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Abstract 13 
 14 
Cognitive flexibility, the ability to adjust behavioral strategies in response to changing 15 
environmental contingencies, requires adaptive processing of internal states and contextual cues 16 
to guide goal-oriented behavior, and is dependent on prefrontal cortex (PFC) functions. However, 17 
the neurophysiological underpinning of how the PFC supports cognitive flexibility is not well 18 
understood and has been under active investigation. We recorded spiking activity from single 19 
PFC neurons in mice performing the attentional set-shifting task, where mice learned to associate 20 
different contextually relevant sensory stimuli to reward. We identified subgroups of PFC neurons 21 
encoding task context, choice and trial outcome. Putative fast-spiking neurons were more 22 
involved in representing outcome and choice than putative regular-spiking neurons. Regression 23 
model further revealed that task context and trial outcome modulated the activity of choice-24 
encoding neurons in rule-dependent and cell type-dependent manners. Together, our data 25 
provide new evidence to elucidate PFC’s role in cognitive flexibility, suggesting differential cell 26 
type-specific engagement during set shifting, and that both contextual rule representation and trial 27 
outcome monitoring underlie PFC’s unique capacity to support flexible behavioral switching.  28 
 29 
Introduction 30 
 31 
The ability to adjust behavioral strategies in response to changing environmental contingencies, 32 
termed cognitive flexibility, serves as an essential executive function. Flexibility, or rule switching, 33 
requires adaptive processing of internal states and contextual cues to guide goal-oriented 34 
behavior, and is vital to the survival of organisms. Inappropriate behavioral adjustments, such as 35 
deficits in modifying responses to a rule change, are a hallmark of impaired executive functions 36 
observed in a broad spectrum of psychiatric disorders (Miller and Cohen, 2001; Uddin, 2021). 37 
 38 
Considerable efforts have been made to uncover the neural substrates of flexible behavioral 39 
switching (see reviews (Mesulam, 1998; Miller, 1999; Miller and Cohen, 2001; Ragozzino, 2007; 40 
Le Merre et al., 2021; Uddin, 2021)). Set shifting, a type of rule switching that requires attending 41 
to or ignoring a stimulus feature in a context-dependent way, is widely used to assess cognitive 42 
flexibility. The Wisconsin Card Sorting Test (WCST), the Intra-Extra Dimensional Set Shift Task 43 
(IED) and their analogs have been implemented to test human and animal subjects (Berg, 1948; 44 
Milner, 1963; Roberts et al., 1988; Dias et al., 1996a; Monchi et al., 2001; Barnett et al., 2010; 45 
Brown and Tait, 2015). Decades of research have established that the prefrontal cortex (PFC) is 46 
required for set shifting (Berg, 1948; Milner, 1963; Dias et al., 1996a, 1996b; Ridderinkhof, 2004; 47 
Ragozzino, 2007; Floresco et al., 2009; Dajani et al., 2020). However, the neurophysiological 48 
underpinning of how the PFC mediates different aspects of flexible decision-making processes to 49 
support set shifting is not well understood. Importantly, although loss-of-function work has shown 50 
that the medial PFC (mPFC) is associated with attentional switching across, but not within 51 
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perceptual dimensions (e.g., (Owen et al., 1991; Dias et al., 1996b, 1997; Birrell and Brown, 2000; 52 
Ridderinkhof, 2004; Ragozzino, 2007; Bissonette et al., 2008)), the neural substrates that support 53 
such functional specificity remain elusive and are under active investigation (e.g., (Cho et al., 54 
2020, 2023; Benoit et al., 2022)).  55 
 56 
In an effort to advance our understanding of PFC’s role in flexible behavior, we trained mice to 57 
perform the attentional set-shifting task (AST), which follows the principles of WCST and IED, and 58 
trains animals to continuously adapt to multiple rule changes (Birrell and Brown, 2000; Colacicco 59 
et al., 2002; Garner et al., 2006; Bissonette et al., 2008; Lapiz-Bluhm et al., 2008; Heisler et al., 60 
2015) (Fig. 1A). These rule changes may or may not involve the mPFC (Birrell and Brown, 2000; 61 
McAlonan and Brown, 2003; Bissonette et al., 2008, 2013). Specifically, in extra-dimensional shift 62 
(EDS) subjects learn to attend to a novel stimulus from a different dimension (e.g., from digging 63 
medium to odor) to seek reward, and task performance is impaired by mPFC lesion. In contrast, 64 
intra-dimensional reversal (REV) requires attending to a previously unrewarding stimulus and 65 
ignoring a previously rewarding stimulus within the same stimulus dimension, and is not affected 66 
by mPFC lesion. 67 
 68 
We recorded spiking activity from single units in mice performing AST. We identified subgroups 69 
of mPFC neurons representing different task-related variables, namely task context, trial outcome 70 
and choice. We found that putative fast-spiking neurons were more engaged in representing 71 
outcome and choice than putative regular-spiking neurons. We showed that both context and 72 
outcome signals significantly modulated the activity of choice-encoding neurons in EDS. The 73 
modulatory effects were most obvious in fast-spiking neurons and were absent in REV. Together, 74 
our data suggest differential cell type-specific engagement during rule switching, and that both 75 
contextual rule representation and outcome monitoring underlie mPFC’s unique role in supporting 76 
set-shifting behavior. 77 
 78 
Results    79 
 80 
We trained mice to perform the attentional set-shifting task (AST) using procedures similar to 81 
previous work (Methods. Liston et al., 2006; Snyder et al., 2012). Briefly, in most stages of the 82 
task, mice learned to associate one relevant sensory stimulus out of several possible ones to 83 
reward (Fig. 1A, Fig. S1). The relevant stimulus remained in the dimension of digging medium in 84 
