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Abstract

Based on the process of carcinogenesis, carcinogens are classified as either genotoxic or non-genotoxic. In contrast to non-
genotoxic carcinogens, many genotoxic carcinogens have been reported to cause tumor in carcinogenic bioassays in
animals. Thus evaluating the genotoxicity potential of chemicals is important to discriminate genotoxic from non-genotoxic
carcinogens for health care and pharmaceutical industry safety. Additionally, investigating the difference between the
mechanisms of genotoxic and non-genotoxic carcinogens could provide the foundation for a mechanism-based
classification for unknown compounds. In this study, we investigated the gene expression of HepG2 cells treated with
genotoxic or non-genotoxic carcinogens and compared their mechanisms of action. To enhance our understanding of the
differences in the mechanisms of genotoxic and non-genotoxic carcinogens, we implemented a gene set analysis using 12
compounds for the training set (12, 24, 48 h) and validated significant gene sets using 22 compounds for the test set (24, 48
h). For a direct biological translation, we conducted a gene set analysis using Globaltest and selected significant gene sets.
To validate the results, training and test compounds were predicted by the significant gene sets using a prediction analysis
for microarrays (PAM). Finally, we obtained 6 gene sets, including sets enriched for genes involved in the adherens junction,
bladder cancer, p53 signaling pathway, pathways in cancer, peroxisome and RNA degradation. Among the 6 gene sets, the
bladder cancer and p53 signaling pathway sets were significant at 12, 24 and 48 h. We also found that the DDB2, RRM2B
and GADD45A, genes related to the repair and damage prevention of DNA, were consistently up-regulated for genotoxic
carcinogens. Our results suggest that a gene set analysis could provide a robust tool in the investigation of the different
mechanisms of genotoxic and non-genotoxic carcinogens and construct a more detailed understanding of the perturbation
of significant pathways.
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Introduction

Based on their mechanisms of action, chemical carcinogens are

classified as genotoxic carcinogens (GTXs) or non-genotoxic

carcinogens (NGTXs). GTXs covalently bind with DNA to form

DNA adducts, which results in neoplastic initiation [1–3]. In in vitro

and short-term in vivo assays, GTXs have been observed to damage

DNA and generate chromosomal aberrations [1,2]. NGTXs,

however, do not directly bind with DNA, instead, they cause

neoplastic transformations through various mechanisms, including

repression of the immune system and inducing oxidative stress

[1,2]. Therefore, it is hypothesized that GTXs and NGTXs induce

distinct gene expressions profiles, which may consequently be used

to classify unknown compounds as either GTXs or NGTXs [4].

Unlike NGTXs, many GTXs also cause tumor in animal-based

carcinogenic bioassays and environment exposures to chemical

carcinogens have been reported to be major causal factors for

cancer [5]. From the perspective of health care safety and the

pharmaceutical industry, determining the genotoxic potentials of

chemicals to which humans are exposed is important to

discriminate GTXs from NGTXs [5].

The potential genotoxicity of carcinogens is evaluated using in

vitro tests, such as bacterial gene mutation test (Ames test), the

mammalian micronuclei (MN) test, the chromosomal aberration

(CA) test and the mouse lymphoma assay (MLA) [6]. To be

classified as a genotoxic carcinogen, a chemical must exhibit in vivo

genotoxicity in rodents. However, the in vitro results may not

correspond with the results of in vivo evaluations, which result in

numerous unnecessary animal experiments that are both costly

and time consuming [7,8]. Thus, a more robust in vitro method is

required.

Toxicogenomics, the application of gene expression profiling to

toxicological investigations, provides novel approaches to address

this problem, leading to deeper mechanistic insights. These

approaches have been demonstrated to discriminate between

GTXs and NGTXs [1,9]. To interpret gene expression profiling in

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e86700



a biologically meaningful way, individually identifying every gene

with a statistically significant response is not sufficient [10].

Recently, the focus of studies has shifted from studying the effects

of individual genes to studying the effects of a gene set, i.e.,

multiple functionally related genes [11,12]. A few studies including

on by Kim HS et al. [10] have demonstrated the successful

application of gene set analysis using gene expression data. In this

study, we conducted gene set analysis to discriminate between

genotoxic and non-genotoxic mechanisms for the first time.

