; the work described in
this study was done in support of these initiatives.

(b) Data collection
Our analysis included two datasets on childhood DD: a longi-
tudinal cohort study from a representative sample of 1600
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Figure 1. Socio-ecological variables used in the prevalence model mapped across Ifanadiana district. Only data for 2014 is shown. Socio-demographic variables
( purple) were interpolated from 80 cluster centroids using third-order inverse distance weighting. Climate variables (red) are shown in their initial spatial resolution.
Landcover variables (green) were spatially averaged to 1 × 1 km pixels for visualization. (Online version in colour.)
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households aggregated into 80 clusters in Ifanadiana at 2 year
intervals (April/May 2014, August/September 2016 and April/
May 2018) [18] and monthly diarrhoeal incidence from public
primary care centres from 13 communes in Ifanadiana from
June 2015 to December 2018. The longitudinal cohort study
included socio-demographic variables at the individual and
household level and individual-level DD positivity (electronic
supplementary material, table S1, see the electronic supplemen-
tary material, appendix for further detail on each variable). A
child was determined positive for DD if diarrhoeal symptoms
had been reported in the two weeks prior to the survey date.

Climate variables were collected from temporally explicit
remotely sensed imagery (electronic supplementary material,
table S1), and aggregated to the spatial resolution of the cohort
cluster or administrative commune, depending on the analysis.
We explored including mean monthly temperature, monthly pre-
cipitation and cumulative precipitation up to sixmonths prior, but
owing to high collinearity between variables we ultimately chose
one temperature and one precipitation metric to represent climate
over the prior six months based on each covariates’ centrality to
the other metrics [22]. The final variables chosenwere temperature
at a two-month lag and precipitation over the prior three months
for the cohort data analysis and temperature at a one-month lag
and cumulative rainfall over the prior three months for the health
system analysis. These variables should be interpreted as represen-
tative of temperature or precipitation over the prior six months to
the survey date or health system report because they were all simi-
larly explanatory. Landcover variables were derived from
OpenStreetMap and Sentinel-2 satellite imagery (see the electronic
supplementary material, appendix for detailed methods). A large
portion of households surveyed in the cohort obtained their
water from surface water sources compared to other water sources
(46%), and surface water is vulnerable to contamination from
upstream pollutants [10]. Therefore, we calculated the percentage
of each type of upstream landcover for streams within 1 km of a
surveyed village as a covariate.

(c) Analysis: disease prevalence using the cohort
dataset

We used multi-model inference to identify socio-ecological vari-
ables associated with individual child’s positivity for DD, or
disease prevalence. Multi-model inference allows multiple
hypotheses to be considered and incorporates measurements of
parameter uncertainty through the process of model averaging
[23]. Unlike stepwise approaches that result in one final model,
this technique results in a final set of models, as determined by
information criteria such as Akaike’s information criteria (AIC),
which are used to calculate parameter estimates and their uncer-
tainty. Importantly, this approach is well-suited for the study of
socio-ecological systems, often characterized by multiple, interact-
ing variables, owing to its ability to identify variables that are
consistently strong predictors of the response variable across
models [24]. The initial global model was a generalized linear
model with hierarchical random effects of the survey cluster
nested within the year of survey, to account for the sampling
design of the cohort survey study. A total of six individual or
household-level socio-demographic variables and eight cluster-
level environmental variables were included in the initial global
model (figure 1; electronic supplementary material, table S1).
Onlymain effectswithout interactionswere included. All variables
were inspected for assumptions of normality, and the six land
cover variables were ln-transformed. Following Gelman [25], we
centred and standardized our predictor variables to a mean of 0
with 0.5 standard deviation to allow for comparison of parameter
estimates during model averaging. The response variable was



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20202501

4
whether an individual child had an episode of DD in the prior two
weeks, as reported by the mother (binary). Therefore, we used a
binomial distribution with a logit link (logistic regression). To
further assess the robustness of our findings, we also conducted
out-of-sample testing. We included a randomly sampled subset
of 56 of the 80 clusters in our training dataset, and assessed the
model’s performance predicting DD in the remaining 24 clusters.
We then generated a fullmodel set consisting of all possible subsets
of the global model using the training data. We created a subset
that included all models that fit as well as the best fitting models
by including models with AIC scores within two AIC of the best
fitting model, following established methods using information
criteria [26]. An average model was obtained from this subset of
top models using the zero method of model averaging [27],
implemented in the AICcmodavg package [28] in R v. 3.5.2. We
assessed model performance using the area under the receiver
operator curve (AUC) and Tjur’s coefficient of discrimination, D,
which are performance metrics suitable for models where the
response variable is binomial. AUC balances the true positive
rate and false positive rate to return a metric ranging from 0 to 1,
where a value of 0.5 is equal to a completely random model.
Tjur’s D is the average difference of the predicted values for posi-
tive and negative cases and is an analogue of R2, ranging from 0 to
1 [29]. The performance was assessed for both in-sample and
out-of-sample datasets, accounting for fixed effects only.