early stages of the task (simple discrimination, SD; compound discrimination, CD; intra-85 
dimensional reversal, REV; intra-dimensional shift, IDS), and shifted to the dimension of odor in 86 
the last stage of extra-dimensional shift (EDS). Mice promptly learned to follow the rule in each 87 
stage. However, REV and EDS appeared to be more challenging as mice needed more trials to 88 
reach performance criterion (six consecutive correct trials, Fig. 1B) (Birrell and Brown, 2000; 89 
Liston et al., 2006; Snyder et al., 2012). To elucidate the role of mPFC in cognitive flexibility, we 90 
conducted tetrode recording during task performance (161 single units from 15 sessions, Fig. 1C-91 
E, Methods). Previous loss-of-function studies have reported that the mPFC is specifically 92 
required for the successful completion of EDS (e.g., (Dias et al., 1996b; Birrell and Brown, 2000; 93 
Bissonette et al., 2008)), and our analyses were focused on EDS to assess the neural substrates.  94 
  95 
First, we sought out to examine the extent to which abstract contextual rule information was 96 
represented in the mPFC. In AST, this refers to the stimulus dimension that subjects learn to 97 
attend to (digging medium vs. odor). Plateaued performance following a rule change has been 98 
taken as important evidence that subjects readily adapt to the new rule (e.g., (Mansouri et al., 99 
2006; Sleezer et al., 2016)). Indeed, we found that the spiking activity of a subset of mPFC 100 
neurons tracked the attended stimulus dimension when performance was plateaued (last set of 101 
consecutive correct trials, Fig. 2A, B). Using Receiver-Operating-Characteristic (ROC) analysis 102 
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(Green and Swets, 1966), we identified 31% (50/161) of mPFC neurons whose activity was 103 
significantly correlated with task context (Fig. 2C-G, Methods), and we referred to them as context 104 
neurons. Similar numbers of neurons exhibited higher or lower activity when the relevant stimulus 105 
dimension shifted from digging medium to odor (context+ vs. context-, 27 vs. 23 neurons). We did 106 
not include SD in the analysis because the odor dimension was not explicitly introduced (Fig. 1A, 107 
Methods). However, the identified context neurons exhibited comparable activity in SD as in other 108 
digging medium-relevant stages (Fig. S2), supporting their robust representation of stimulus 109 
dimension. Further, the classification of context neurons was supported by a generalized linear 110 
model (GLM), where the coefficients of stimulus dimension were significantly stronger than other 111 
task-related variables, and stronger than those of non-context neurons (Fig. S3, Methods). We 112 
trained a decoder to evaluate the extent to which we can predict the shift of task context based 113 
on context neuron activity, and the decoder was able to achieve 80.8 ± 5.9% accuracy (Fig. 2H, 114 
I, Methods). Context-related activity sustained for tens of seconds before explicit task 115 
engagement (Fig. S4), suggesting that context information was represented in persistent activity, 116 
in support of other studies (e.g., (Mansouri et al., 2006; Sleezer et al., 2016; Bari et al., 2019)). 117 
We next evaluated context neuron activity during rule learning and found that their activity 118 
exhibited gradual changes when the relevant dimension shifted from digging medium to odor 119 
(from IDS to EDS, Fig. 2J, K). Since the dimensional rule shift was not cued, this finding supports 120 
that context representation develops over learning. 121 
 122 
To examine the contributions of different cell types to set shifting, we classified the recorded units 123 
into putative inhibitory fast spiking (FS) and putative excitatory regular spiking (RS) based on 124 
spike waveform features and firing rate (Barthó et al., 2004; Ji and Neugebauer, 2012): FS, trough 125 
to peak = 0.35 ± 0.02 ms; baseline firing rate = 28.14 ± 2.77 spikes/s, n = 19; RS, trough to peak 126 
= 0.67 ± 0.01 ms; baseline firing rate = 2.85 ± 0.24 spikes/s, n = 112 (Methods, Fig. 2L). The 127 
remaining units were considered unidentified and excluded from cell type-related analyses. We 128 
found similar proportions of RS and FS neurons encoding task context (34/112 RS vs. 6/19 FS, 129 
30% vs. 32%, p = 0.91, chi-squared test, Fig. 2M).  130 
 131 
Next, we evaluated to what extent mPFC activity represented previous trial outcome. Using similar 132 
ROC analysis, we identified 22% (36/161) of neurons exhibiting differential activity following 133 
correct (rewarded) or incorrect (unrewarded) trials (Fig. 3A, B, Methods). 64% of these neurons 134 
(23/36) showed higher activity when previous trials were correct compared with when previous 135 
trials were incorrect (outcome+, Fig. 3C). The remaining 36% of outcome neurons (13/36) 136 
exhibited the opposite trend, increasing firing rate following incorrect trials compared to following 137 
correct trials (outcome-, Fig. 3D). Based on outcome neuron activity, a decoder was able to predict 138 
trial outcome with 83.0 ± 3.4% accuracy (Fig. 3E, Methods). Similar to context encoding, outcome-139 
related activity sustained for tens of seconds prior to task engagement (Fig. S5), indicating that 140 
outcome information (in particular negative outcome) was represented in persistent mPFC activity. 141 
28% (10/36) of outcome-encoding neurons also represented context, supporting mixed tuning in 142 
the PFC (Rigotti et al., 2013; Fusi et al., 2016; Tye et al., 2024). Interestingly, higher proportions 143 
of FS neurons were found to represent outcome (26/112 RS vs. 9/19 FS, 23% vs. 47%, p = 0.028, 144 
Fig. 3F). 145 
 146 
We then identified choice neurons, whose activity correlated with the upcoming choices on current 147 
trials (correct vs. incorrect, 23/161, Fig. 4A, B). 56% of these neurons (13/23) exhibited higher 148 
activity preceding correct choices than incorrect choices (Fig. 4C). These neurons, hereafter 149 
referred to as choice+, also showed significantly elevated activity immediately before correct 150 