To apply a gene set analysis, we used 12 compounds as the

training set (12, 24, 48 h) and validated significant gene sets using

22 compounds for the test set (24, 48 h). Using a cut-off of p,0.05

for at least 1 time point, we selected 57 significant gene sets from 5

GTXs and 7 NGTXs in the training data. To validate the 57 gene

sets, we utilized the prediction analysis for microarrays (PAM) and

the accuracy of each gene set was calculated using the 24 and 48 h

time points in both the training and test data. Compared with

previous studies, our results suggest that this method of applying

gene set analysis could be used to more clearly explain the

differences between GTX and NGTX mechanisms.

Materials and Methods

Data collection
Raw gene expression profiling data were obtained from the

Gene Expression Omnibus through accession number GSE28878.

In a microarray experiment, HepG2 cells were treated with GTXs

or NGTXs. The HepG2 cell culture medium was replaced with

fresh medium containing either compound or with the corre-

sponding control. HepG2 cells were treated with the training set

compounds for 12, 24 and 48 h and the test set compounds for 24

and 48 h [5].

The liver plays an important role in the metabolism of many

compounds and represents a major target organ in systemic

toxicity, therefore, hepatic models are frequently used among the

in vitro models [13]. As a preferred model of hepatic cell lines, the

human liver cell line (HepG2) is widely employed in studies on the

biotransformation of xenobiotic compounds because it does not

carry the p53 mutation and enables cells to induce the DNA

damage response pathway, arrest growth and activate apoptosis

[13]. Many studies have revealed that HepG2 cells are suitable

and applicable for genotoxic assays including the MN test and the

comet assay [14].

The genotoxicity of the carcinogens was evaluated using in vitro

genotoxicity assays (MN, CA, MLA) and in vivo genotoxicity assays

(MN, CA). Carcinogens were classified as GTXs when they caused

positive results in the genotoxicity assays and NGTXs if they

caused negative results [5]. To observe a clear difference between

GTXs and NGTXs, we selected 16 GTXs that showed consistent

genotoxicity in both the in vitro and in vivo assays and 18 NGTXs

that showed consistent non-genotoxicity in both in vitro and in vivo

assays in GSE28878.

Table 1 displays the details for each of the selected compounds.

We used 12 compounds for the training set and 22 compounds for

the validation set. The training data included 12, 24 and 48 h time

points that were used for expression profiling, and the validation

data included 24 and 48 h time points.

Preprocessing
Human Genome U133 Plus 2.0 Gene Chip Arrays were used as

the platform for the gene expression profile [5]. The data were

normalized using a robust multi-array analysis (RMA) with the affy

R package [15]. To convert the gene labels into Entrez IDs, we

used the Database for Annotation, Visualization, and Integrated

Discovery (DAVID) software [16]. At each time point, fold

changes were calculated for each compound through a compar-

ison to a corresponding control.

To remove batch effects, we used the ComBat method in the

sva R package. The ComBat method can be applied to high

dimensional data matrices using an empirical Bayesian framework,

and the ComBat output is a corrected expression profile [17]. Our

training and test datasets were processed for each of the 3 different

days. We found that our expression profile had severe batch effects

that were removed by the ComBat method (Figure S1).

Table 1. Thirty-four compounds were classified as part of the
training sets and test sets.

Dataset Compound Time (h)

