
RESEARCH ARTICLE

Machine learning modeling of family wide

enzyme-substrate specificity screens

Samuel GoldmanID
1,2, Ria Das2,3, Kevin K. YangID

4, Connor W. ColeyID
2,3*

1 MIT Computational and Systems Biology, Cambridge, Massachusetts, United States of America, 2 MIT

Chemical Engineering, Cambridge, Massachusetts, United States of America, 3 MIT Electrical Engineering

and Computer Science, Cambridge, Massachusetts, United States of America, 4 Microsoft Research New

England, Cambridge, Massachusetts, United States of America

* ccoley@mit.edu

Abstract

Biocatalysis is a promising approach to sustainably synthesize pharmaceuticals, complex

natural products, and commodity chemicals at scale. However, the adoption of biocatalysis

is limited by our ability to select enzymes that will catalyze their natural chemical transforma-

tion on non-natural substrates. While machine learning and in silico directed evolution are

well-posed for this predictive modeling challenge, efforts to date have primarily aimed to

increase activity against a single known substrate, rather than to identify enzymes capable

of acting on new substrates of interest. To address this need, we curate 6 different high-

quality enzyme family screens from the literature that each measure multiple enzymes

against multiple substrates. We compare machine learning-based compound-protein inter-

action (CPI) modeling approaches from the literature used for predicting drug-target interac-

tions. Surprisingly, comparing these interaction-based models against collections of

independent (single task) enzyme-only or substrate-only models reveals that current CPI

approaches are incapable of learning interactions between compounds and proteins in the

current family level data regime. We further validate this observation by demonstrating that

our no-interaction baseline can outperform CPI-based models from the literature used to

guide the discovery of kinase inhibitors. Given the high performance of non-interaction

based models, we introduce a new structure-based strategy for pooling residue representa-

tions across a protein sequence. Altogether, this work motivates a principled path forward in

order to build and evaluate meaningful predictive models for biocatalysis and other drug dis-

covery applications.

Author summary

Predicting interactions between compounds and proteins represents a long-standing

dream of drug discovery and protein engineering. Robust models of enzyme-substrate

scope would dramatically advance our ability to design synthetic routes involving enzy-

matic catalysis. However, the lack of standardization between compound-protein interac-

tion studies makes it difficult to evaluate the generalizability of such models. In this work

we take a critical step forward by standardizing high-quality datasets measuring enzyme-
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substrate interactions, outlining rigorous evaluations, and proposing a new way to inte-

grate structural information into protein representations. In testing previous modeling

approaches, we highlight a surprising inability of existing models to effectively leverage

compound-protein interactions to improve generalization, which challenges a perception

in the literature. This establishes future opportunities for model development and integra-

tion of enzyme-substrate scope models into computer-aided synthesis planning software.

This is a PLOS Computational Biology Methods paper.

Introduction

Biology has evolved enzymes that are capable of impressively stereo-selective, regio-selective,

and sustainable chemistry to produce compounds and perform reactions that are “the envy of

chemists” [1–3]. Industrial integration of these enzymes in catalytic processes is transforming

our bioeconomy, with engineered enzymes now producing various materials and medicines

on the market today [2, 4]. As an exemplar of collective progress in biocatalysis and enzyme

engineering, Huffman et al. impressively re-purposed the entire nucleoside salvage pathway

for a high yield, 9-enzyme in vitro synthesis of the HIV nucleoside analogue drug, islatravir

[5]. In an effort to make these types of pathways commonplace, there has been an explosion in

new tools for automated computer-aided synthesis planning (CASP) that can include not only

traditional organic chemistry reactions [6], but also enzymatic reactions, facilitating further

growth of industrial biocatalysis [7–9].

Despite this progress in synthesis planning, suggesting an enzyme for each catalytic step in

a proposed synthesis pathway remains difficult and limits the practical utility of synthesis plan-

ning software. Current enzyme selection methods often use simple similarity searches, com-

paring the desired reaction to precedent reactions in a database [10, 11]. Due to the often high

selectivity of enzymes, proposed enzymes for a hypothetical reaction step often suffer from low

catalytic efficiency. In the extreme case, the proposed enzyme may have zero catalytic effect on

the substrate of interest, despite showing moderate activity on a similar natural substrate.