choices compared to after these choices. In contrast, their activity before and after incorrect 151 
choices were similar (Fig. S6A). Choice- neurons (10/23) exhibited lower activity preceding 152 
correct choices than incorrect choices (Fig. 4D), and did not show any differential activity before 153 
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and after correct or incorrect choices (Fig. S6B). A decoder was able to predict trial-by-trial 154 
choices with 80.8 ± 2.1% accuracy from choice neuron activity (Fig. 4E, Methods). We also found 155 
higher proportion of FS neurons encoding choice (12/112 RS vs. 6/19 FS, 11% vs. 32%, p = 0.015, 156 
Fig. 4F). A considerable fraction of choice-encoding neurons also represented other task-related 157 
variables (43% (10/23) choice neurons represented outcome, and 39% (9/23) choice neurons 158 
also represented context), in further support of mixed tuning. Together, our results showed that 159 
putative FS neurons were more involved in representing outcome and choice during set shifting.  160 
 161 
To understand how context and outcome may affect decision making, we examined the impact of 162 
these two variables on the activity of choice neurons. We divided each trial into four 2-s bins, with 163 
two bins prior to trials start (T1, T2), and two other bins prior to choice (T3, T4. Fig. 5A). We used 164 
GLM to calculated the regression coefficients for the regressors of trial outcome and contextual 165 
rule on choice neurons in EDS. GLM confirmed that the identified choice+ neurons prominently 166 
represented the choice signal prior to digging (Fig. S7). Interestingly, these neurons showed non-167 
zero coefficients for outcome and context. Specifically, we found significant coefficients for 168 
outcome before trial start (T1, T2) and before choice (T4, Fig. 5B). For context, we observed 169 
significant non-zero coefficients before trial start (T2) and before choice (T3, T4, Fig. 5C). These 170 
effects were mostly absent in choice- neurons (Fig. S8). Albeit the small sample sizes, the 171 
modulatory effects were present in FS neurons, as choice+ FS neurons exhibited significant 172 
coefficients for outcome (T1-T4) and context (T2, Fig. 5D, E). In contrast, choice-encoding RS 173 
neurons were not modulated by outcome or context (Fig. 5F, G). In summary, our findings 174 
revealed distinct modulation patterns in putative FS and RS neurons, with context and outcome-175 
related information primarily affecting FS activity. 176 
 177 
Lastly, we wondered whether the observed modulation patterns were specific to EDS switching. 178 
We analyzed REV as a comparison, which was also behaviorally demanding but not affected by 179 
mPFC perturbation (Fig. 1B, Birrell and Brown, 2000; Bissonette et al., 2008). We identified 180 
largely distinct groups of neurons encoding outcome and choice in REV (Outcome, REV vs EDS: 181 
22 vs. 36 neurons, 4 overlapped neurons; Choice, REV vs EDS: 19 vs. 23 neurons, 4 overlapped 182 
neurons). More mPFC neurons encoded outcome in EDS than REV (Outcome, REV vs. EDS, 14% 183 
(22/161) vs. 22% (36/161), p = 0.04; Choice, REV vs. EDS, 12% (19/161) vs. 14% (23/161), p = 184 
0.51). Regression analysis revealed that trial outcome did not significantly affect the activity of 185 
choice neurons in REV (Fig. 6A, Fig. S9). Since REV did not involve a change of stimulus 186 
dimension, we treated the result that task context did not affect choice neuron activity in REV as 187 
a positive control (Fig. 6B, Fig. S9). Finally, we assessed how different cell types were engaged 188 
in REV and EDS. For choice, we found similar proportions of RS neurons in REV and EDS (REV 189 
vs. EDS, 15/112 RS vs. 12/112 RS, 13% vs. 11%, p = 0.54). However, REV engaged a lower 190 
proportion of FS choice-encoding neurons (REV vs. EDS, 1/19 FS vs. 6/19 FS, 5% vs. 32%, p = 191 
0.037, Fig. 6C). Similarly, lower proportions of FS outcome-encoding neurons were identified in 192 
REV (REV vs. EDS, 15/112 RS vs. 26/112 RS, 13% vs. 23%, p = 0.057; 0/19 FS vs. 9/19 FS, 0% 193 
vs. 47%, p = 5.9e-4, Fig. 6D). Together, our data uncovered substantial differences in mPFC 194 
representation during different types of rule switching behavior, such that task context and trial 195 
outcome modulated the activity of choice-encoding neurons only in EDS but not REV, and 196 
primarily affected FS but not RS neurons. 197 
 198 
Discussion 199 
 200 
To elucidate mPFC’s role in cognitive flexibility, we recorded spiking activity from single units in 201 
mice performing AST. We identified neuronal subgroups encoding different task-related variables, 202 
namely task context, trial outcome and choice. Importantly, we showed that putative FS 203 
interneurons were more engaged than putative RS neurons in representing outcome and choice. 204 
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By contrasting neuronal responses in EDS to REV, regression model revealed that context and 205 
outcome signals modulated the activity of choice-encoding neurons in task-dependent and cell 206 
type-dependent manners. Together, our data suggest differential cell type-specific engagement 207 
during flexible rule switching, and that both contextual rule representation and trial outcome 208 
monitoring underlie mPFC’s unique capacity to support set shifting.  209 
 210 
mPFC has been proposed to support cognitive flexibility by encoding abstract contextual rules 211 
(Wallis et al., 2001; Meyers et al., 2008; Rich and Shapiro, 2009; Durstewitz et al., 2010; Hyman 212 
et al., 2012; Mante et al., 2013; Rodgers and DeWeese, 2014; Siniscalchi et al., 2016; Rikhye et 213 
al., 2018; Reinert et al., 2021), or by encoding feedback signals (Luk and Wallis, 2009; Bissonette 214 
and Roesch, 2015; Del Arco et al., 2017; Bari et al., 2019; Norman et al., 2021; Spellman et al., 215 
2021). These two hypotheses are not necessarily exclusive becasue when subjects are unaware 216 
of the rule change, they likely utilize more than one stream of information to solve the task 217 
