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Abstract 

Background:  Urinary protein quantification is critical for assessing the severity of chronic kidney disease (CKD). How-
ever, the current procedure for determining the severity of CKD is completed through evaluating 24-h urinary protein, 
which is inconvenient during follow-up.

Objective:  To quickly predict the severity of CKD using more easily available demographic and blood biochemical 
features during follow-up, we developed and compared several predictive models using statistical, machine learning 
and neural network approaches.

Methods:  The clinical and blood biochemical results from 551 patients with proteinuria were collected. Thirteen 
blood-derived tests and 5 demographic features were used as non-urinary clinical variables to predict the 24-h urinary 
protein outcome response. Nine predictive models were established and compared, including logistic regression, 
Elastic Net, lasso regression, ridge regression, support vector machine, random forest, XGBoost, neural network and 
k-nearest neighbor. The AU-ROC, sensitivity (recall), specificity, accuracy, log-loss and precision of each of the models 
were evaluated. The effect sizes of each variable were analysed and ranked.

Results:  The linear models including Elastic Net, lasso regression, ridge regression and logistic regression showed 
the highest overall predictive power, with an average AUC and a precision above 0.87 and 0.8, respectively. Logistic 
regression ranked first, reaching an AUC of 0.873, with a sensitivity and specificity of 0.83 and 0.82, respectively. The 
model with the highest sensitivity was Elastic Net (0.85), while XGBoost showed the highest specificity (0.83). In the 
effect size analyses, we identified that ALB, Scr, TG, LDL and EGFR had important impacts on the predictability of the 
models, while other predictors such as CRP, HDL and SNA were less important.

Conclusions:  Blood-derived tests could be applied as non-urinary predictors during outpatient follow-up. Features 
in routine blood tests, including ALB, Scr, TG, LDL and EGFR levels, showed predictive ability for CKD severity. The 
developed online tool can facilitate the prediction of proteinuria progress during follow-up in clinical practice.
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publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Chronic kidney disease (CKD) is associated with an 
increased risk for adverse clinical events, which makes it 

a major public health problem worldwide [1]. Although it 
is well recognized that CKD is independently associated 
with increased risks for end stage renal disease, cardio-
vascular events, and all-cause mortality, the prognosis for 
individual patients still lacks sufficient information [2]. 
Clinically usable strategies for the risk stratification of 
each outcome are important for making treatment deci-
sions [3, 4].

Renal prognosis predictive models in CKD patients 
may be helpful in identifying those at high risk who may 
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benefit from more intensive management, such as higher 
doses of RAAS (renin–angiotensin–aldosterone system) 
inhibitors, anticoagulation therapy, and intensive blood 
glucose, blood pressure, urate and lipid-lowering medi-
cations [5]. In addition, how to screen outpatient CKD 
patients who should have intensive and quick examina-
tions is of great clinical and economical significance. 
With the use of such models, most patients with risks 
of having proteinuria less than 1  g/24  h can be strati-
fied as low risk and can potentially be treated solely by 
their primary outpatient follow-up, whereas those at high 
risk (proteinuria more than 1  g/24  h) can be referred 
to urgent care by an inpatient management registra-
tion. Similarly, models predicting renal progression may 
identify patients at low risk for renal failure in the next 
5 years, for whom advanced treatment may be inappro-
priate [6]. Proteinuria has always been recognized as the 
most important risk factor [7]. A recent study improved 
the prediction efficacy by using proteinuria to estimate 
the glomerular filtration rate [8]. However, models using 
proteinuria need to collect the 24-h urine, which is 
inconvenient, especially in outpatient clinics.

Studies have been conducted to try to use routinely 
obtained laboratory tests without proteinuria to predict 
renal progression. Models including age, sex, estimated 
GFR, albuminuria, serum calcium, serum phosphate, 
serum bicarbonate, and serum albumin can accurately 
predict the progression to kidney failure in patients with 
CKD stages 3–5 [4]. More recently, artificial intelligence 
approaches have been proven to solve real problems, 
including rule-based and gold standard oriented diag-
noses or prognoses. To help clinicians select prediction 
tools for predicting the severity of CKD, we established 
and compared nine prediction models using statistical, 
machine learning and neural network approaches with 
blood-derived outpatient clinical features and demo-
graphic features. Based on the results, we further estab-
lished an online tool for patient follow-up urinary protein 
severity prediction.