Thus, the specificity of enzymatic catalysis can be a double edged sword [12]. As an example,

the phosphorylation step in the islatravir synthesis of Huffman et al. required screening a mul-

titude of natural kinase classes to find an enzyme capable of phosphorylating the desired sub-

strate with sufficient activity for subsequent directed evolution [5]. In the less extreme case, the

enzyme of interest may have moderate activity but suffer from low initial substrate loadings,

proceed slowly, require higher catalyst loadings, and produce low yields [2]. Nevertheless, an

enzyme with moderate activity can serve as a “hook” for further experimental optimization

and directed evolution efforts.

Machine learning and predictive modeling provide an avenue to accelerate long develop-

ment cycles and identify enzymes with both initial activity and high efficiency. Sequence-

based machine learning methods have already been utilized in “machine learning guided

directed evolution” (MLDE) campaigns to help guide the exploration of sequence space

toward desirable protein sequences [13–15]. MLDE demonstrations often follow a similar par-

adigm: given a screen of a single enzyme with mutations at select positions, predict the func-

tion or activity of enzymes with new mutations. Further developments in pretrained machine
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learning models can now provide meaningful embeddings at single amino acid positions that

capture contextual and structural information about the protein from sequence alone [16–21].

Pre-trained machine learning models of protein sequences, specifically masked language mod-

els adopted from natural language processing [22] are trained to predict the identity of

“masked” input tokens (i.e. amino acids). In doing so, the model learns a meaningful interme-

diate representation of the protein and distill important structural context around each amino

acid position. This intermediate layer can then be extracted and treated as a fixed embedding

of the protein [23]. These pre-trained embeddings have proved especially useful for the appli-

cation of MLDE in low-N settings where the number of protein measurements is small (Fig

1A) [24, 25]. Altogether, these approaches provide a way to improve the efficiency of an

enzyme given examples of other enzymes with activity on the substrate of interest. However,

this paradigm does not extend to meet the the challenge of identifying a “hook” enzyme with

sufficient initial activity on a non-native substrate, nor can current approaches incorporate

information from enzymes measured on other substrates.

Instead, work to date to expand the substrate scope of an enzyme class of interest often

relies upon time consuming and ad hoc rational engineering based upon structure [26, 27],

simple similarity searches between the native substrate and desired substrate of interest [28],

or trial-and-error experimental sampling [29]. Once an enzyme with some activity for a sub-

strate of interest is found practitioners can resume directed evolution strategies similar to

those described above to increase efficiency [29–32].

The last strategy of experimental sampling often involves broad metagenomic sampling

[33–36], where homologous sequences are chosen for testing [35, 37, 38]. Researchers will test

a diverse set of “mined” enzymes for activity against a panel of substrates containing the

Fig 1. Enzyme-substrate interaction modeling strategies. (A) Current machine learning-directed evolution strategies, which involve

design-build-test-model-learn cycles measuring protein variant activity on a single substrate of interest. (B) The “dense screen” setting

where homologous enzyme variants from one protein family are profiled against multiple substrates. In this setting, we can aim to

generalize to either new enzymes (“enzyme discovery”) or new substrates (“substrate discovery”). (C) Three different styles of models

evaluated in this study, where single task models independently build predictive models for rows and columns from panel (B), whereas a

CPI model takes both substrates and enzymes as input. (D) An example CPI model architecture where pretrained neural networks extract

features from the substrate and enzyme to be fed into a top-level feed forward model for activity prediction.

https://doi.org/10.1371/journal.pcbi.1009853.g001
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relevant reactive group. This experimental screening of enzymes against substrates closely mir-

rors the data setting involved in discovering selective inhibitors in drug discovery, where a

panel of similar proteins such as kinases [39] or deubiquinating proteins [40, 41] are screened

against a family of compounds. While some work in this field of compound protein interac-

tions (CPI) has attempted to model the drug discovery framing of this problem [42, 43], the

CPI modeling framework has not yet been extended to enzyme promiscuity and there exist

few curated datasets to probe our ability to learn from enzyme screens.

In this work, we model enzyme-substrate compatibility as a compound-protein interaction

task using a carefully curated set of recent metagenomic enzyme family screens from the litera-

ture. We compare state of the art predictive modeling using pretrained embedding strategies

(for both small molecules and proteins) and CPI prediction models. Surprisingly, we find that

predictive models trained jointly on enzymes and substrates fail to outperform independent,

single-task enzyme-only or substrate-only models, indicating that the joint models are incapa-

ble of learning interactions. To determine whether this is a quirk specific to our datasets, we

reanalyze a recent CPI demonstration and find that this trend generalizes beyond enzyme-sub-

strate data to CPI more broadly: learning interactions from protein family data to go beyond

single-task models remains an open problem. Finally, we introduce a new pooling strategy spe-

cific to metagenomically-sampled enzymes using a multiple sequence alignment (MSA) and

reference crystal structure to enhance enzyme embeddings and improve model performance

on the task of enzyme activity prediction. Collectively, this work lays the foundation and estab-

lishes dataset standards for the construction of robust enzyme-substrate compatibility models

that are needed for various downstream applications such as biosynthesis planning tools.