(Ridderinkhof, 2004; Rushworth and Behrens, 2008; Mansouri et al., 2009; Bissonette et al., 2013; 218 
Uddin, 2021). Indeed, our data show that abstract contextual rule-related information and trial 219 
outcome-related information are both represented in persistent activity in the mPFC. It is possible 220 
that using novel rather than familiar cues in EDS is important for the formation and utility of 221 
stimulus dimension in the mPFC (Birrell and Brown, 2000; Bissonette et al., 2013). 222 
 223 
Our data further suggest the functional specificity of such representations, as context and 224 
outcome affected the activity of choice-encoding neurons only in EDS but not REV. Behaviorally, 225 
both REV and EDS appear to be more challenging as subjects typically take more trials to reach 226 
performance criterion (Birrell and Brown, 2000; Liston et al., 2006; Snyder et al., 2012). However, 227 
these two rule changes are thought to involve different cognitive processes as the former is 228 
referred to as affective shifting while the later as attentional shifting (Dias et al., 1996b; Floresco 229 
et al., 2009; Young et al., 2010). In REV, subjects are challenged to ignore the relevant stimulus 230 
from the previous stage, and to attend to a previously ignored stimulus within the same stimulus 231 
dimension. In EDS, subjects learn to direct their responses to a novel cue from the previously 232 
irrelevant stimulus dimension. According to learning theories, the improved performance in IDS 233 
(fewer trials to complete) strongly suggests that mice attend to the stimulus dimensions (digging 234 
medium vs. odor), and that solving EDS involves a shift in the attended dimension, rather than 235 
purely responding to specific sensory cues (Mackintosh, 1975; Roberts et al., 1988). Notably, the 236 
activity of choice-encoding neurons is modulated by context and outcome only in EDS but not 237 
REV, suggesting the unique neural substrates underlying mPFC’s functional specificity.  238 
 239 
Why did context and outcome only affect choice+ neuron activity? The plateaued performance 240 
toward the end of a behavioral session was considered as rule acquisition, while earlier trials were 241 
considered as trial-and-error learning (Sleezer et al., 2016, 2017; Nigro et al., 2023). Thus, 242 
incorrect choices likely reflect the early rule learning phase, and correct choices likely reflect the 243 
late rule acquisition phase. We speculate that the increase in choice+ neuron activity prior to 244 
correct choices is therefore correlated with state changes in switching behavior, suggesting that 245 
outcome and context signals are important for driving rule switching in EDS.  246 
 247 
Our findings further suggest a critical role for fast-spiking interneurons in set shifting, consistent 248 
with prior working demonstrating the importance of PV-mediated synchrony and differential 249 
encoding between RS and FS neurons in flexible behavior (Rikhye et al., 2018; Cho et al., 2020, 250 
2023; Benoit et al., 2022). The stronger involvement of putative FS neurons implies a key role of 251 
inhibitory signaling in shaping information flow and excitation-inhibition balance, important in 252 
many neuropsychiatric conditions (e.g., (Rubenstein and Merzenich, 2003; Cho et al., 2015; 253 
Canetta et al., 2016; Cardin, 2018; Sohal and Rubenstein, 2019)). 254 
 255 
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One limitation of the current study is the relatively low number of simultaneously recorded neurons 256 
per behavioral session, which precludes performing comprehensive population-based analysis to 257 
better examine network dynamics (as in (Durstewitz et al., 2010; Jercog et al., 2021; Zhou et al., 258 
2021; Richman et al., 2023)). Another limitation is that some cell type-related findings are based 259 
on a relatively low number of FS neurons. These limitations can be aided by recording from 260 
genetically identified neurons (e.g., (Pi et al., 2013; Pinto and Dan, 2015; Kim et al., 2016)) in 261 
future studies. Nevertheless, our single-cell analysis has uncovered new information on how 262 
individual neurons encode information during set shifting, elucidating the fundamental building 263 
blocks of neuronal computation and information processing. 264 
 265 
Our work contributes to the growing interest in revealing neural mechanisms underlying more 266 
natural, ethologically relevant behavior (Parker et al., 2020; Dennis et al., 2021). Admittedly, such 267 
behavioral paradigms may not afford the level of task control more commonly seen in restrained, 268 
operant paradigms. Nevertheless, the challenge of dissociating movement-related signal from 269 
sensory- or decision-related signal is present in not only freely-moving, but also restrained 270 
settings (Musall et al., 2019; Steinmetz et al., 2019; Stringer et al., 2019; Zagha et al., 2022). 271 
Comprehensive behavioral tracking and motif analysis (e.g., (Wiltschko et al., 2015; Markowitz et 272 
al., 2023)) will help to identify whether specific behavioral patterns are associated with rule 273 
switching behavior. Ultimately, cognitive processes are not independent from sensory or motor 274 
processes. Cognition, perception and action may be implemented in a distributed rather than 275 
isolated manner (Cisek and Kalaska, 2010; Parker et al., 2020; Zagha et al., 2022).  276 
 277 
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Materials and Methods 560 
 561 
All procedures were performed in accordance with protocols approved by UC Riverside Animal 562 
Care and Use Committee (#20190031). Ten C57BL/6 mice of 8-12 weeks and mixed sex were 563 
used in this study. Procedures for microdrive construction and recording were similar to our 564 
previous work (Megemont et al., 2022, 2024). Briefly, the implants were custom microdrives with 565 
eight tetrodes, each consisting of four nichrome wires (200–300 kΩ). The microdrive was 566 
implanted through a ~1 mm diameter craniotomy targeting the left mPFC (prelimbic area, 1.9-2.2 567 