Training GTX Aflatoxin B1 12,24,48

Benzo[a]pyrene 12,24,48

2-Acetyl aminofluorene 12,24,48

Dimethyl nitrosamine 12,24,48

Mitomycin C 12,24,48

NGTX 2,3,7,8-Tetrachloro 12,24,48

dibenzo-p-dioxin 12,24,48

Wy 14643 12,24,48

Cyclosporine A 12,24,48

Ampicillin trihydrate 12,24,48

Di(2-ethylhexyl) phthalate 12,24,48

d-Mannitol 12,24,48

Diclofenac 12,24,48

Test GTX Azathioprine 24, 48

4-Aminobiphenyl 24, 48

Benzidine 24, 48

Chlorambucil 24, 48

1-Ethyl-1-nitrosourea 24, 48

4,49-Methylenebis(2chloroaniline) 24, 48

2-Amino-3-methylimidazo[4,5-f] quinolone 24, 48

Cyclophosphamide 24, 48

Cisplatin 24, 48

Furan 24, 48

Diethylnitrosamine 24, 48

NGTX Caprolactam 24, 48

Coumaphos 24, 48

Diazinon 24, 48

Acesulfame-K 24, 48

Progesterone 24, 48

1,1,1-Trichloro-2,2-di-(4chlorophenyl) ethane 24, 48

Lindane 24, 48

Nitrobenzene 24, 48

Simazine 24, 48

Tetrachloroethylene 24, 48

Pentachlorophenol 24, 48

Training sets included 5 GTXs and 7 NGTXs, and the test sets included 11 GTXs
and 11 NGTXs. The time points were 12, 24 and 48 h of exposure for the
training set and 24 and 48 h of exposure for the test set.
doi:10.1371/journal.pone.0086700.t001
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Selection and validation of significant gene sets
The aim of this gene set analysis was to search for gene set

expression profiles related to GTXs or NGTXs [18]. We

evaluated the differential gene expression patterns of gene sets

derived from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways and selected significant gene sets after exposure

to 5 GTX and 7 NGTX.

For the gene set analysis, the Globaltest R package was used.

Globaltest is a generalized linear model for predicting a response

variable from the expression of gene sets [10,18]. The null

hypothesis of Globaltest is that there are no associations between

the response (GTXs vs. NGTXs) and expression of the gene sets

[18]. P-values were calculated from the ‘‘gt’’ function in

Globaltest. We found 57 gene sets with a p,0.05 for at least

one of the 12, 24 and 48 h time points. Additionally, using the

‘‘comparative’’ function in Globaltest, we calculated comparative

p-values as false discovery rate (FDR) for multiple-comparisons of

KEGG pathways.

To determine whether the 57 gene sets were significant, a

prediction analysis for microarrays (PAM) was conducted. The

PAM classifies samples from gene expression data using the

nearest shrunken centroid method [19]. The nearest shrunken

centroid classification is a modified standard nearest centroid

classification. Using the nearest shrunken centroid, samples were

classified by the subsets of genes that best characterize each class.

PAM has been employed by numerous studies to predict class

from gene expression data [20–23].

Using the fold changes of each of the 57 selected gene sets, PAM

was performed to develop prediction models from the training set.

Using the 57 prediction models, 12 training and 22 test

compounds were predicted to classify into GTXs or NGTXs at

24 and 48 h, respectively. To generate a predictive model, a

balanced 10-fold cross validation was conducted for each gene set.

Using the PAM results, accuracy, sensitivity and specificity, were

calculated. We selected the final 6 gene sets using an accuracy of .

90% for the training set and an accuracy of . 70% for the test set.

Visualization
To visualize the 6 significant gene sets, we generated a gene plot

using the Globaltest R package. The ‘‘Global Test Statistic’’ for

each gene can be represented as the p-value from the component

test in the Globaltest.

In the gene plot, we visualized the p-values of genes as bars. The

gene with the lowest p-value contributed the most to the significance

of the test result. The bars were colored to indicate a positive or a

negative association of the gene expression with either GTXs or

NGTXs. Thus, based on the comparison of GTXs with NGTXs,

red bars indicate a gene that is up-regulated by a GTX and green

bars indicate a gene that is down-regulated by a GTX. The

threshold for statistical significance was set as p-value , 0.05. To

further our understanding, we calculated the average fold change

related to 5 GTXs and 7 NGTXs in training data and mapped the

fold changes of individual gene to the KEGG pathway for each time

point using pathview R package (http://bioconductor.org/

packages/2.12/bioc/html/pathview.html). Pathview is used for

data integration and visualization of pathways. This program maps

a wide variety of biological data to a target pathway specified by

user.

Principal component analysis (PCA) was performed using the R

function, ‘‘prcomp’’ for the expression values of each of the 6 gene

sets. Twelve compounds from the training data were distributed by

3D principal component analysis for each of the 3 time points.