Results

Data summary

In order to systematically evaluate our ability to build models over enzyme-substrate interac-

tions, we first need high quality data. Databases of metabolic reactions such as BRENDA [44]

describe large numbers of known enzymatic reactions, but are collected from many sources at

different concentrations, temperatures, and pH values. Instead, we turn to the literature to

find high-throughput enzymatic activity screens with standardized procedures, i.e., exhibiting

no variation in the experiments besides the identities of the small molecule and enzyme. We

extract amino acid sequences and substrate SMILES strings from six separate studies measur-

ing the activity of halogenase [45], glycosyltransferase [46], thiolase [47], ß-keto acid cleavage

enzymes (BKACE) [48], esterase [49], and phosphatase enzymes [50] which cover between 1,

000 and 36, 000 enzyme-substrate pairs (Table 1). Enzymatic catalysis (e.g., yield, conversion,

Table 1. Summary of curated datasets with the number of unique enzymes, unique substrates, and unique pairs in each dataset in addition to an exemplar structure

for the protein family.

Dataset # Enz. # Sub. Pairs PDB Ref.

Halogenase [45] 42 62 2,604 2AR8

Glycosyltransferase [46] 54 90 4,298a 3HBF

Thiolase [47] 73 15 1,095 4KU5

BKACE [48] 161 17 2,737 2Y7F

Phosphatase [50] 218 165 35,970 3L8E

Esterase [49] 146 96 14,016 5A6V

Kinase (inhibitors) [39] 318 72 22,896 2CN5

a While most datasets we use test all combinations, Yang et al. do not report experiments for some enzyme by substrate interactions

https://doi.org/10.1371/journal.pcbi.1009853.t001
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activity) in each study was measured using some combination of coupled assay reporters, mass

spectrometry, or fluorescent substrate readouts. Data was binarized such that every measured

pair is either labeled as active (1) or inactive (0) at thresholds according to standards described

in the original papers (Methods). We conceptualize these datasets as “dense screens” insofar as

each dataset represents a number of enzyme and substrate pairs measured against each other

resembling a grid (Fig 1B). While several of the experimental papers presenting these datasets

include their own predictive modeling [46–48], these demonstrations are not systematically

compared with standard splits and are not easily evaluated against new methods due to varied

data formats. In compiling these, we expose new datasets to the protein machine learning com-

munity. Additional details can be found in the Methods.

In order to evaluate the ability of data-driven models to generalize beyond the set of

screened enzymes and substrates, we examine extrapolation in two directions: enzyme discov-

ery or substrate discovery (Fig 1C). In the former, we consider the setting of a practitioner who

is interested in finding enzymes with activity on some set of substrates they have already mea-

sured. This parallels the setting where machine learning directed evolution may also be

applied, such as increasing the efficiency of an enzyme (Fig 1A). On the other hand, for sub-

strate discovery, we are interested in predicting which enzymes from an already-sampled set

will act on a new substrate that has not already been measured, a formulation specifically rele-

vant to synthesis planning. We omit the more difficult problem of generalizing to new sub-

strates and new enzymes simultaneously; we posit that we must first be able to generalize in

each direction separately in order to generalize jointly and note that empirical performance on

joint generalization in compound protein interaction is lower in previous CPI studies [42]. We

do not consider the task of interpolation within a dense screen (Fig 1B), as this does not reflect

any realistic experimental application.

Models

We aim to build a modeling pipeline that accepts both an enzyme and substrate and predicts

sequence, with enzymes and substrates specified by sequence and SMILES strings respectively.