mm rostrocaudal and 0-0.5 mm mediolateral relative to bregma and 1 mm dorsoventral relative 568 
to brain surface). The microdrive was advanced in steps of 100 µm each day until reaching the 569 
recording depth of 1.4-1.6 mm. At the end of the experiment, an electrolytic lesion (100 μA, 20 s) 570 
was made prior to transcardial perfusion. Perfusions were done first with PBS followed by 4% 571 
PFA. The brain was sliced at 100 μm coronal sections to confirm the recording site.  572 
  573 
Mice were singly housed after tetrode implant and allowed 2-3 days of recovery. Mice were then 574 
food restricted (80-85% of initial weight) and handled by the experimenter for 5-7 days. Next, mice 575 
were acclimated to the behavioral box (22 x 33 cm) and experimental setup for 1-2 days, followed 576 
by a brief training session to stimulate the innate burrowing/digging behavior to retrieve food 577 
reward from the ramekins. Two ramekins were placed at two corners of the behavioral box, both 578 
containing 25 mg of cheerios. Throughout the training session the reward was gradually buried in 579 
clean home cage bedding. In each trial mice were allowed 3-4 minutes to explore. Mice were 580 
considered well trained once they can consistently dig and retrieve the reward from both locations 581 
for 15-20 trials. 582 
 583 
To assess flexible decision-making in freely moving mice, we adopted the 5-stage testing 584 
paradigm of the attentional set-shifting task (Liston et al., 2006; Snyder et al., 2012), consisting 585 
of the following stages: 1) simple discrimination (SD), in which animals choose between two 586 
digging medium associated with distinct textures (first stimulus dimension), only one of the two 587 
stimuli predicts food reward; 2) compound discrimination (CD), in which two odor cues (second 588 
stimulus dimension) are explicitly introduced. Each odor cue is randomly paired with a digging 589 
medium in every trial, but the reward is still predicted as in SD; 3) intra-dimensional reversal (REV), 590 
which preserves the task-relevant dimension (digging medium) but swaps cue contingencies; 4) 591 
intra-dimensional shift (IDS), which preserves the task-relevant dimension (digging medium), but 592 
replaces all four cues with novel ones (a new digging medium predicts reward); 5) extra-593 
dimensional shift (EDS), which swaps the previous task-relevant and task-irrelevant dimensions 594 
with all cues replaced (a new odor cue predicts reward). All stages were performed within a single 595 
day, lasting 3-4 hours. In each trial, the ramekin associated with the relevant stimulus contained 596 
a retrievable reward. To avoid the possibility that mice used food odor cues to solve the task, the 597 
other ramekin contained a non-retrievable reward (trapped under a mesh wire at the bottom). The 598 
two ramekins were placed randomly in the two corners every trial. Between trials, mice were 599 
confined to the other side of the behavioral box (opposite to the ramekins) with a divider inserted 600 
(‘waiting zone’, Fig. S1), and had free access to water. Each trial started by removing the divider, 601 
and mice were allowed to make a decision (digging one ramekin) within 3 minutes. If no digging 602 
was performed within 3 minutes, the trial was scored as a null trial. Once mice started digging, 603 
the other ramekin was immediately removed from the behavioral box. If mice dug the correct 604 
ramekin to retrieve the reward (correct trial), a new trial would start once the reward was 605 
consumed. If mice dug the wrong ramekin embedded with the non-retrievable reward (incorrect 606 
trial), they would have a 1-minute timeout and a new trial would start. 607 
  608 
A CCD camera (Basler acA1300-200um) was set above the behavioral box to capture the top-609 
down view of mouse movements at 10 or 20 Hz, controlled by Pylon software. Video and 610 
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electrophysiology recordings were synchronized via a common TTL pulse train (Arduino). 611 
Behavioral annotations were done manually post hoc. 612 
  613 
Electrophysiology recordings were acquired at 20 kHz and hardware-filtered between 0.1-10 kHz 614 
(Intan Technologies). Signals were bandpass filtered between 300-6000 Hz and spikes were 615 
detected using a threshold of 4-8 standard deviations. The timestamp of the peak of each detected 616 
spike, as well as a 1.6 ms waveform centered at the peak, was extracted from each channel for 617 
offline spike sorting using MClust (Redish, 2014). Putatively duplicated units (peak correlation 618 
coefficient > 0.5 and 0 ms peak lag between spike rasters) were removed from further analysis. 619 
A recording session typically yielded 6-15 single units. A total of 161 single units were included in 620 
the analyses (inter-cluster distances > 20, cluster quality measure Lratio < 0.05). Cell type 621 
classification was based on trough to peak, full width at half maximum (FWHM) and baseline firing 622 
rate. Specifically, putative regular-spiking pyramidal neurons are identified by trough to peak > 623 
0.5 ms and baseline firing rate < 10 Hz. Putative fast-spiking interneurons are identified by trough 624 
to peak < 0.5 ms and baseline firing rate > 10 Hz. The remaining units are considered unidentified. 625 
 626 
In order to classify neuronal representations of different task-related variables, we performed 627 
Receiver-Operating-Characteristic (ROC) analysis on the firing rate of each unit for stimulus 628 
dimension, previous trial outcome and current trial choice separately. Dimension representation 629 
was defined as significant spiking responses between the odor-relevant stage (EDS) and 630 
combined digging medium-relevant stages (CD, REV and IDS) during ITI (-5 to 0 s from trial start) 631 
of the last 6 correct trials; a neuron was labeled ‘context+’ with the area under curve (AUC) > 0.5 632 
and p < 0.05, conversely ‘context-’ neuron was defined with AUC < 0.5 and p < 0.05. Similar 633 
analysis was performed to classify outcome encoding in individual task stages, comparing spiking 634 