Methods and materials
Patients and data pre‑processing
A total of 551 pathologically confirmed CKD patients with 
24-h urinary protein were recruited from August 2015 to 
September 2018 at the Department of Nephrology in the 
Shanghai Huadong Hospital Affiliated to Fudan Univer-
sity. None of the patients were diagnosed with METS, can-
cers or cardio- and cerebrovascular diseases. The detailed 
demographic characteristics of the cohort are listed in 
Table 1. In this study, urine protein > 1 g/24 h was used as 
the outcome variable to classify the progress and severity of 
proteinuria in patients with kidney disease. Our study was 
approved by the Clinical Ethics Review Committee of the 

Shanghai Huadong Hospital Affiliated to Fudan University, 
and clinical consent was obtained from all patients. We first 
cleaned and formatted the data before model fitting. Then, 
in the pre-processing stage, we transformed categorical 
variables into binary dummy variables. Finally, we scaled 
the data as most models are affected by the difference in the 
scale of the variables. We performed power analysis over 
urinary protein values to determine if the sample size was 
suitable for further statistical process (alpha = 0.05). All val-
ues were normalized to reduce the dimension-introduced 
bias using Z-score standardization as previously described 
[9–13]: (Eq. 1).

where μ is the average of the features across all samples, 
and α is the standard deviation.

Establishment of a predictive model
In this study, nine predictive models were established to 
predict the progression of urinary protein in patients with 
chronic kidney disease, and model selection was based on 
several currently and frequently adopted predictive model 
types. For the linear model, the logistic regression model 
(LR) [14, 15], the elastic network model (Elastic Net) [16–
18], the lasso regression model (Lasso) [19], and the ridge 
regression model (Ridge) were selected [20–22]. The neu-
ral network model (NN) [23] was chosen because it is an 
important class of nonlinear prediction models [24] and 
has been reported to predict CKD. For the kernel-based 
model, a support vector machine (SVM) with a Gauss-
ian kernel (RBF) has been widely adopted in many clini-
cal applications, such as coronary artery disease prediction 
[25, 26]. For the decision tree approach, the random forest 
(RF) model [27–29] and the XGBoost model [30–32] have 
also been used in clinical research. Finally, a basic predic-
tion technique [33], k-nearest neighbor algorithm (k-NN) 
was built [34]. The model was fitted using the method 
described above for each set of parameters, which were 
adjusted to obtain the average performance index. The log-
loss was calculated to indicate the confidence of the model. 
The lower the log-loss value is, the more confident the 
model is for its classification results [35, 36]. The technical 
parameters of the selected prediction models are listed for 
the optimization of the equations (Table 2). Model estab-
lishment and brief illustrations are described in Additional 
file 1.

Assessment of models in CKD severity prediction
In this study, we have improved the method of the data 
resampling technique [37] considering the overfit-
ting problem caused by the empirical risk minimization 

(1)z =
x − µ

σ
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algorithm of the optimization model. First, the candidate 
values of the model parameters were defined, and the 
patients were randomly allocated into a training set (80%) 
and a validation set (20%), where the two class propor-
tions in each set were the same. In the training set, k-fold 
cross-validation (k = 10) was used, and various parameter 
combinations were exhausted by grid search. For each 
set of parameters, 9/10 of data were used for fitting the 
model in turn, and 1/10 of data was used for validation. 
AU-ROC was selected as the performance index, which 

Table 1  Demographic data of 551 patients

Cases (n = 551)