To measure the classification performance, we used Kernel-

based Orthogonal Projections to Latent Structures (K-OPLS)

[24,25]. Because the K-OPLS method has a unique ability to

detect an unanticipated systemic variation, the results provide a

robust model evaluation [24]. Additionally K-OPLS has been

applied to model a variety of biological data [24,25]. Using the K-

OPLS R package, we implemented 100-permutations and

calculated the area under the curve (AUC).

Results and Discussion

Gene set analysis and classification
We conducted a gene set analysis to discriminate between

GTXs and NGTXs and obtained a global test statistic. Because

there were only a few gene sets that were significant at the p ,

0.05 level, an unadjusted p-value below 0.05 was selected as the

cut-off. There were 57 gene sets that satisfied p , 0.05 for at least

one of the 12, 24 and 48 h time points (Table S1). We found that

12 gene sets were consistently activated at all 3 time points. The

results also revealed that 29 gene sets were only activated at 12 h, 6

gene sets were activated only at 24 h and 5 gene sets were

activated only at 48 h. We identified 3 gene sets that were

activated both at 12 and 24 h but not 48 h. There were also 3 gene

sets that were activated both at 12 and 48 h but not 24 h. We also

found that 44, 24 and 20 gene sets were activated at 12, 24 and 48

h, respectively (Figure 1). This finding suggested that most gene

sets were significantly activated at an earlier time point.

Using the 57 gene sets, 12 training and 22 test compounds were

classified as GTXs or NGTXs and we determined the accuracy,

sensitivity and specificity of the classification using PAM (Table

S2). We calculated the accuracy, sensitivity and specificity as

described in previous studies [26,27]. In the classification results, a

positive or negative value indicated that the compound was

classified as a GTX or NGTX, respectively. Thus, a true positives

(TP) is an actual GTX that was predicted to be a GTX, and a false

positive (FP) is an actual NGTX that was predicted to be a GTX.

Similarly, a false negative (FN) is an actual GTX that was classified

as a NGTX, and a true negative (TN) is an actual NGTX that was

predicted to be an NGTX. From the TP, FP, FN and TN rates,

we calculated the accuracy, sensitivity and specificity of the 12

training and 22 test compounds.

Compared with the test dataset, the accuracy of each gene set

was higher for the training dataset. We selected 6 gene sets with .

Figure 1. A Venn diagram displaying the 57 gene sets that met
p , 0.05 for at least one of the 12, 24 or 48 h time points.
doi:10.1371/journal.pone.0086700.g001
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90% accuracy in the training set and . 70% accuracy in the test

set (Table 2). These 6 gene sets included genes related to the

adherens junction, bladder cancer, p53 signaling pathway,

pathways in cancer, peroxisome and RNA degradation.

Among the 6 gene sets, we found that the bladder cancer and

p53 signaling pathway gene sets were significant for all 3 time

points, the other gene sets were significant only at 12 h (Table 3).

Even after correcting the p-value for the FDR, the bladder cancer

and p53 signaling pathway gene sets were still significant at all 3

time points. According to the FDR, more gene sets were

significantly activated at 12 h than at 24 and 48 h (Table 3).

Because all 6 gene sets were significantly activated at 12 h,

investigations of the gene expression at earlier time points would

be beneficial. Such an investigation may explain why the bladder

cancer and p53 signaling pathway gene sets were significant at all

three time points, whereas other gene sets were significant only at

the early time point (Table S1).

The K-OPLS results indicated that 24 h of exposure to the

training compounds resulted in a higher mean AUC than 48 h of

exposure. Notably at 24 h, the p53 signaling pathway and bladder

cancer gene sets exhibited robust performance with respect to

classification, with an AUC of 0.907 and 0.861, respectively (Table

3).

Gene plot and PCA analysis
To further evaluate the significant gene sets including p53

signaling pathway and bladder cancer pathway, we investigated

time-dependent expression in gene plot. A gene plot explains the

contribution of each individual gene in the significant test, and

therefore, we were able to identify genes that were differentially

expressed in the gene set. For GTX treated HepG2 cells, the gene

plot indicated that significantly up-regulated genes were more

dominant than down-regulated genes. In the bladder cancer gene

set, TP53, RASSF1, CDKN1A and PGF were significantly up-

regulated after 12 h of GTX exposure. At 24 h, MDM2, PGF,

CDKN1A and E2F1 were significantly up-regulated by GTXs.