activity during ITI following correct trials against following incorrect trials. Removing the last 4 635 
correct trials to better balance the number of correct and incorrect trials did not affect this analysis 636 
(data not shown). Choice classification was performed during a time window immediately prior to 637 
digging (-2 to 0 s from digging), comparing spiking activity preceding correct choices against 638 
preceding incorrect choices. 639 
  640 
In order to classify neuronal representations of different task-related variables, we performed 641 
Receiver-Operating-Characteristic (ROC) analysis on the firing rate of each unit for stimulus 642 
dimension, previous trial outcome and current trial choice separately. Context representation was 643 
defined as significant spiking responses between the odor-relevant stage (EDS) and combined 644 
digging medium-relevant stages (CD, REV and IDS) during ITI (-5 to 0 s from trial start) of the last 645 
6 correct trials; a neuron was labeled ‘context+’ with the area under curve (AUC) > 0.5 and p < 646 
0.05, conversely ‘context-’ neuron was defined with AUC < 0.5 and p < 0.05. Similar analysis was 647 
performed to classify outcome encoding in individual task stages, comparing spiking activity 648 
during ITI following correct trials against following incorrect trials. Outcome encoding analysis was 649 
robust by removing the last 4 correct trials to better balance the number of correct and incorrect. 650 
Choice classification was performed during a time window immediately prior to digging (-2 to 0 s 651 
from digging) on each trial, comparing spiking activity preceding correct choices against preceding 652 
incorrect choices. 653 
  654 
To assess the impact of different task-related variables on neuronal activity, a multilinear 655 
regression analysis was performed on the firing rate of each neuron (MATLAB function ‘fitglm’). 656 
Categorical regressors were context (odor - 1, digging medium - 0), outcome of previous trial 657 
(previous correct - 1, previous incorrect - 0), and choice of current trial (correct - 1, incorrect - 0). 658 
In Fig. S3, all trials (including incorrect trials) in CD, REV, IDS and EDS were pooled to estimate 659 
the coefficients. Model performance (fraction of variance explained, R2) of the complete model 660 
and the null model was compared using a permutation test: R2 values from the complete and null 661 
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models were pooled, and then randomly assigned to two groups. The reported P values 662 
represented the proportion of iterations where the mean R2 difference between the two 663 
permutated groups exceeded the observed difference from 1000 iterations. Complete model R2 664 
vs. null model R2, for Fig. S3 context+ neurons: 0.13 ± 0.028 vs. -0.0020 ± 0.0025, p < 0.001; 665 
context- neurons: 0.14 ± 0.021 vs. -9.6e-4 ± 0.0028, p < 0.001. In Fig. 5, 6 and Fig. S7-9, we 666 
estimated the coefficients of context, outcome, and choice by training and testing our model on 667 
data from CD, REV, IDS, and EDS stages. To estimate context coefficients, we pooled 80% of 668 
the trials (including incorrect trials) from all four stages for training and used the remaining 20% 669 
to test the model's predictive performance on firing rates. Similarly, for estimating outcome and 670 
choice coefficients, we used 80% of the trials from each individual stage for training and the 671 
remaining 20% for testing. The models were evaluated using 5-fold cross-validation. To assess 672 
the model's performance in predicting neuronal firing rates, we calculated the root mean square 673 
error (RMSE) for each temporal window. The RMSE values for choice and outcome in Fig. 5 and 674 
S7-8 are as follows: T1:1.26±0.13; T2:1.38±0.13; T3:1.63±0.19; T4:1.64±0.19. For context: 675 
T1:0.89±0.1; T2:0.91±0.11; T3:1.01± 0.1; T4:1.01±0.13. The RMSE values for choice and 676 
outcome in Fig. 6 and S9:  T1:2.15±0.24; T2:1.87±0.21; T3:2.23±0.26; T4:1.92±0.26. Additionally, 677 
we calculated the Akaike Information Criterion (AIC) for the null model and compared it with the 678 
complete model. The comparison showed a significant difference between the complete model 679 
and the null model (complete model AIC: 59.45 ± 0.4 vs. null model AIC: 62.15 ± 0.44, p-value = 680 
0.007). Similarly, for the context-specific model, there was a significant difference (context 681 
complete model AIC: 161.81 ± 2.04 vs. context null model AIC: 164.33 ± 2, p-value = 0.012).   682 
 683 
For decoding analysis, we trained a linear multiclass error-correcting output codes (ECOC) model 684 
using support vector machine (SVM) binary learner and one-versus-one coding design (MATLAB 685 
function ‘fitcecoc’). We then used the MATLAB function ‘predict’ to examine decoding accuracy. 686 
For context decoding (Fig. 2), we used the last six correct trials in each stage (CD to EDS) to 687 
assess model prediction. For outcome and choice decoding (Fig. 3, 4), we used all trials in EDS 688 
to assess model prediction. Decoding analysis was performed using subsets of neurons (i.e., 689 
context-encoding, outcome-encoding, etc.) from individual recordings and comparisons were 690 
made between each recording and shuffled model. Due to relatively small number of trials in this 691 
task (c.f. Fig. 1B), we did not split the dataset into a training set and a testing set to examine 692 
decoding capacity. Instead, we shuffled class labels to establish chance level decoding accuracy. 693 
We note that chance level decoding probability may not be at 50%, as the shuffled model typically 694 
generated a prediction of uniform 0 or 1 states for all trials. 695 
 696 
All data were presented as mean ± s.e.m. unless otherwise noted. Statistical tests were two-tailed 697 
signed rank for paired comparisons, and repeated-measure ANOVA for multiple comparisons 698 
unless otherwise noted.  699 
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Figure 1. Tetrode recording in the mPFC during AST.  
