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Background: We aimed to explore the genetic correlation and bidirectional causal
relationships between low back pain (LBP) and three neurodegenerative diseases,
Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS).

Methods: Summary-level statistics were obtained from genome-wide association
studies of LBP (n = 177,860), AD (n = 63,926), PD (n = 482,730), and ALS (n = 80,610).
We implemented linkage disequilibrium score regression to calculate heritability
estimates and genetic correlations. To investigate possible causal associations between
LBP and three neurodegenerative diseases, we also conducted a bidirectional two-
sample Mendelian randomization (MR) study. Inverse variance-weighted MR was
employed as the primary method to generate overall estimates, whereas complementary
approaches and sensitivity analyses were conducted to confirm the consistency and
robustness of the findings.

Results: There was no evidence of genetic correlations between LBP and AD
(Rg = −0.033, p = 0.766). MR analyses did not support the causal effect of LBP
on AD (OR = 1.031; 95% CI, 0.924–1.150; p = 0.590) or the effect of AD on LBP
(OR = 0.963; 95% CI, 0.923–1.006; p = 0.090). Likewise, this study failed to identify
genetic correlations between LBP and two other neurodegenerative diseases. MR
results of the associations of LBP with PD and ALS, and the reverse associations, did
not reach Bonferroni-corrected significance.

Conclusion: The study did not support genetic correlations or causations between
LBP and three common neurodegenerative diseases, AD, PD, and ALS in the
European population.

Keywords: low back pain, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Mendelian
randomization, linkage disequilibrium score regression
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INTRODUCTION

Neurodegenerative diseases have imposed a heavy burden on
the global healthcare in line with the accelerated trend of
population aging. Alzheimer’s disease (AD) is the most common
neurodegenerative disorder and the leading cause of dementia
characterized by severe decline in cognitive function (Weller
and Budson, 2018). Parkinson’s disease (PD) is the second
most common neurodegenerative disease and the primary
movement disorder attributed to neurodegeneration (Balestrino
and Schapira, 2020). Amyotrophic lateral sclerosis (ALS), also
known as Lou Gehrig’s disease, is the most common type of
motor neuron disease (Hardiman et al., 2017; Liu et al., 2018).
With their etiology and mechanism largely unknown, there
are no effective treatments to slow down the progression of
neurodegenerative diseases so far (Dorst et al., 2018; Piton et al.,
2018; de Bie et al., 2020). Patients get worse gradually and lose
basic activities of daily living in the last stage. With enhancement
in international collaboration and advancement in genomic
sciences, especially large-scale genome-wide association studies
(GWAS), genetic underpinnings of neurodegenerative diseases
are being elucidated (Nicolas et al., 2018; Kunkle et al., 2019;
Nalls et al., 2019; Roberts et al., 2020). Low back pain (LBP) is a
common health condition with escalating healthcare utilization.
In the last three decades, LBP has been the leading level-3 cause
of years lived with disability (YLDs) globally, and particularly
in high-income countries (Vos et al., 2012; Hoy et al., 2014).
According to the most recent Global Burden of Disease Study
(GBD, 2020), LBP was responsible for 780 YLDs per 100,000
population, and among 692 million non-communicable disease
YLDs the proportion contributed by LBP was approximately
9.2%. LBP affects all age groups with a lifetime prevalence of
about 40% (Manchikanti et al., 2014), which increases with aging
and is slightly higher in women (Shmagel et al., 2016). Apart from
behavioral and social-economic factors, the genetic basis of LBP
has been well recognized in previous studies (Livshits et al., 2011;
Junqueira et al., 2014; Suri et al., 2021).