No Percent Mean SD

Age (years) 58.15 16.45

 ≤ 58.15 251 45.54

 > 58.15 300 54.46

 Range 18–90

Sex

 Male 283 51.3

 Female 268 48.7

Height (cm) 165.67 8.28

 ≤ 165.67 279 50.64

 > 165.67 272 49.36

 Range 145–190

Weight (g) 67.09 12.84

 ≤ 67.09 286 51.91

 > 67.09 265 48.09

 Range 39–118

BMI 24.33 3.67

 ≤ 24.33 298 54.08

 > 24.33 253 45.92

 Range 16.23–41.32

CRP (mg/L) 7.32 15.01

 ≤ 7.32 379 68.78

 > 7.32 147 26.68

 Missing 25 4.54

 Range 0–190

ALB (g/L) 37.72 6.65

 ≤ 37.72 222 40.29

 > 37.72 328 59.53

 Missing 1 0.18

 Range 13–66

TC (mmol/L) 4.88 1.54

 ≤ 4.88 310 56.26

 > 4.88 231 41.92

 Missing 10 1.81

 Range 1.30–12.93

TG (mmol/L) 1.91 1.46

 ≤ 1.91 348 63.16

 > 1.91 193 35.03

 Missing 10 1.81

 Range 0.4–18.2

BG (mmol/L) 5.13 1.59

 ≤ 5.13 377 68.42

 > 5.13 173 31.40

 Missing 1 0.18

 Range 2.3–17.5

BUN (mmol/L) 10.42 8.35

 ≤ 10.42 393 71.32

 > 10.42 157 28.49

 Missing 1 0.18

Table 1  (continued)

Cases (n = 551)

No Percent Mean SD

 Range 2.5–62.0

EGFR (ml/min) 57.95 35.63

 ≤ 57.95 275 49.91

 > 57.95 276 50.09

 Range 1.0–154.4

Scr (umol/L) 192.57 212.21

 ≤ 192.57 410 74.5

 > 192.57 141 25.5

 Range 41.9–1460.7

SUA (umol/L) 394.41 110.63

 ≤ 394.41 285 51.72

 > 394.41 266 48.28

 Range 49.0–808.0

SK (mmol/L) 4.03 0.47

 ≤ 4.03 306 55.54

 > 4.03 241 43.74

 Missing 4 0.72

 Range 2.7–5.6

Sna (mmol/L) 142.13 3.08

 ≤ 142.13 289 52.45

 > 142.13 258 46.82

 Missing 4 0.72

 Range 108.2–152.0

LDL (mmol/L) 2.80 1.12

 ≤ 2.80 325 58.98

 > 2.80 226 41.02

 Range 0.42–8.95

HDL (mmol/L) 1.30 0.37

 ≤ 1.30 317 57.53

 > 1.30 233 42.29

 Missing 1 0.18

 Range 0.53–2.81

Uprotein (g/24 h) 1.55 2.21

 ≤ 1.0 330 59.89

 > 1.0 221 40.11

 Range 0–20.8
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was calculated 10 times, and its average performance was 
calculated as the parameter score of the current param-
eter combination. The average value of the parameter 
value grid was selected as the best performance adjust-
ment parameter of the current iteration and was finally 
executed on the test set. A forecast flow chart is shown 
in Fig. 1. This step was repeated 20 times randomly, i.e., 
20 resampling iterations were defined. This study used the 
same resampling to evaluate different models. For each 
model, the evaluation indicators used were the confusion 
matrix, area under the curve (AUC), sensitivity (recall), 
specificity, accuracy, log-loss, AP, F1, false positive rate 
(FPR), and precision. Each evaluation used the same data 
segmentation and repetition to ensure a fair comparison 
of the models. Additionally, we carried out hierarchical 

Table 2  Tuning parameters of the predictive models

Models Tuning

LR α (Regularization parameter)

Elastic Net γ (Mixing percentage),
α (Regularization parameter)

Lasso α (Regularization parameter)

Ridge α (Regularization parameter)

SVM γ (Gaussian kernel), C (Cost)

RF n_estimators (#subtrees)

k-NN k (#Neighbors)

NN Size (#hidden layer units),
α (Regularization parameter)

XGBoost Depth (maximum depth of number), weight (the smallest 
sample weight and weight in the child node)

Fig. 1  Model training, parameter adjustment and performance evaluation. 551 patients were recruited in the current study. The data were 
pre-processed and randomly divided into a training set (80%) and a validation set (20%), and the proportion of the two class proportions in each 
set is the same. In the training set, k-fold cross-validation (k = 10) is used, and various parameter combinations are exhausted by grid search. 
Performance evaluation indices such as AUC and AP were adopted to judge the average predictive performance of the model. The average 
performance maximum is used as the best performance tuning parameter, and the prediction is finally performed on the test set
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clustering analysis over methods based on false positive 
(FP) and false negative (FN) values. In this study, Python 
(version 3.7.0) and R (version 3.5.1) were used to build 
and evaluate the models.