(A) Test structure of AST. 
(B) Task performance (total number of trials to criterion) varied across stages. Repeated-measure 
ANOVA, F(4, 60) = 8.6, p = 1.5e-5, n = 15. Post hoc Tukey-Kramer tests revealed that mice took 
more trials to complete REV and EDS stages. REV vs. IDS, p = 0.018; EDS vs. CD, p = 0.0038; 
EDS vs. IDS, p = 0.0052. All other paired comparisons were not significantly different.  
(C) Coronal brain section showing an electrolytic lesion marking the recording site (arrow) in the 
prelimbic region. 
(D) Eight example traces from a 32-channel tetrode recording in the mPFC during behavior. 
(E) Example heat map of trial-averaged spiking activity (z-scored) of all 161 units during trial onset 
(left) and during correct choice (right, ± 5 s) in EDS. 
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Figure 2. Task context encoding in the mPFC. 
(A) Spike rasters from two example neurons showing enhanced (left) or suppressed (right) activity 
during intertrial intervals in the last 6 consecutive correct trials (grey area) in EDS compared with 
other stages. Ticks represent spikes. 
(B) Illustration of the time window used to classify context encoding.  
(C) Distribution of AUC values of context encoding for all neurons (light grey). Significantly 
modulated neurons (p < 0.05) were in dark. 
(D) Group mean peri-event spike time histogram (PETH) of context+ neurons (n = 27) aligned to 
trial onset in stages CD through EDS. Mean firing rate during a 5-s window before trial start (black 
horizontal bar) is shown in E. Dashed line is to aid comparison.  
(E) Group mean peri-event spike time histogram (PETH) of context- neurons (n = 23) aligned to 
trial onset in stages CD through EDS. Mean firing rate during a 5-s window before trial start (black 
horizontal bar) is shown in G. 
(F) Context+ neurons showed significantly higher activity in EDS. Repeated-measures ANOVA, 
F(3, 78) = 16.1, p = 3.03e-8, n = 27. Post hoc Tukey-Kramer tests: EDS vs. CD, p = 2.1e-4; EDS 
vs. REV, p = 2.1e-6; EDS vs. IDS, p = 2.2e-4. All other paired tests were not significant.  
(G)  Context- neurons showed significantly lower activity in EDS. Repeated-measures ANOVA, 
F(3, 66) = 15.14, p = 1.3e-7, n = 23. Post hoc Tukey-Kramer tests: EDS vs. CD, p = 6.4e-6; EDS 
vs. REV, p = 8.9e-6; EDS vs. IDS, p = 6.1e-5. All other paired tests were not significant. 
(H) Decoding of task context of the last six trials in stages CD through EDS (n = 15). 
(I) Average decoding accuracy of last six trials in EDS for each recording (n = 15), compared with 
shuffled model (Data vs. Shuffle, 80.8 ± 5.9% vs. 2.6 ± 0.9%, p = 2.4e-4). 
(J) Left: Group mean PETH of context+ neurons aligned to trial onset from late IDS (black, last 6 
correct trials), early EDS (light blue, all trials preceding last 6 correct trials), and late EDS (last six 
correct trials). Right: Mean firing rate during a 5-s window before trial start. Repeated-measures 
ANOVA, F(2, 52) = 13.1, p = 2.5e-5, n = 27. Post hoc Tukey-Kramer tests: Late IDS vs. Early 
EDS, p = 0.14; Late IDS vs. Late EDS, p = 1.1e-4; Early EDS vs. Late EDS, p = 2.4e-4. 
(K) Left: Group mean PETH of context- neurons aligned to trial onset from late IDS (black, last 6 
correct trials), early EDS (light blue, all trials preceding last 6 correct trials), and late EDS (last six 
correct trials). Right: Mean firing rate during a 5-s window before trial start. Repeated-measures 
ANOVA, F(2, 44) = 20.9, p = 4.1e-7, n = 23. Post hoc Tukey-Kramer tests: Late IDS vs. Early 
EDS, p = 0.0095; Late IDS vs. Late EDS, p = 3.2e-5; Early EDS vs. Late EDS, p = 1.4e-5. 
(L) Classifying putative fast-spiking (magenta) and regular-spiking (cyan) neurons based on spike 
waveform features and spike rate.  