PGF, MDM2 and CDKN1A were up-regulated by GTXs at 48 h

(Figure S2).

In the p53 signaling pathway gene set, 13 genes (DDB2, EI24,

PIDD, TP53, TP73, CDK2, PPM1D, SESN1, RRM2, CASP9,

CDKN1A, APAF1, BAX) were significantly up-regulated by

GTXs at 12 h (Figure S2). Five of these genes (PIDD, BAX, PIGs,

APAF-1, CASP9) are known to be involved in apoptosis, and three

of these genes (DDB2, SENS1, RRM2) are associated with DNA

repair. TP75 and PPM1D are related to the negative feedback of

p53.
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Table 3. P-values calculated from the Globaltest for each of
the 3 time points in the training set.

Gene set Name Training data

12 h 24 h 48 h

Adherens junction 0.035 0.111 0.338

Bladder cancer 0.010 0.008 0.015

p53 Signaling
pathway

0.016 0.006 0.013

Pathways in cancer 0.039 0.056 0.277

Peroxisome 0.016 0.265 0.438

RNA degradation 0.008 0.205 0.207

doi:10.1371/journal.pone.0086700.t003
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We visualized the p53 signaling pathway as gene plots for the 24

and 48 h points, shown in Figure 2a and Figure 2b, respectively. In

the p53 signaling pathway, we found 17 and 13 significant (p ,

0.05) genes at 24 and 48 h, respectively; the number of significant

genes decreased as exposure time increased from 24 to 48 h. In

Figure 2a, it can be observed that 17 genes were significant (PIDD,

DDB2, MDM2, BBC3, RRM2B, STEAP3, CCNB3, PPM1D,

CDKN1A, RPRM, PTEN, BAX, EI24, GADD45A, ZMAT3,

TP53I3, SESN1). In Figure 2b, it can be observed that 13 genes

were significant (DDB2, CDKN1A, PPM1D, PIDD, TP53I3,

EI24, MDM2, CCNG1, SESN3, PTEN, TP73, RRM2B, and

SESN1).

We compared the significant genes in each functional group to

understand the functional changes in the p53 signaling pathway.

Figure 2a shows that four genes (PIDD, BBC3, BAX, EI24) were

involved in apoptosis at 24 h, and three genes (DDB2, RRM2B,

GADD45A) were associated with DNA repair at 24 h. MDM2

and PPM1D were related to the negative feedback of p53. Figure

2b shows that three genes (PIDD, TP53I3, EI24) were involved in

apoptosis at 48 h, and three genes (DDB2, SESN3, RRM2B) were

associated with DNA repair. MDM2, CCNG1 and PPM1D were

related to the negative feedback of p53.

In both Figure 2a and Figure 2b, it can be observed that the

identical number of DNA repair-related genes were consistently

up-regulated; however, the number of apoptosis-related genes

decreased from four (Figure 2a) to three (Figure 2b). The number

of p53 negative feedback-related genes increased from two (Figure

2a) to three (Figure 2b).

The KEGG pathway and the fold-changes of individual genes,

presented in the bottom of Figure 2, showed that several apoptosis-

related genes (shown in Figure 2a) were up-regulated, but these

up-regulated genes lost their expressions (Figure 2b). However, the

fold-changes of the DNA repair-related genes shown in Figure 2a

and Figure 2b were consistent.

By increasing the exposure time from 12 to 48 h, the number of

significantly up-regulated genes related to apoptosis decreased

from five to three, whereas the same number of DNA repair-

related genes was consistently up-regulated for the GTX-treated

HepG2 cells. Notably, TP53 is known to be involved in the

suppression of tumors and was significantly up-regulated at 12 h;

this significance was lost at 24 and 48 h. Instead, MDM2, a known

negative regulator of the p53 tumor suppressor, was significantly

up-regulated at 24 and 48 h.

At all 3 time points, the DNA damage-binding protein 2

(DDB2) was highly up-regulated in GTX- treated HepG2 cells. A

recent study suggested that p53-triggered up-regulation of DDB2

is associated with a resistance to cell death that is induced by

melanoma therapy in malignant melanoma cells [28]. Compared

with the 12 h time point, the number of significantly up-regulated

genes related to the negative feedback of p53 was increased at 48

h.