(d) Analysis: commune-level incidence using health
system information

We used a similar multi-model inference approach as described
above to explore the socio-ecological risk factors of monthly
DD incidence at the level of the commune. The initial global
model was fitted using a negative binomial distribution and
included commune as a random intercept. More complex
models including spatially structured random effects and auto-
correlation were also considered, but either they offered no
improvement on fit (as measured by AIC) over the model with
only a random effect of commune, or they did not converge (elec-
tronic supplementary material, table S2). There was no evidence
of temporal or spatial autocorrelation in model residuals. The
model included a subset of the covariates used in the cohort
survey analysis. Age and sex were not included because they
varied at the level of the individual child and were not spatially
structured (figure 1). Similarly, the upstream landcover variables
were not included because communes are much larger than the
watersheds delineated in our flow accumulation model, and so
a spatially aggregated summary of such large areas could be mis-
leading. Socio-demographic variables were aggregated to the
commune-level by taking the mean of household-level variables
from the three cohort surveys and were interpolated linearly to
estimate monthly values from June 2015 to December 2018 (elec-
tronic supplementary material, table S1). Discussions with local
health workers suggested that DD incidence increased following
the national Independence Day (26 June), and so we included the
month of July as a covariate in the model. This holiday is unique
because it occurs after the main rice harvest period (March–May),
when subsistence farmers in Ifanadiana have disposable income
to spend on celebrations, resulting in an extraordinary consump-
tion of meat products and fried foods. This sudden change in
diet in combination with the lack of appropriate sanitary con-
ditions to store these food products for days is locally
hypothesized to drive the rise of diarrhoea in the days and
weeks that follow. Finally, we included whether or not a com-
mune was part of the PIVOT catchment during that month to
control for increased health centre use following the health
system strengthening activities implemented by the MoH and
PIVOT in these areas [19]. We assessed out-of-sample perform-
ance by training the initial model on a random subset of 9 of
13 communes, stratified across the PIVOT catchment area. Out-
of-sample performance was then assessed on the remaining
four communes, two of which were in the PIVOT catchment
area, accounting for fixed effects only. Because the response vari-
able was incidence per commune, we used a different metric than
in the first analysis to assess model performance: normalized
root-mean square error (NRMSE), scaled by the standard devi-
ation. This metric can be interpreted as the ratio of variation
not explained by the model to the overall variation in DD
incidence, with higher values representing a poorer model fit.
3. Results
(a) Disease prevalence
The cohort survey dataset consisted of 2745 children under
the age of five across three sampling periods. There were
between four and 30 children in each of the 80 clusters
(mean ± s.d.: 11.45 ± 3.55). District-wide prevalence of DD
ranged from 9% to 19% across sampling periods (2014:
145/896, 2016: 127/850, 2018: 84/999), and there was little
evidence for spatial correlation in prevalence across clusters
(figure 2; Moran’s I ranged from 0.00 to 0.06). Additionally,
there was low correlation of cluster-level DD prevalence
between years (Spearman’s r: 2014/2016: 0.270, 2014/2018:
0.077, 2016/2018: 0.123).

The top model set consisted of 27 models out of 65 536
total models that were within two D AIC of the best fit
model (electronic supplementary material, table S3). The
top model set included all 14 of the original predictors, two
of which (age and sex) were in all 27 top models (figure 3).
A quadratic relationship better explained the relationship
between age and DD than a linear relationship (figure 3c).
The rate of disease increased from age one to two years,
and then decreased with increasing age. A supplemental
analysis investigating the effects of wealth separately for
economic variables (e.g. asset, land and livestock ownership)
and housing quality (e.g. flooring, roofing and wall materials)
found that only economic variables were associated with the
individual risk of DD, similar to the relationship with the
wealth index in the main model (electronic supplementary
material, figure S1). Male children were more likely to
have had diarrhoea in the prior two weeks than female chil-
dren (odds ratio = 1.55, 1.18–2.04 95% confidence interval
(CI)). The regression coefficients of all environmental and
climatic variables were included in less than half of the
models, except for the proportion of rice fields, (figure 3),
suggesting they were not important risk factors of DD.
Finally, the fitted model performed poorly, with an
in-sample AUC of 0.66 and Tjur’s D of 0.033 and
out-of-sample AUC of 0.57 and Tjur’s D of 0.015.
(b) Commune-level incidence
The monthly diarrhoeal incidence in children under 5 years of
age ranged from 0 to 62 cases per thousand across all 13 com-
munes, with a clear peak in incidence in the winter months
(June–August) (figure 4). This seasonality was consistent
across years. There were differences across communes as
well, with the five PIVOT-supported communes consistently
reporting the highest incidences (figure 4). Eight models out
of 2048 were within two AIC of the top-performing model
and were included in the averaged model (electronic sup-
plementary material, table S4). The average model included
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nine of the 11 original covariates, with only rice landcover and
open defecation not included in any model. Four covariates
(occurrence of the national holiday, a commune falling in the
PIVOT catchment, temperature and precipitation) were
included in all models and all four had regression coefficients
whose 95% CIs did not include zero (figure 5). We estimated a
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NRMSE of 0.65 on the in-sample dataset and 2.68 on the out-
of-sample dataset. This suggests that the model was able to
explain nearly half of the variance in the training data, but
nearly three times the overall variation in DD incidence
remained unexplainedwhen applying themodel to the testing
data, indicating that the model was not able to adequately
explain spatial patterns in DD.