Possible relationships between LBP and neurodegenerative
diseases have been previously postulated (Broetz et al., 2007;
Aggarwal et al., 2010; Miller et al., 2013; Udeh-Momoh et al.,
2019; Silveira Barezani et al., 2020). In a prospective cohort of
690 participants at the preclinical stage of AD (Udeh-Momoh
et al., 2019), back pain was among the most frequently occurring
(3.0%) safety events, whereas in a recent cross-sectional study
of 115 patients with sporadic PD (Silveira Barezani et al., 2020),
58.3% of participants reported to have LBP. A higher prevalence
of back pain in PD patients (75/101, 74.3%) when compared with
age-matched control patients (35/132, 26.5%) was reported in
another prior study (Broetz et al., 2007). With regard to ALS,
back pain was also among top safety concerns (8/32, 25%) in prior
clinical trials (Aggarwal et al., 2010; Miller et al., 2013). Notably,
these studies had limited sample size due to ethical and economic
restrictions, and unmeasured confounding and reverse causation
would incur biases to the findings as well. Meanwhile, established
at parental gamete formation and insusceptible to later-life
environmental confounders, genetic variants precede disease
onset and hence are ideal epidemiological instruments. The last

two decades have witnessed great strides in GWASs (Visscher
et al., 2017), particularly increased samples and augmented
power, and numerous single-nucleotide polymorphisms (SNPs)
have been identified for common disorders, including self-
reported back pain (Freidin et al., 2019) and chronic back pain
(Suri et al., 2018). From the perspective of human genomics
and genetic epidemiology, cutting-edge statistical tools such as
linkage disequilibrium score regression (LDSC) (Bulik-Sullivan
et al., 2015; Zheng et al., 2017) and Mendelian randomization
(MR) (Hemani et al., 2018; Walker et al., 2019), have made it
possible to use GWAS summary-level data to explore genetic
correlation (Wang et al., 2020; Zhuang et al., 2021) and make
causal inference (He et al., 2020; Zhang et al., 2020) within a wide
spectrum of complex traits.

In this study, we utilized LDSC to investigate genetic
correlations and further conducted two-sample bidirectional
MR to explore relationships between LBP and three
neurodegenerative diseases.

MATERIALS AND METHODS

Data Sources
This study was based on publicly available GWAS datasets,
with informed consent from participants and approval by ethics
committees completed in original studies (Nicolas et al., 2018;
Kunkle et al., 2019; Nalls et al., 2019; FinnGen, 2021).

Summary association statistics for LBP was retrieved from
the FinnGen study (FinnGen, 2021). LBP was defined as back
pain localized between the costal margin and the inferior
gluteal folds. From the Finnish registries of hospital discharge
and cause of death, cases of LBP were ascertained using
electronic health records with specific International Classification
of Diseases (ICD) code (ICD-10, M54.5; ICD-9, 724.2; ICD-8,
728.7). Patients with symptoms of back pain caused by other
specific diseases, such as fracture of lumbar vertebra (ICD-10,
S32.0) and ankylosing spondylitis (ICD-10, M45), were excluded.
Totally, there were 13,178 cases of LBP and 164,682 controls
of the European ancestry (Supplementary Table 1). GWAS was
performed in SAIGE, version 0.36.3.2 (Zhou et al., 2018), with
sex, age, genotyping batches, and first 10 principal components
incorporated as covariates. Variant positions which were initially
presented in base pairs on build GRCh38 underwent coordinate
conversion to GRCh37 using the command line tool liftOver
and reference chain files from the UCSC Genome Browser
Database (Lee et al., 2020). Effect size was reported in the unit
of log-transformed odds ratio (OR) per additional copy of the
alternative allele (Supplementary Table 2).