(M) Similar proportions of RS and FS neurons encoded context. 34 out of 112 RS vs. 6 out of 19 
FS, 30% vs. 32%, p = 0.91.  
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Figure 3. Trial outcome encoding in the mPFC.  
(A) Illustration of the time window used to classify outcome encoding.  
(B) Distribution of AUC values of outcome encoding for all neurons (light grey). Significantly 
modulated neurons (p < 0.05) were in dark.  
(C) Left: Group mean PETH of outcome+ neurons in EDS (n = 23) aligned to trial onset when 
previous trials were correct (black) and incorrect (red). Right: Mean firing rate during a 5-s window 
before trial start when previous trials were correct (black) and incorrect (red). p = 2.7e-5. Lines: 
individual neurons. Dots: mean.  
(D) Left: Group mean PETH of outcome- neurons in EDS (n = 13) aligned to trial onset when 
previous trials were correct (black) and incorrect (red). Right: Mean firing rate during a 5-s window 
before trial start when previous trials were correct (black) and incorrect (red). p = 2.4e-4. Lines: 
individual neurons. Dots: mean.  
(E) Average outcome decoding accuracy of EDS for each recording (n = 15), compared with 
shuffled model (Outcome vs. Shuffle, 83.0 ± 3.4% vs. 66.9 ± 1.7%, p = 4.9e-4). 
(F) Higher proportions of FS neurons encoded outcome. 26 out of 112 RS vs. 9 out of 19 FS, 23% 
vs. 47%, p = 0.028. 
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Figure 4. Choice encoding in the mPFC.  
(A) Illustration of the time window used to classify choice encoding.  
(B) Distribution of AUC values of choice encoding for all neurons (light grey). Significantly 
modulated neurons (p < 0.05) were in dark.  
(C) Left: Group mean PETH of choice+ neurons in EDS (n = 13) aligned to trial onset when the 
upcoming choices of current trials were correct (black) and incorrect (red). Right: Mean firing rate 
during a 2-s window before digging when the upcoming choices of current trials were correct 
(black) and incorrect (red). p = 2.4e-4. Lines: individual neurons. Dots: mean. 
(D) Left: Group mean PETH of choice- neurons in EDS (n = 10) aligned to trial onset when the 
upcoming choices of current trials were correct (black) and incorrect (red). Right: Mean firing rate 
during a 2-s window before digging when the upcoming choices of current trials were correct 
(black) and incorrect (red). p = 0.002. Lines: individual neurons. Dots: mean.  
(E) Average choice decoding accuracy of EDS for each recording (n = 15), compared with shuffled 
model (Choice vs. Shuffle, 80.8 ± 2.1% vs. 70.6 ± 2.3%, p = 9.8e-4). 
(F) Higher proportions of FS neurons encoded choice. 12 out of 112 RS vs. 6 out of 19 FS, 11% 
vs. 32%, p = 0.015. 
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Figure 5. Context and outcome modulate choice-encoding neuronal activity in EDS  
(A) Illustration of the four trial epochs. T1: -4 to -2 s from trial onset; T2: -2 to 0 s from trial onset; 
T3: -4 to -2 s from digging, T4: -2 to 0 s from digging;  
(B) Regression coefficients of the outcome regressor for choice+ neurons (n = 13). Coefficients 
in T1, T2 and T4 were significantly different from 0. T1, p = 0.01; T2, p = 0.05; T3, p = 0.97; T4, p 
= 0.01. 
(C) Regression coefficients of the context regressor for choice+ neurons (n = 13). Coefficients in 
T2, T3 and T4 were significantly different from 0. T1, p = 0.48; T2, p = 0.02; T3, p = 0.03; T4, p = 
0.04.  
(D) Regression coefficients of the outcome regressor for fast-spiking choice+ neurons in EDS (n 
= 5). Coefficients were significantly different from 0 in all epochs. T1, p = 0.009; T2, p = 0.005; T3, 
p = 0.038; T4, p = 0.025. 
(E) Regression coefficients of the context regressor for fast-spiking choice+ neurons in EDS (n = 
5). Coefficients in T2 were significantly different from 0. T1, p = 0.12; T2, p = 0.02; T3, p = 0.17; 
T4, p = 0.1. 
(F) Regression coefficients of the outcome regressor for regular-spiking choice+ neurons (n = 5). 
Coefficients were not significantly different from 0 in any epochs. T1, p = 0.20; T2, p = 0.49; T3, 
p = 0.23; T4, p = 0.5. 
(G) Regression coefficients of the context regressor for regular-spiking choice+ neurons in EDS 
(n = 5). Coefficients were not significantly different from 0 in any epochs. T1, p = 0.49; T2, p = 
0.44; T3, p = 0.26; T4, p = 0.34. T test for all comparisons in Fig. 5. 
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Figure 6. Context and outcome do not modulate choice-encoding neuronal activity in REV 

(A) Regression coefficients of the outcome factor for choice+ neurons in REV (n = 13). 
Coefficients were not significantly different from 0 in any epochs. T1, p = 0.99; T2, p = 0.35; T3, 
p = 0.63; T4, p = 0.09. 
(B) Regression coefficients of the context factor for choice+ neurons in REV (n = 13). Coefficients 
were not significantly different from 0 in any epochs. T1, p = 0.92; T2, p = 0.38; T3, p = 0.3; T4, p 
= 0.1. 
(C) Comparison of the proportions of cell type-specific choice-encoding neurons in REV and EDS. 
(D) Comparison of the proportions of cell type-specific outcome-encoding neurons in REV and 
EDS.  
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