To featurize enzymes, we turn to pre-trained protein language models, specifically the cur-

rently state-of-the-art ESM-1b model [20]. Pre-trained representations are well-suited to low

data tasks and have been applied to protein property prediction [20, 21, 24] as well as com-

pound protein interaction [51]. While there has been an explosion in available pre-trained

protein representations including UniRep [21], SeqVec [52], MT-LSTM [16, 17], ESM-1b

stands out in its performance on contact prediction tasks, ease of use, and also ability to effec-

tively predict the functional effect of sequence variations, likely enabled by its comparatively

large scale (i.e., number of parameters and training sequences) [20]. To featurize substrates,

we test two primary featurizations: a pretrained Junction-Tree Variational Auto-Encoder

(JT-VAE) [53] and the widely used Morgan circular fingerprints (1024 bits) [54]. Despite pre-

trainining compound representations having only marginal benefits on property prediction

tasks [55], a recent CPI study [42] extracted compound representations from a pre-trained

JT-VAE model and utilized these to identify new kinase inhibitors. Due to the closeness in our

proposed task, we follow their methodology and extract the same embeddings for substrates to

compare against Morgan fingerprints.

If a single model is able to successfully learn interactions and leverage the full “dense” data-

set, it should be able to take as input both enzyme and substrate representations and outper-

form smaller, single-task models that either use only enzyme inputs or use only substrate

inputs (Fig 1C). To attempt to model interactions, we consider two simple top models inspired

by the CPI literature [42, 43, 51] that either (1) concatenate the representations of the enzyme
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and substrate before applying a shallow feed forward neural network or (2) project the repre-

sentations of the enzyme and substrate to smaller and equal length vectors using a shallow

multi-layer perceptron (MLP) before taking their dot product (Fig 1D). To evaluate these CPI

based architectures, we consider three other model classes for comparison: baselines utilizing

simple similarity across enzymes and substrates for prediction; multi-task models that learn to

predict activity for enzymes against substrates simultaneously but without any feature infor-

mation about the substrates themselves (and vice versa for substrate discovery); and single-task

models with no information sharing across substrate (enzyme) tasks. We refer the reader to S1

Text for a more complete description of all model classes evaluated (Table C in S1 Text).

Enzyme discovery

We test these various featurizations and model architectures first on the task of enzyme discov-

ery. To do so, we hold out a fraction of the enzymes as a test set and use the training set to

make predictions about the interactions between the held out enzymes and the known sub-

strates in the data set. For each dataset, we train the CPI model architectures described above

jointly on the entire training set. To test whether CPI models are able to learn interactions, we

also train several smaller “single-task” models. These single-task models are specific to each

substrate and accept only an enzyme sequence as input. If models are in fact able to learn inter-

actions, the CPI models should outperform the single-task models given their access to more

substrate measurements for each enzyme (Figs 2A and 1C).

Fig 2. Assessing enzyme discovery in family wide screens. (A) CPI models are compared against the single task setting by holding out enzymes for a

given substrate and allowing models to train on either the full expanded data (CPI) or only data specific to that substrate (single-task). (B) AUPRC is

compared on five different datasets, arranged from left to right in order of increasing number of enzymes in the dataset. Baseline models are compared

against multi-task models, CPI models, and single-task models. K-nearest neighbor (KNN) baselines are calculated using Levenshtein edit distances to

compare sequences; multi-task models use a shared feed forward network (FFN) to compute predictions against all substrate targets, CPI models utilize

FFN with either concatenation (“[{prot repr.}, {sub repr.}]”) or dot product interactions (“{prot repr.}•{sub repr.}”), and ridge regression is used for

single-task models. ESM-1b features indicate protein features extracted from a masked language model trained on UniRef50 [20]. Halogenase and

glycosyltransferase datasets are evaluated using leave-one-out splits, whereas BKACE, phosphatase, and esterase datasets are evaluated with 5 repeats of 10

different cross validation splits. Standard error bars indicate the standard error of the mean of results computed with 3 random seeds. Each method is

compared to the single-task L2-regularized logistic regression model (“Ridge: ESM-1b”) using a 2-sided Welch T test, with each additional asterisk

representing significance at [0.05, 0.01, 0.001, 0.0001] thresholds respectively after application of a Benjamini-Hochberg correction. (C) Average AUPRC

on each individual “substrate task” is compared between compound protein interaction models and single-task models. Points below 1 indicate substrates

on which single-task models better predict enzyme activity than CPI models. CPI models used are FFN: [ESM-1b, Morgan] and single-task models are

Ridge: ESM-1b. (D) AUPRC values from the ridge regression model are plotted against the average enzyme similarity in a dataset, with higher enzyme

similarity revealing better predictive performance. (E) AUPRC values from the ridge regression model broken out by each task are plotted against the

fraction of active enzymes in the dataset. Best fit lines are drawn through each dataset to serve as a visual guide.

https://doi.org/10.1371/journal.pcbi.1009853.g002
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To evaluate each dataset, we calculate the area under the precision recall curve (AUPRC),

computed separately for each substrate column and subsequently averaged. AUPRC is able to

better differentiate model performance on highly imbalanced data than the area under the

receiver operating curve (AUROC), which overvalues the prediction of true negatives. Further,

AUPRC does not require choosing a threshold to call hits like other metrics like the Matthews

Correlation Coefficient. We optimize model hyperparameters on the thiolase dataset [47]

prior to training and evaluating on the remaining five datasets. We additionally report bench-

marking performance for the thiolase dataset (Tables E and F in S1 Text).

