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Editorial on the Research Topic

Fungal Genetics in Plant Biomass Conversion

INTRODUCTION

Fungi in nature evolved distinctive capacities to deconstruct lignocellulose of plant biomass and
dominate the carbon turnover process in terrestrial systems. Much of the net carbon sequestered
by photosynthesis in land plants (5.6 × 1013 kg C/year) passes through fungi (Gilbertson and
Ryvarden, 1987; Berbee et al., 2020). With plants as the reliable carbon and energy sources,
lignocellulose-degrading fungi have evolved to survive in highly variable land environments and
have become prevalent across the fungal kingdom, primarily in ascomycete and basidiomycete
phyla (Kubicek et al., 2014; Rytioja et al., 2014). These fungi are seen as important for maintaining
the sustainable ecosystem on our planet, and using them to convert plant biomass for producing
advanced biofuels and bioproducts has been deemed as one of the most promising solutions to
mitigate anthropogenic issues such as the climate change caused by the extensive use of fossil fuels
(Kubicek, 2013).

Fungi use a complex lignocellulose-degrading system including several enzymes most of which
are cataloged in the CAZy database (Carbohydrate-Active enZymes; http://www.cazy.org/) to
degrade lignocellulose (Lombard et al., 2014). The composition of CAZyme repertories in different
fungal species is usually shaped by the lifestyle that allows fungi to adapt to different environments
and lignocellulose substrates. On the other hand, to deal with variable biotic (e.g., cooperative and
competitive microbes) and abiotic (e.g., C and N source, pH, and light) factors, fungi have also
evolved a sophisticated regulatory system to control the synthesis and secretion of these CAZymes
precisely (Glass et al., 2013; Kubicek et al., 2014). Regarding this, probing the CAZyme encoding
gene resources and dissecting the regulation of these genes are two main aspects of research toward
understanding the genetic basis of lignocellulose-degrading fungi. The fast development of systems
biology and genetic approaches has dramatically facilitated this research (Floudas et al., 2012;
Miyauchi et al., 2020), and it is providing invaluable fundamental knowledge that is transformative
for industrial biomass conversion and environmental sustainability.

AIMS AND OBJECTIVES

In this topic, we aim to report the most recent progress related to genetic mechanisms of plant
biomass degradation by fungi. This includes original research articles that use traditional genetics
and functional genomics to study these fungal mechanisms. With this topic platform, we intend to
discuss the current state of: (1) the discovery of crucial plant biomass-converting genetic resources
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by leveraging systems biology approaches and (2) the dissection
of the pathways controlling the fungal degradation of plant
biomass in pure cultures and during species’ interactions.

SIGNIFICANT FINDINGS IN THIS TOPIC

Discovery of genetic resources includes identifying the key
pathways involved in fungal interactions during lignocellulose
degradation. Interspecies interactions between fungal mycelia
affect the degradation process of woody materials as it alters not
only fungal community but also fungal physiological activities
(Fukasawa et al., 2020). Previous studies have reported elevated
CO2 emissions and oxidase activities in interacting mycelia,
leading to a prediction that fungal interaction may activate the
degradation of organic matter (Fukasawa et al., 2020). However,
measuring the weight loss of wood substrates during fungal
competition has been generating discrepancies, begging research
for further exploring how fungal interactions would influence
lignocellulose-degrading pathways (Fukasawa et al., 2020). In
this topic, using multi-omics, Presley et al. explain why the
increased enzyme activities are not causing wood degradation
during mycelial interaction of two brown rot species. In their
study, they found that the secreted enzymes in the interaction
zone are dominated by enzymes for fungal cell wall digestion and
secondary metabolite production, while plant cell wall-digesting
enzymes are mainly found under non-interacting conditions.
Given that the fungal decay types are a continuum rather than
segregated, as indicated by another paper in this topic (Schilling
et al.), it would be helpful to test alternative interactions between
fungi with variable decay types to further look at these key
lignocellulose-degrading pathways.

Given the extraordinary capacities in degrading recalcitrant
wood structures, wood decay fungi were thought of as the natural
microbial resource harboring efficient lignocellulose-degrading
pathways (Gilbertson and Ryvarden, 1987; Floudas et al., 2012;
Miyauchi et al., 2020). To elucidate these in more detail, Kölle
et al. compared the genomic sequences of two strains of the
brown rot fungus Rhodonia placenta with different wood decay
rates, and they identified a set of genes and mutations that might
contribute to the phenotypic differences. Moreover, using a co-
expression gene network, Zhu et al. found a lytic polysaccharide
monooxygenase that can cooperate with the oxidative reagents
during brown rot.

Fungi from unique environments also harbor valuable
lignocellulose-degrading enzymes. Here, Li et al. report 16
cellulolytic fungal species isolated from the unique geographic
and climatic environments in the Qinghai-Tibet Plateau.
Using comparative transcriptomics, they identified the key
mechanism of cellulase production in one of the promising

cellulase producers—Trichoderma harzianum LZ117. By
studying the secretome of the thermophilic fungus Chaetomium
thermophilum, Jiang et al. found a superior cellobiohydrolase I
(CBHI) with higher activity and increased temperature stability
compared to T. reesei CBHI. From Austrian soils, Hinterdobler
et al. isolated 12 new T. reesei strains that are highly genetically
variable and that produce higher levels of cellulase and xylanase.
After SNP verification, the authors propose that their new
isolates are unique to European temperate environments and
that these would provide biotechnological potential for example
for non-GMO strain improvement by species crossing.

The expression of genes encoding lignocellulose-degrading
enzymes in filamentous fungi is controlled by complex gene
regulatory networks involving transcription factors and protein
kinases. These regulators also affect many other cellular
metabolic processes, known as cross-pathway regulation (Glass
et al., 2013; Kubicek et al., 2014; Rytioja et al., 2014). In
this Research Topic, three regulators related to lignocellulose
degradation were studied by genetic approaches. Among
these, Zhang et al. identified a novel transcription factor in
Talaromyces pinophilus that negatively regulates the expression
of amylolytic and (hemi-)cellulolytic enzyme encoding genes.
It was found that the deletion of this regulator also resulted
in a reduction in conidiation. In the cellulase producing
workhorse T. reesei, Beier et al. report the regulatory functions
of a putative kinase, USK1, and found that it is required for
normal production of both cellulases and a set of secondary
metabolites. By a similar approach, but in Podospora anserina,
Li et al. describe the pleiotropic functions of a conserved
kinase, SNF1, in positively regulating the production of
cellulases but negatively affecting sterigmatocystin synthesis.
These findings highlight the importance of regulatory pathways
in fungal degradation of lignocellulose, and also point into
an interesting future direction to dissect the regulation
balance between primary and secondary metabolism during
lignocellulose degradation.

CONCLUSION

The findings reported in this Research Topic are expanding our
understanding of fungal mechanisms involved in lignocellulose
degradation. We expect these to advance relevant ecological and
genetic engineering research and to create effective solutions to
current environmental and sustainability challenges.
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