Unlike the analysis of disease prevalence, both socio-
economic and environmental variables influenced disease
incidence. The relationship between DD incidence and
wealth was weak and nonlinear, as reflected by the inclusion
of the linear (β =−0.20, −0.88–0.47 95% CI) and quadratic
(β = 0.37, −0.85–1.52 95%) wealth index terms in the final
model set. Incidence was higher in communes where a
larger proportion of the population had access to an
improved water source (β = 0.55, −0.04–1.16 95% CI),
although these CIs did overlap zero. Similarly, there was a
trend for lower DD incidence in communes with higher pro-
portions of developed landcover (β =−0.64, −1.30 to 0.006
95% CI). Temperature and precipitation influenced seasonal
disease incidence, with lower temperatures and higher precipi-
tation associated with higher incidence rates (figure 5;
temperature β =−0.42, −0.60 to −0.23 95% CI; rainfall β =
0.33, 0.15–0.517 95% CI). All other environmental variables
had low variable importance scores (figure 5), suggesting
they had little influence on disease incidence, and that the
main contribution of environmental variables was in driving
seasonality of disease incidence.
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4. Discussion
There is growing interest in the potential for ‘big data’ to be
used to support increasingly optimized and proactive
public health interventions. Predicting DD risk through pre-
cision health mapping accordingly offers great potential to
prevent diarrhoea-caused morbidity and mortality. However,
there is a substantial gap between our collective analytic
capabilities and the use of those capabilities to solve pro-
blems where they matter the most—in areas of extreme
poverty with high burdens of disease. For precision health
mapping to lead to actionable interventions, the global
relationships between DD and socio-ecological covariates
must retain fine spatial granularity relevant to public health
actors. Here, we used a multi-dataset analysis from a model
health district to identify social and ecological predictors of
diarrhoea in children under 5 years of age in rural Madagas-
car. Environmental variables contributed little to spatial
variation in disease incidence and prevalence but did explain
the seasonality of DD. Socio-demographic variables, how-
ever, were predictive of DD risk at both the individual and
commune levels. This questions whether precision health
mapping approaches that rely solely on environmental and
climatic variables can accurately predict disease risk at local
scales.

Results from both modelling exercises revealed inconsist-
ent patterns in the relationship between wealth and DD risk.
These findings are contrary to the general consensus that
diarrhoeal prevalence and morbidity are lower in wealthier
households [30], which may have access to improved
WASH infrastructure and health care. However, these studies
are often done at a national or multi-national scale, where
wealth variability may be larger, and they include both
urban and rural populations. Given that over 70% of the
population in Ifanadiana lives in extreme poverty [18] and
the highest commune-level coverage of access to an improved
water source was only 53% in our dataset, it is possible that
living conditions of households across the range of wealth
scores were comparable, resulting in similar exposure to diar-
rhoeal pathogens. By contrast, individual-level variables of
child sex and age explained a large portion of the variation
in DD prevalence. In particular, the nonlinear trend in DD
prevalence across age agrees with the results of a continent-
wide study of childhood DD in Africa [31]. This age-dependent
pattern may be owing to the implementation of a rotavirus
immunization campaign in Madagascar since May 2014,
which vaccinates children at two and four months of age
[32]. Indeed, there was a drop in cohort-wide prevalence
from 16.18% to 8.41% from 2014 to 2018 following the start
of immunization campaigns; however, there was no evidence
for a similar decrease in commune-level incidence rates
across this time period (figure 4a). As immunization campaigns
continue, the planned collection of paired data on rotavirus
vaccination status and DD in Ifanadiana will allow further
investigation.