We observe that our supervised models using pretrained protein representations are in fact

able to outperform a nearest neighbor sequence-similarity baseline (“KNN: Levenshtein”) that

uses the Levenshtein distance, a simple unweighted global alignment distance used in recent

protein engineering studies [24, 56], to predict held out enzyme activity (Fig 2B and Tables E

and F in S1 Text). This affirms the potential of representation learning to improve prediction

and protein engineering tasks.

Surprisingly, however, CPI models do not outperform single-task models trained with sim-

ple logistic regression (“Ridge: ESM-1b”) (Fig 2B). Multi-task models offer a slight benefit on

the halogenase dataset, but fail to outperform single-task models across the other four enzyme

families tested. Further, upon closer inspection, the comparative performance of CPI based

models on the halogenase dataset seem to be driven by relative performance increases only on

a small number of substrate tasks as demonstrated by the upper outliers in Fig 2C. This is

despite the CPI (and multi-task) models having access to a larger number of enzyme-substrate

interactions for training. In fact, models trained with CPI can at times perform worse than

models that predict the activity of enzymes on each substrate task independently (Fig 2C),

indicating an inability to learn interactions from the dense screens collected.

The enzymes within each dataset were sampled with different levels of diversity by the stud-

ies’ original authors. The phosphatase dataset represents a diverse super-family of enzymes

[50], whereas the BKACE dataset represents a more narrowly sampled domain of unknown

function (unknown prior to the experimental screen) [48]. We find that the average pairwise

Levenshtein similarity between sequences in the dataset is in fact correlated with performance

differences across datasets, such that more similar datasets seem to be easier to predict

(Fig 2D).

In addition to intra-dataset diversity, we also hypothesized that the balance, or fraction of

active enzymes, observed for each enzyme could partially explain the observed performance.

Plotting the AUPRC metric as a function of number of active enzyme-substrate pairs reveals a

strong positive correlation, validating that the number of hits observed in the training set will

largely determine the success of the model in generalizing beyond the training set (Fig 2E).

This is equally a function of both the models and the AUPRC metric, which follows a similar

trend for random guesses that favor the majority binary class.

Substrate discovery

We next evaluate generalization in the direction of held out substrates, repeating the same pro-

cedures as above. In this case, we restrict our analysis only to the glycosyltransferase and phos-

phatase datasets where the number of substrates is > 50, using the halogenase dataset to tune

hyperparameters for each model. We report the results comparison on the halogenase dataset

(Tables H and G in S1 Text).

Similar to our conclusions in the case of enzyme discovery, we find that the CPI architec-

tures are not able to outperform simpler, single-task logistic regression models with Morgan

fingerprints (Fig 3 and Fig E in S1 Text and Tables G and H) in S1 Text.
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Curiously, in both the enzyme discovery (Figs I, J, H, G, and K) in S1 Text and substrate

discovery (Figs M, L, and N in S1 Text) settings, predictions made by CPI models exhibit far

more “blocky” characteristics than the respective single task models: when extrapolating to

new enzymes, the prediction variance is not sensitive to the paired substrate for CPI models.

This indicates that our CPI models struggle to condition their predictions to new enzymes

(substrates) based upon the substrate (enzyme) pairing.

Reanalysis of kinase inhibitor discovery

The results for enzyme-substrate activity prediction demonstrate that models designed to

learn interactions are seemingly unable to do so in a manner that improves generalization. We

therefore wondered to what extent this failing was specific to enzyme-substrate data, as

opposed to being symptomatic of a broader problem and shortcoming in the CPI field, includ-

ing drug discovery. To interrogate this, we re-analyze models from a recent study leveraging

an inhibitor screen against the human kinome to discover new inhibitors against tuberculosis

[42]. In their study, Hie et al. train CPI models on a dense screen of 442 kinases against 72

inhibitors [39] using concatenated pretrained protein and pretrained substrate features as the

input to multi layer perceptrons (MLP), Gaussian processes (GPs), or a combination of the

two (GP + MLP), the combination being their most successful (Methods). Unlike the binary

classification enzyme activity setting, they predict continuous Kd values.