To better evaluate the performance of the models, we 
further compared the AU-ROC from each resampling 
calculation using a paired t test. P < 0.05 was regarded 
as significant. In addition to performance comparisons, 
this study also analysed the importance of variable fac-
tors in the predictive models. For each model, the relative 
effect size was quantified by assigning a weight between 
0 and 1 for each variable. The models XGBoost and RF 
allowed the importance of variables to be derived during 
model training; the coefficients of the Elastic Net, Lasso, 
and Ridge models were used as the importance factor. 
For models, such as kNN and SVM, wherein the impor-
tance of variables was difficult or impossible to extract, 

the mean decrease accuracy was obtained by directly 
measuring the effect of each feature on the accuracy of 
the model. Briefly, the model was fitted, and parameter 
adjustment was performed to predict the validation set to 
obtain the model performances. Then, the feature values 
were disturbed to establish a new disturbance prediction 
set. Obviously, for the unimportant variables, the scram-
bling order has little effect on the accuracy of the model, 
but for the important variables, the scrambled order will 
reduce the accuracy of the model. Finally, the relative 
importance ratio of all the eigenvalues was given a weight 
between 0 and 1 according to the overall proportion, 
thereby obtaining the effect sizes.

Establishment of web tools for CKD severity prediction
To facilitate the predictive function in clinical practices, 
we designed and developed a CKD Prediction System for 

Fig. 2  Tuning results of model parameters using re-sampling approach. a–i Five models have one adjustment parameter (LR, RF, Lasso, Ridge, and 
k-NN), and four models have two adjustment parameters (Elastic Net, SVM, NN and XGBoost). For each set of parameters, the model parameters 
were evaluated for fit using the procedure described in Flowchart 1. The optimal parameters for each model are selected by obtaining the 
parameters that the model evaluates to the maximum
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the above models whose predictive precision, sensitiv-
ity and specificity were highest. The proteinuria predic-
tor was embedded in the web tool. User data interaction 
and visualization of analysis results were displayed using 
HTML5, JavaScript, and PHP. Source codes for model 
establishment by Python and web tools by PHP are pro-
vided in Additional file 1.

Results
Patients and variables
This study recruited 551 patients with CKD from the 
Department of Nephrology, Huadong Hospital, Shang-
hai Fudan University Affiliated Hospital who had patho-
logically confirmed 24-h urine protein. The training 
dataset included 330 mild CKD patients (urinary pro-
tein ≤ 1  g/24  h) and 221 moderate/severe CKD patients 
(urinary protein ≥ 1  g/24  h). Through statistical power 
analysis of the urinary protein values, the sample size in 

our study was competent for further procedures with 
power at 1. The following non-urine indicators of 13 
outpatient blood biochemistry tests and 5 demographic 
features were used as predictive variables: CRP, ALB, TC, 
TG, BG, BUN, EGFR, Scr, SUA, SK, Sna, LDL, HDL, sex, 
age, height, weight, and BMI. Urine protein (g/24 h) was 
considered an outcome variable to judge the status of 
CKD patients.

Tuning of parameters
The average AU-ROC for different models and their 
parameters are listed (Fig.  2). The SVM was not sensi-
tive to cost choice C, and the kernel smoothing param-
eter σ of 0.01 was optimal. For k-NN, a relatively large 
number of k = 24 was optimal; for RF, a relatively large 
number of randomly selected 61 subtrees provided the 
best performance. The maximum depth (max_depth) 
of the XGBoost tree was 3, and the minimum leaf node 

Fig. 3  Evaluation of the predictive models. a The left picture showed the average ROC curves from of nine models in the validation sets. Mean AUC 
values with standard deviations of different prediction models were shown in the box. b The right picture showed average PR curves, indicating the 
tradeoff between precision and recall. Mean AP values with standard deviations of different prediction models were shown in the box. c The box 
plot is ranked according to the performance of the nine models using AU-ROC mean. The green triangle in the box stands for the mean values
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sample weight (min_child_weight) of 1 achieved optimal 
performance.

Validation of the training set
The average ROC curves and PR curves during the 
20-fold data resampling process are shown in Fig. 3a, b. 
Most models had AUC values above 0.85, but the value 
of k-NN was lower (0.80). We used the AP value as the 
criterion for the PR curve [38]. The APs of the Elastic 
Net, Lasso, LR, Ridge, SVM and XGBoost models were 
all above 0.82. The confusion matrix (rounding) was also 
calculated for the nine models (Table  3). As shown in 

Table  3, k-NN generated a large amount of FNs (= 12) 
and FPs (= 17) during the prediction process, while the 
other models had the same number of FNs, which could 
be controlled within 10, where the Lasso and Elastic Net 
models produced the least amount of FNs (= 7). The 
model XGBoost produced the minimum number of FPs 
(= 11).