Summary-level GWAS data of three neurodegenerative
diseases were from large-scale meta-analyses of AD (Kunkle
et al., 2019), PD (Nalls et al., 2019), and ALS (Nicolas et al.,
2018) in the European population. There were 21,982 clinically
diagnosed cases and 41,944 controls in the GWAS of AD (Kunkle
et al., 2019), 33,674 cases and 449,056 controls in the GWAS of
PD (Kunkle et al., 2019), and 20,806 cases and 59,804 controls
in the GWAS of ALS (Kunkle et al., 2019). More details of
demographic information and case ascertainment were described
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in Supplementary Materials of original studies. GWAS meta-
analyses were implemented using PLINK v1.90 (Purcell et al.,
2007). Coordinates of SNPs according to the GRCh37 build were
adopted; thus, no conversion was required. Likewise, the effect
size represented change in log-OR of AD, PD, or ALS in the
additive logistic regression (Supplementary Table 3).

Linkage Disequilibrium Score Regression
We used the common line tool ldsc v1.0.1 (Bulik-Sullivan et al.,
2015) to compute heritability estimates and genetic correlations
from summary-level statistics. Pre-calculated reference LD scores
according to the 1000 Genomes EUR panel were adopted.1

First, we filtered our data to keep HapMap3 SNPs (International
HapMap 3 Consortium, Altshuler et al., 2010), using the
recommended SNP list in the LD hub (Zheng et al., 2017).
These variants had minor allele frequencies above 1% and
were well-imputed in most European-ancestry GWASs, which
benefited minimizing biases in the ensuing analyses. Variants at
the MHC locus were not considered due to their great potential
of pleiotropy and the complexity of local LD structure, which
would affect the robustness of LDSC results. Those SNPs with
large effect sizes (χ2 > 80) were filtered, since outliers could
disproportionately influence the regression. Totally, 1,160,464
SNPs for LBP, 1,204,767 for AD, 1,120,769 for PD and 1,170,115
for ALS were retained. Heritability (H2) on the observed scale,
genomic inflation factor (λGC), mean chi-square (χ2), and
intercept statistics were derived from the SNP heritability analysis
(command-line, –h2) for LBP and three neurodegenerative
diseases. We divided the heritability estimate by its related
standard error (SE) to calculate heritability z-scores. Suggested
criteria (Zheng et al., 2017) to get reliable estimates of the genetic
correlation were all met for LBP and three neurodegenerative
diseases. The genetic correlation estimate (Rg) and its associated
SE were computed with the −rg command flag. In the genetic
correlation analysis, the p-value below the Bonferroni-corrected
threshold (p < 0.05/3 = 0.017) was considered to be significant.

Mendelian Randomization
We performed bidirectional MR using the TwoSampleMR
(version 0.5.6) package (Hemani et al., 2018) in R 3.6.3 (R
Foundation for Statistical Computing, Vienna, Austria). First,
instrumental SNPs robustly associated with traits of interest were
selected. Using the default clumping threshold (r2 < 0.001 within
a 10,000 kb distance) in the MR-Base platform (Walker et al.,
2019), we obtained 20, 23, and 6 SNPs associated with AD,
PD, and ALS, respectively, reaching the significance threshold
(p < 5 × 10−8). Regarding LBP, however, there were no genome-
wide significant loci identified outside the MHC locus. Therefore,
we relaxed the threshold (p < 5 × 10−6), as previous studies did
(Schooling and Ng, 2019; Kwok et al., 2020; Ng and Schooling,
2020; Kwok and Schooling, 2021), to select 17 instrumental
variants of LBP. For instrumental SNPs which were not present
in the outcome datasets, we also searched for available proxies
(r2 > 0.8, 1000 Genomes EUR). We aligned effect alleles within
each exposure–outcome pair, and the harmonized and merged