A PCA analysis revealed that the 12 compounds in the training

set were appropriately classified into either GTXs or NGTXs for

both the bladder cancer gene set and p53 signaling pathway gene

set, particularly at 24 h (Figure 3). Additionally, 34 compounds in

the training and test data were separated by the expression of the

p53 signaling pathway and bladder cancer gene sets at 24 h

(Figure S3).

Conclusions

To identify the differences between the GTX and NGTX

biological mechanisms, we conducted a gene set analysis and

validated significant gene sets. In previous studies, each gene was

individually identified and classified using only statistical processes,

and each of the individual classifiers was unrelated to biological

mechanisms. However, information regarding biological processes

is available for each gene in our study; thus, our method offers a

Figure 2. Gene plot (top) from Globaltest and KEGG pathway (bottom) showing the fold change of individual genes in the p53
signaling pathway. Red and green bars indicate up-regulated and down-regulated genes, respectively, after GTX exposure at A. 24 h or B. 48 h in
comparison to NGTX exposure.
doi:10.1371/journal.pone.0086700.g002
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simplified approach for explaining the different mechanisms of

GTXs and NGTXs.

In a previous study, Magkoufopoulou et al. [5] suggested that

their reported classifiers had a high classification accuracy at 24 h.

Because they selected their classifiers from Ames-positive and

Ames-negative compounds separately, the classifiers could be

associated with different genotoxic properties. They also validated

Ames-positive and Ames-negative compounds separately. This

means that their classifiers may be limited in that they can only

integrate information regarding Ames-positive and Ames-negative

compounds. To evaluate genotoxicity using both in vivo results and

Ames test results, we conducted gene sets analysis using 16 GTX

that showed consistent genotoxicity in both the in vitro and in vivo

assays and 18 NGTX that showed consistent non-genotoxicity in

both in vitro and in vivo assays. The findings indicated that our gene

sets could explain the genotoxic mechanism using both in vivo and

Ames tests.

Our results revealed that at the 3 different time points, the

expression of most gene sets was significantly activated at 12 h.

Therefore, even if the previous study obtained their classifiers and

validated them at 24 h, the expressions of genes at 12 h could

provide more information on the mechanism of genotoxicity.

Although we identified gene sets that could discriminate

between the GTXs and NGTXs biological processes, these gene

sets could not explain why the compounds showed different results

for the in vivo and in vitro assays. Additionally, in validation, the

accuracy of test compounds was not as good as the training data.

In conclusion, by employing gene set analysis, we found that the

p53 signaling pathway and bladder cancer gene sets most

accurately discriminated between GTXs and NGTXs. Addition-

ally, our results suggested that gene expression at the early time

point could provide more information regarding the initiation of

carcinogenesis than that at a later time point. We further

concluded that significantly expressed genes are involved in

DNA repair, apoptosis and the negative feedback of p53.

Supporting Information

Figure S1 A. Clustering of the 12 h training data, which was

influenced by 3 different groups [a, Series A; b, Series B; c, Series

C]. B. After applying the ComBat method, the output revealed

that batch effects from the different groups were removed.

(TIF)

Figure S2 Gene plot from Globaltest showed time-
dependent expression of bladder cancer gene set. A.12

h, B. 24 h, C. 48 h, D. Gene plot from Globaltest showing the

p53 signaling pathway gene set at 12 h.

(TIF)

Figure S3 Thirty-four compounds including training
and test data were separated using PCA. A. The expression

of p53 signaling pathway was used in PCA at 24 h. B. The

expression of bladder cancer was used in PCA at 24 h.

(TIF)

Table S1 Globaltest statistic of the 57 gene sets that
satisfied p , 0.05 for at least one of the 12, 24 and 48 h
time points.
(XLSX)

Table S2 Using the 57 gene sets, 12 training and 22 test
compounds were classified as GTXs or NGTXs and
accuracy, sensitivity and specificity were obtained from
the results of classification using PAM.
(XLSX)

Table S3 In training dataset, FDR were calculated by
function ‘‘comparative’’ of Globaltest. AUC generated by

K-OPLS for measuring the performance of classification.

(XLSX)
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