The nine methods were clustered based on hierarchi-
cal clustering analysis using the FP and FN values from 
one random sampling (Additional file 1: Figure S1). Simi-
lar models drew similar results; for example, the decision 
tree models XGBoost and random forest were clustered 

Table 3  Confusion matrices of 9 models

Confusion matrix Actual Prediction

Uprotein ≤ 1.0 mg/24 h Uprotein > 1.0 mg/24 h

LR Uprotein ≤ 1.0 mg/24 h 37 8

Uprotein > 1.0 mg/24 h 12 54

Elastic Net Uprotein ≤ 1.0 mg/24 h 38 7

Uprotein > 1.0 mg/24 h 14 52

Lasso Uprotein ≤ 1.0 mg/24 h 38 7

Uprotein > 1.0 mg/24 h 14 52

Ridge Uprotein ≤ 1.0 mg/24 h 37 8

Uprotein > 1.0 mg/24 h 14 51

SVM Uprotein ≤ 1.0 mg/24 h 37 8

Uprotein > 1.0 mg/24 h 13 53

RF Uprotein ≤ 1.0 mg/24 h 37 8

Uprotein > 1.0 mg/24 h 14 52

k-NN Uprotein ≤ 1.0 mg/24 h 33 12

Uprotein > 1.0 mg/24 h 17 49

NN Uprotein ≤ 1.0 mg/24 h 37 8

Uprotein > 1.0 mg/24 h 14 52

XGBoost Uprotein ≤ 1.0 mg/24 h 37 8

Uprotein > 1.0 mg/24 h 11 55

Table 4  Performance summary in terms of AU-ROC sensitivity (recall), specificity, accuracy, log-loss, FP rate, precision

Models AUC​ 95%CI Sensitivity 
(recall)

Specificity Accuracy log-loss FP rate Precision AP F1

Lower bound Upper bound

LR 0.873 0.808 0.939 0.83 0.82 0.82 6.16 0.18 0.76 0.83 0.79

Elastic Net 0.871 0.805 0.937 0.85 0.80 0.82 6.29 0.20 0.74 0.82 0.79

Lasso 0.872 0.807 0.938 0.84 0.79 0.81 6.41 0.21 0.74 0.82 0.79

Ridge 0.865 0.798 0.933 0.83 0.79 0.81 6.71 0.21 0.73 0.82 0.78

SVM 0.857 0.786 0.928 0.82 0.81 0.81 6.50 0.19 0.75 0.82 0.78

RF 0.854 0.782 0.926 0.83 0.79 0.80 6.77 0.21 0.73 0.81 0.77

k-NN 0.802 0.721 0.883 0.74 0.74 0.74 8.91 0.26 0.69 0.73 0.70

NN 0.854 0.783 0.925 0.83 0.78 0.80 6.91 0.22 0.73 0.80 0.77

XGBoost 0.868 0.799 0.938 0.83 0.83 0.83 5.87 0.17 0.77 0.83 0.80



Page 8 of 13Xiao et al. J Transl Med          (2019) 17:119 

closely. Table 4 shows the AUC, sensitivity (recall), speci-
ficity, accuracy, log-loss, FP rate, precision, f1, and AP of 
each model evaluation result.

There were significant performance differences 
between the different models (Fig.  3c and Table  4). The 
linear models LR, Elastic Net, Lasso and Ridge had 
excellent performance, and the accuracy rate was up 
to 0.80. Among them, LR obtained the highest AUC 
value of 0.873, and the tree model XGBoost had an AU-
ROC value of 0.868 and an accuracy rate of 0.83. K-NN 
obtained the lowest AUC value of 0.802. The best perfor-
mance of sensitivity was the Elastic Net model, which is 
suitable for the early diagnosis of proteinuria progression 
in patients with chronic kidney disease. The best particu-
larity was XGBoost and LR, which are suitable for the 
early stage of proteinuria in patients with chronic kidney 
disease. The sensitivity and specificity of the LR, Elastic 
Net, SVM, XGBoost and Lasso models both reached over 
0.80. The XGBoost model had the lowest log-loss value 
(5.87), indicating that Lasso is more useful for its clas-
sification results, while the k-NN model had the highest 
log-loss value of 8.91. LR and XGBoost performed best 
regarding FP rate and precision, while XGBoost showed 
the highest AP values.