1https://data.broadinstitute.org/alkesgroup/LDSCORE/

datasets were utilized for subsequent analyses. As the primary
MR analysis, we employed the inverse variance weighted (IVW)
model to compute the overall estimate (Burgess et al., 2013).
The weighted median approach would provide robust estimates
on the assumption that more than 50% of weights came from
valid instruments (Bowden et al., 2016). MR-Egger regression
was capable of examining unbalanced horizontal pleiotropy via
the intercept and provided causal estimate with adjustment for
pleiotropy via the regression slope (Burgess and Thompson,
2017). The weighted mode-based method would obtain a
robust overall causal estimate when the majority of similar
individual estimates were from valid instrumental SNPs (Hartwig
et al., 2017). Nevertheless, the weighted median, MR-Egger, and
weighted mode estimates had compromised power (Slob and
Burgess, 2020), as indicated by wide confidence intervals (CIs),
and hence were performed as complimentary methods. As for
MR results, ORs represented the relative odds of the occurrence
of the outcome concerned (i.e., AD) given exposure to the trait of
interest (i.e., LBP). The power calculation was performed using
a web application, mRnd (Brion et al., 2013). We estimated
the proportion of variance explained by instrumental SNPs for
the exposure using the formula 2 × EAF × (1-EAF) × Beta2,
where EAF is the effect allele frequency and Beta denotes the
effect size. Then, assuming a power of 80% and an alpha of 5%,
we calculated the detectable range of OR with sufficient power
for the outcome of interest. The significance threshold was set
at p < 0.05/6 = 0.008 after applying Bonferroni correction for
multiple MR tests.

RESULTS

Heritability Estimates and Genetic
Correlations
Common SNPs (∼1.1 million, EUR phase 3 HapMap)
cumulatively explained 1.86% of the total heritability of LBP,
suggesting the small effects of SNPs in the genetic contribution to
complex disorders. In the GWAS of LBP, genomic inflation factor
(λGC = 1.096) demonstrated slight inflation; with the intercept
(1.035) being close to 1, the inflation should be attributed to
the polygenic genetic architecture. As shown in Table 1, the
heritability estimate on the observed scale, genomic inflation
factor, and LDSC intercept for AD, PD, and ALS in this study
were similar to those in the original GWASs. Moreover, all these
statistics satisfied the following criteria, heritability H2/SE > 4,
mean χ2 > 1.02 and intercepts between 0.9 and 1.1, indicating
the suitability and reliability for estimating genetic correlations.

There was no evidence for the genetic correlation between
LBP and AD (Rg = −0.033, p = 0.766). As detailed in Table 2,
correlations between LBP and PD (Rg = −0.079, p = 0.279)
and ALS (Rg = 0.069, p = 0.583) did not reach nominal
significance, either.

Bidirectional MR Analyses
Overall, MR estimates suggested that genetically predicted
higher risks of LBP were not associated with the liability to
AD, PD, or ALS. By the IVW approach, genetically predicted
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TABLE 1 | Heritability estimates based on single-nucleotide polymorphisms for
low back pain and three neurodegenerative diseases.

Traits H2(SE) λGC Mean χ2 Intercept (SE)

Low back pain 1.86% (0.32%) 1.096 1.102 1.035 (0.008)

Alzheimer’s disease 7.13% (1.14%) 1.093 1.118 1.030 (0.008)

Parkinson’s disease 1.85% (0.18%) 1.090 1.137 0.985 (0.007)

Amyotrophic lateral
sclerosis

3.17% (0.70%) 1.044 1.071 1.020 (0.007)

H2, heritability estimate on the observed scale; SE, standard error; λGC, genomic
inflation factor.

TABLE 2 | Genetic correlations between low back pain and three
neurodegenerative diseases.

Phenotypes Rg (95% CI) p-value

Alzheimer’s disease −0.033 (−0.252, 0.186) 0.766

Parkinson’s disease −0.079 (−0.223, 0.064) 0.279

Amyotrophic lateral sclerosis 0.069 (−0.177, 0.315) 0.583

Rg, genetic correlation estimate; CI, confidence interval.