We found evidence of very strong seasonality in DD inci-
dence (figure 4a), which is in agreement with other studies
focused on enteric diseases in the tropics [33,34]. DD inci-
dence was higher during the cooler, drier winter months,
and our analysis found cooler temperatures and higher pre-
cipitation to be associated with increased incidence. Enteric
viruses have higher survival and environmental persistence
at colder temperatures [35], which may suggest that enteric
viruses are the primary causative agents of DD in Ifanadiana.
This is further supported by a study conducted in human
populations near Ranomafana National Park that found
viral infection rates of over 50% during the austral winter
[36]. Colder temperatures during winter months may also
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be associated with human behaviour changes that increase
transmission rates, such as indoor crowding. Regarding pre-
cipitation, virus persistence is higher in higher-moisture
soils [15], and higher precipitation could increase exposure
to enteric viruses by increasing soil moisture and thereby
viral persistence.

We conclude that climatic factors do not contribute sig-
nificantly to spatial variation in DD prevalence or incidence
across Ifanadiana district, although this may be owing to
the specific limitations of our data. Although the district
spans an elevational gradient of 100–1400 m, its area is only
approximately 45 × 125 km at its widest, which may not
offer enough climate variation across space to observe a
clear spatial trend or explain a significant amount of the var-
iance in DD burdens, compared to that seen at national or
multi-national scales, where environmental variation is
greater. For precipitation especially, which is available at a
5 km resolution, there is little variation across clusters
within a sampling period (figure 1). The collection of finer-
scale rainfall or watershed-level discharge data could aid in
exploring these relationships further, but unfortunately is
not available for this geographical region. Another limitation
of our data is the timing and frequency of the longitudinal
cohort surveys in relation to the seasonality in DD. The sur-
veys took place outside of the seasonal peak of DD.
Reported DD cases were low in these months and there is
less variation across communes (figure 4a), which resulted
in weaker spatial patterns in DD for our model to fit.

After controlling for seasonal climate variables, the occur-
rence of the national holiday remains associated with higher
DD incidence. Studies on short-term changes in disease
dynamics owing to seasonal cultural events in low- and
middle-income countries are rare, but changes in contact
rates associated with holidays and mass migration have
been shown to influence disease transmission elsewhere
[37]. In Ifanadiana, the movement of people associated with
the national holiday could increase contact rates and pressure
on existing sanitation systems, leading to increased trans-
mission of DD. Additionally, changes in diet and increased
food sharing associated with celebration of the holiday
could increase children’s exposure to DD pathogens [38].
This national holiday is only one example of a cultural
factor that may influence spatio-temporal patterns in disease
burdens, and modelling efforts should strive to incorporate
these local nuances through collaborations with local stake-
holders and interdisciplinary teams that include social
scientists [39].

Unlike past studies [8,10], we find little evidence for a
spatial pattern in DD associated with nearby or upstream
land use. Although it is hypothesized that undisturbed
forest may filter contaminants from water and lower risk of
DD for populations downstream [8], the largest forest in Ifa-
nadiana, Ranomafana National Park, attracts thousands of
tourists annually. In this case, the additional water contami-
nation owing to tourism may negate any beneficial
‘filtering’ mechanisms of the forest. While the amount of
developed area, a fine-scale proxy for population density,
was associated with lower incidence rates of DD, this
relationship was not significant. Ifanadiana is a primarily
rural district, with only a few large towns (population greater
than 3000 people) located along paved roads. Communes
with large towns along the main road did have higher inci-
dence of DD in the health system dataset, however, this
variation was not associated with the amount of developed
area. Therefore, it is likely that unmeasured characteristics
of these communes, such as mobility or water quality, are
contributing to their high rates of DD incidence.

In conclusion, we fail to find evidence that precision
health mapping accurately describes local patterns in DD
prevalence and incidence rates in this context. Therefore, pre-
cision health mapping may not actually be useful for
informing local health authorities of target areas for the
implementation of public health interventions for DD at a
fine scale. Despite the availability of extensive longitudinal
epidemiological data and high-resolution landcover and
environmental information, we found that our models
poorly predicted disease prevalence. Precision health map-
ping at this scale may require even finer-scale spatial data,
such as that collected via community health worker pro-
grammes that combine proactive care with mobile-health
data collection. The strongest predictors of disease risk in
our context are socio-demographic or cultural but their lack
of spatial structure compared to environmental variables
may limit the performance of precision health mapping exer-
cises. Precision health mapping should be developed and
adapted for different environmental and social contexts in
order to better define the set of conditions under which its
application at fine spatial scales can be of use to public
health professionals.
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