We further compared each model using the AU-ROC 
mean and paired t-test. Compared to the other models, 
LR, Elastic Net, Lasso, and XGBoost showed no statisti-
cal significance, implying that these models were similar 
in terms of their predictive power. In our study, k-NN 
provided the lowest predictive performance (Table 5).

The importance features, as shown in the effect sizes, 
were calculated (Fig.  4). For most of the models, the 
importance could be divided into two groups. The first 
group included ALB, Scr, TG, LDL, age, EGFR, and TC, 
which had important influences on the predictability 
of the models. The second group included BMI, height, 
weight and CRP, which showed less impact on prediction. 
ALB and TG were shown with the highest frequencies in 

the top predictors in all nine models, while Scr, TC, age 
and LDL were also shown with a high effect size in more 
than half of the models.

Establishment of the website
In this study, we developed a Web tool (CKD Prediction 
System) for clinical practice that can be widely used in the 
evaluation of proteinuria progress in nephrology and dur-
ing follow-up examinations (Fig. 5). Clinicians can visit the 
system website (http://www.ckdpr​edict​ion.com) and use 
the desired clinical model by entering the 13 clinical bio-
chemical indicators and 5 demographic features from fol-
low-up CKD patients. The calculated probability of CKD 
progression will be predicted and obtained by the system. 
For example, after we input the features into the CKD Pre-
diction System, the tool will feed back the prediction of the 
patient’s current status with “mild” or “moderate/severe”.

Discussion
In this study, we applied 13 blood and 5 demographic 
parameters to predict the progression status of CKD by the 
severity of proteinuria using nine models. The linear mod-
els LR, Elastic Net, Lasso, Ridge and XGBoost met clinical 
needs and provided rapid screening for outpatients. Renal 
progression prediction is important in clinical practice for 
screening patients who are at a higher risk for renal failure. 
Various models have been developed and evaluated. Most 
models rely on the extent of proteinuria [39, 40]. However, 
measurement of 24-h proteinuria is not very applicable in 
real outpatient practice. Some assessed the changes in dip-
stick proteinuria, suggesting that changes in proteinuria 
over 2 years may be appropriate for the risk prediction of 
ESRD (end-stage renal disease) [41]. However, this model 
requires re-examination data from the patients, which 
could not be predicted at the first time of the patient’s visit.

Asif Salekin and John Stankovic [24] introduced the 
method of detecting CKD by using k-NN, RF and NN, 
analysed the characteristics of 24 clinical indicators, and 

Table 5  Comparison of AUCs. The upper part of the matrix represents the average AUC differences between models. The 
lower part represents statistical significance (p values) of paired t-tests

pVal\fold change LR Elastic Net Lasso Ridge SVM RF k-NN NN XGBoost

LR – 0.002 0.001 0.008 0.017 0.019 0.071 0.019 0.005

Elastic Net 0.195 – − 0.001 0.006 0.015 0.017 0.069 0.017 0.003

Lasso 0.489 0.372 – 0.007 0.016 0.018 0.070 0.019 0.004

Ridge 0.001 0.014 0.001 – 0.009 0.011 0.063 0.011 − 0.003

SVM 0.000 0.001 0.000 0.055 – 0.002 0.054 0.003 − 0.012

RF 0.000 0.001 0.000 0.019 0.536 – 0.052 0.000 − 0.014

k-NN 0.000 0.000 0.000 0.000 0.000 0.000 – − 0.052 0.066

NN 0.000 0.004 0.002 0.046 0.540 0.956 0.000 – − 0.015

XGBoost 0.219 0.488 0.316 0.488 0.010 0.000 0.000 0.015 –

http://www.ckdprediction.com
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sorted their predictability. Five indicators were identi-
fied for model construction, and a new CKD detection 
method (with or without CKD) was identified. Lin Lijuan 
et al. [42] analysed the risk factors of CKD progression in 
three stages of chronic kidney disease. The multi-factor 
analysis method in SPSS was used to study the effect of 
blood pressure control on the progression of CKD elderly 

patients. Patients with kidney disease have mutual influ-
ence, and the increased risk of CKD kidney injury in the 
elderly is related to the level of systolic blood pressure.