predisposition to LBP was not associated with the risk of
AD (OR = 1.031; 95% CI, 0.924–1.150; p = 0.590). Likewise,
causal effects of LBP on PD (OR = 1.002; 95% CI, 0.844–
1.190; p = 0.982) and ALS (OR = 0.935; 95% CI, 0.844–
1.036; p = 0.199) did not reach significance threshold in the
main analysis. Complementary MR methods provided consistent
results (Figure 1 and Supplementary Figure 1). Notably, our
analysis might be underpowered (Supplementary Table 4) to
detect small causal effects given the small proportion of variance
explained by instrumental SNPs. No unbalanced horizontal
pleiotropy (all p > 0.05) was indicated by MR-Egger regression
intercepts (Supplementary Table 5). Cochran’s Q tests provided
no evidence for the existence of heterogeneity (Supplementary
Table 6), whereas leave-one-out plots (Supplementary Figure 2)
did not identify any outlier variants.

In the reverse direction, MR analyses did not support the
effects of neurodegenerative diseases on LBP. A one-unit increase
in log-OR of AD was not associated with change in risks of
LBP (OR = 0.963; 95% CI, 0.923–1.006; p = 0.090) by the
IVW method, whereas the weighted median estimate reached
nominal significance, albeit failing the Bonferroni-corrected
threshold (p = 0.009 > 0.05/6). Similarly, as shown in Figure 2,
the relationship between PD and LBP (OR = 0.960; 95% CI,
0.922–1.000; p = 0.048) reached nominal significance. However,
there was no evidence for the association of ALS with LBP
(OR = 1.030; 95% CI, 0.935–1.135; p = 0.545). According to
scatter plots (Supplementary Figure 3) and leave-one-out plots
(Supplementary Figure 4), no evident outliers existed, while
additional analyses (Supplementary Tables 5, 6) demonstrated
no horizontal pleiotropy or heterogeneity.

DISCUSSION

In this study, we did not find evidence supporting genetic
correlations or causations between non-specific LBP and three

common neurodegenerative diseases. Back pain has been
commonly studied as a self-reported symptom (Suri et al.,
2018; Freidin et al., 2019) and studied in spine-related diseases
like lumbar spinal stenosis (Suri et al., 2021). For example,
a previous GWAS (Freidin et al., 2019) of self-reported
back pain in 509,000 Europeans identified three significant
loci (p < 5 × 10−8), but genetic correlation estimates
between back pain and AD (Rg = 0.115, p = 0.147), PD
(Rg = 0.029, p = 0.586), and ALS (Rg = 0.166, p = 0.030)
all failed Bonferroni-corrected significance. Notably, only a
small part of LBP has clear causes and can be classified
into specific diseases; however, there exists the majority with
unknown mechanisms. Such LBP has been seen as an entity
itself in the electronic health record, and as a complex
trait, GWAS and related tools are likely to be powerful to
disentangle the genetic underpinnings. Here, we employed LDSC
and MR to elucidate their relationships based on biobank
association data of LBP and the most up-to-date GWASs of
AD, PD, and ALS.