Unlike many studies using models to judge CKD from 
normal subjects, we hereby use machine learning and 
data mining to predict the patient’s CKD status. Similarly, 
Chase et al. [43] used six laboratory values (haemoglobin, 

Fig. 4  Factors effect size. The a–i histogram describes the proportion of factoric importance of different predictors in the model. For each model, 
the relative importance is quantified by assigning a weight between 0 and 1 for each variable. The models XGBoost and RF allow the importance 
of variables to be derived during model training; the coefficients of the Elastic Net, Lasso, and Ridge models are used as the basis for factor 
importance; the k-NN, LR, NN, and SVM models are obtained by the Mean decrease accuracy method. j The average factor importance of the top 5 
models according to AU-ROC
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bicarbonate, calcium, phosphorous, and albumin) in 
addition to EGFR to predict the probability of CKD 
patients progressing from phase 3 to phase 4 using naive 
Bayes and logistic regression. However, the sensitivity 
of the established predictive models was only 0.72. This 

was explained by the fact that the data used in the model 
establishment mostly included female subjects, and the 
average age was high. Khannara et  al. [44] studied the 
effects of hypertension and diabetes on CKD progression 
by analysing common risk factors and using ANN, k-NN, 

Fig. 5  a, b Website-CKD Prediction System. 18 clinical features from patients can be input as values to predict the severity of CKD
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and NB methods. Some studies tried to test urinary bio-
markers such as urinary kidney injury molecule-1 (uKIM-
1) and urinary neutrophil gelatinase-associated lipocalin 
(UNGAL) to predict the status of eGFR; however, they 
were not successful [45, 46]. Thus, researchers tried to 
use and combine easily available parameters for predic-
tion, and they validated the model performance in both 
CKD to ESRD [4] or AKI to advanced CKD [8]. These 
models included the variables of older age, female sex, 
higher baseline serum creatinine value, and albuminuria, 
which are all available in the outpatient department. In 
addition to albumin, serum creatinine and EGFR, we also 
identified TG and LDL as prediction factors in our mod-
els. It was also previously reported that a distinct panel of 
lipid-related features may improve the prediction of CKD 
progression beyond EGFR and proteinuria [47].

Machine learning algorithms can build complex models 
and make accurate decisions when given relevant data. 
When there is an adequate amount of data, the perfor-
mance of machine learning algorithms is expected to be 
sufficiently satisfactory. However, in specific applications, 
the data are often insufficient. Therefore, it is important 
to analyse these algorithms and obtain good results with 
a relatively small sample size. In this study, although we 
employed a relatively small dataset with 551 patients, the 
sample size satisfied the power analysis and identified 
that the linear models performed better than the other 
types of models.

It is expected that the existing sample set may not be 
able to support the solution because the training set is 
limited. In the case of low data dimensions, a linear clas-
sifier can separate samples more ideally, while more com-
plex machine learning models such as SVM have more 
powerful learning but are also more prone to overfitting, 
resulting in a less accurate prediction. As shown above, 
k-NN performed the worst in our case. This is because 
k-NN is very sensitive to the number of data samples and 
neighbours. Therefore, the overall comparison shows that 
the linear models performed better in our study.

Finally, this study used non-urine indicators as clini-
cal predictors and developed a web tool. The outpatients 
can be quickly screened to assist the physician in mak-
ing decisions and provide patients with further proper 
examination and treatment. However, this study also has 
limitations. The sample size used is relatively small, and 
the parameters during tuning could be further optimized 
to avoid overfitting.

To further improve the accuracy of the established 
model, in subsequent research, more clinical data will 
be collected in our cohort, and the parameters will be 
further optimized. We are also establishing a Lasso-
based predicted proteinuria range, which provides doc-
tors and patients with more intuitive predictions. With 

the increase of users and data collected on our website, 
CKD research and patients can benefit in future clinical 
practices.

Conclusions
In this study we established and compared nine models 
to predict the CKD severity using easily available clini-
cal features during out-patient follow-up, finding that 
linear models including Elastic Net, Lasso, Ridge and 
LR showed the highest overall predictive power. We 
also identified that ALB, Scr, TG, LDL and EGFR had 
important impacts on the predictability of the models, 
while other predictors such as CRP, HDL and SNA were 
less important. The online tool developed can facilitate 
the prediction of proteinuria progress during follow-up 
practice.

Additional file

Additional file 1. Model establishment and source codes brief 
illustrations.
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