Observational studies exploring the relationship between LBP
and neurodegenerative diseases have been conducted before
(Broetz et al., 2007; Aggarwal et al., 2010; Miller et al., 2013; Udeh-
Momoh et al., 2019; Silveira Barezani et al., 2020). Several studies
reported a high occurrence of LBP during the non-interventional
course of AD (Udeh-Momoh et al., 2019), and the interventional
diagnostic and therapeutic procedure of AD (Landen et al., 2013;
Alcolea et al., 2014). Similarly, LBP was a common complaint
during the treatment of ALS (Aggarwal et al., 2010; Miller et al.,
2013). We could not tell whether there are causal mechanisms
underlying such findings, given the complexity of insufficiently
controlled factors in traditional epidemiology. Regarding the
potential role of LBP in PD, in a recent questionnaire-based study
(Silveira Barezani et al., 2020), about 40% patients reported the
onset of LBP before the diagnosis of PD, and higher pain scores
were associated with more advanced stage and rating scales of
PD. The interaction of LBP and PD undoubtedly leads to more
difficulty and disability in daily activities. Besides, both PD and
ALS extensively involved neural and musculoskeletal systems
with a variety of manifestations and unbalanced musculoskeletal
dynamics due to gait abnormality, posture alteration and chronic
joint trauma in the progressive course were likely to result in
LBP (Ozturk and Kocer, 2018; Duncan et al., 2019). The vicious
cycle of LBP and neurodegenerative diseases should have a severe
influence on the life quality of patients. Identifying possible
links underlying LBP, AD, PD, and ALS from the perspective of
genetic correlations would provide more informative knowledge
and ultimately benefit in developing effective interventions. In
this study, we found no evidence for the causal effects of LBP
on neurodegenerative diseases, neither did the reverse effects
reach Bonferroni-corrected threshold (p < 0.05/6 = 0.008). The
effects of AD and PD on LBP reached nominal significance,
and interestingly, the genetic predisposition to AD and PD
seemed to be associated with the lower occurrence of LBP
in this study. The findings failed to agree with previous
observational studies and were against common intuition to
a certain extent. Notably, it may as well be common sense
that more environmental components (i.e., sedentary behaviors)
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FIGURE 1 | Effects of low back pain on three neurodegenerative diseases by Mendelian randomization analyses. Relative odds of the occurrence of three
neurodegenerative diseases given exposure to low back pain were generated by three Mendelian randomization methods and presented in forest plots. AD,
Alzheimer’s disease; CI, confidence interval; ALS, amyotrophic lateral sclerosis; LBP, low back pain; OR, odds ratio; PD, Parkinson’s disease; SNP, Single-nucleotide
polymorphism.

FIGURE 2 | Effects of three neurodegenerative diseases on low back pain by Mendelian randomization analyses. Relative odds of the occurrence of low back pain
given exposure to three neurodegenerative diseases were generated by three Mendelian randomization methods and presented in forest plots. AD, Alzheimer’s
disease; CI, confidence interval; ALS, amyotrophic lateral sclerosis; LBP, low back pain; OR, odds ratio; PD, Parkinson’s disease; SNP, Single-nucleotide
polymorphism.

rather than genetic underpinnings would underlie the liability
to LBP when compared with neurodegenerative diseases. In the
current statistical model of MR, however, both the exposures

and outcomes of interest were genetically predicted “ideal” traits,
which were proxied by common variants without taking account
of other factors. Undoubtedly, MR estimates alone were not
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enough. Triangulating evidence across multiple lines of studies is
necessary to shed light on relationships between complex traits.

The major strength of this study was the utilization of the
state-of-the-art tools, LDSC and MR, to explore the relationships
between complex disorders. Using millions of summary-level
statistics from hundreds of thousands of participants, LDSC
was a powerful tool to estimate the genetic correlation. Based
on a subset of instrumental SNPs strongly associated with
the exposure-trait of interest, MR was capable of estimating
the causal effect on the outcome-trait concerned, while
circumventing reverse causation and minimizing biases by
confounders. There were also several limitations. Firstly, LBP was
defined by electronic health record codes with more reliability
and less misclassification, but we could not tell whether the
relationship existed between chronic LBP and neurodegenerative
diseases. LBP was studied as a whole, without separating the
acute and chronic type as generally included in self-reported
questionnaires. Neither did we differentiate between subgroups
of neurodegenerative diseases like AD subtypes based on
neuropathology and neuroimaging, PD subtypes by age at onset
(i.e., early-onset and late-onset), and ALS subgroups classified
by site of onset (i.e., bulbar and spinal). Secondly, gender
differences in the prevalence of LBP and three neurodegenerative
diseases have been proposed; however, we could not address
the meaningful question since no sex-stratified association data
were available. Lastly, this study was based on datasets from
European-ancestry GWASs, and great attention should be paid
when generalizing the findings to the other populations.

In summary, our results provided no evidence for the genetic
correlations between LBP and three common neurodegenerative
diseases, AD, PD, and ALS.
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