We compare the MLP and GP+MLP models using pretrained representations against a

number of single-task models on two settings matching the original study: drug repurposing

and drug discovery. Drug repurposing is analogous to enzyme discovery where certain pro-

teins are held out; drug discovery is analogous to substrate discovery where certain compounds

are held out. Single-task models are not presented with training data on other kinase-com-

pound pairs and are therefore unable to learn interactions in a generalizable manner. In addi-

tion to the single-task MLP and GP+MLP models, we evaluate a simple single-task, L2-

regularized linear regression model (“Ridge”) using Morgan fingerprint features rather than

Fig 3. Assessing substrate discovery in family wide screens. CPI models and single task models are compared on the

glycosyltransferase, esterase, and phosphatase datasets, all with 5 trials of 10-fold cross validation. Error bars represent

the standard error of the mean across 3 random seeds. Each model and featurization is compared to “Ridge: Morgan”

using a 2-sided Welch T test, with each additional asterisk representing significance at [0.05, 0.01, 0.001, 0.0001]

thresholds respectively, after applying a Benjamini-Hochberg correction. Pretrained substrate featurizations used in

“Ridge: JT-VAE” are features extracted from a junction-tree variational auto-encoder (JT-VAE) [53]. Two compound

protein interaction architectures are tested, both concatenation and dot-product, indicated with “[{prot repr.}, {sub

repr.}]” and “{prot repr.}•{sub repr.}” respectively. In the interaction based architectures, ESM-1b indicates the use of a

masked language model trained on UniRef50 as a protein representation [20]. Models are hyperparameter optimized

on a held out halogenase dataset. AUCROC results can be found in Fig D in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009853.g003
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JT-VAE features. In concordance with our results on enzymatic data, we find that single-task

models consistently outperform CPI based models in terms of Spearman correlation coeffi-

cient between true and predicted Kd on both repurposing (Fig 4A) and discovery tasks (Fig

4B). This shows that ablating interactions by training single-task models can increase perfor-

mance over GP+MLP models.

Still, increased rank correlation between predictions and true Kd values does not neces-

sarily equate to the ability to select new inhibitors or new drugs. To directly test this, we

repeat the retrospective kinase-inhibitor lead prioritization experiments conducted in the

original analysis. Models are trained on a set of kinase-inhibitor pairings and used to rank

new kinase-inhibitor pairings. The acquisition preference is informed by predictions and, if

applicable, predicted uncertainty (Methods). When acquiring either 5 or 25 new data points

in cross validation, a single-task ridge regression model with equivalent pretrained features

is able to outperform both CPI based models (Fig 4C and 4D). Our findings are retrospec-

tive in nature and do not negate the value of prospective experimental validation [42], but

rather make clear that the field requires new methods to leverage the rich information con-

tained in protein, small molecule interaction screens and truly learn interactions. This fur-

ther reinforces the necessity for simple baseline models in protein engineering studies

[57, 58].

Fig 4. Evaluating single-task models on kinase repurposing and discovery tasks. Kinase data from Davis et al. is

extracted, featurized, and split as prepared in Hie et al. Multilayer perceptrons (MLP) and Gaussian process +

multilayer perceptron (GP+MLP) models are employed. We add variants of these models without CPI training

separate single-task models for each enzyme and substrate in the training set, as well as linear models using both

pretrained featurizations (“Ridge: JT-VAE”) and fingerprint based featurizations of small molecules (“Ridge:

Morgan”). Spearman correlation is shown for (A) held out kinases not in the training set and (B) held out small

molecules not in the training set across 5 random initializations. (C) We repeat the retrospective evaluation of lead

prioritization. The top 5 average acquired Kd values are shown for the CPI models in Hie et al. compared against a

linear, single-task ridge regression model using the same features. (D) The top 25 average acquired Kd values are

shown.

https://doi.org/10.1371/journal.pcbi.1009853.g004
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Improving enzyme discovery models

Given that single-task models appear to match or even outperform models design for CPI, we

next asked if we could improve their generalization in the enzyme discovery direction by

leveraging the relationship between different protein sequences within the dataset. That is,

working within a single family of proteins should be more conducive to generalizations. To

directly impart this structural bias on our models, we considered how the construction of the

pretrained representation for each protein could be modified. Pretrained language models

produce a fixed dimensional embedding at each amino acid position in the protein. To col-

lapse this into a fixed-length protein-level embedding, the de facto standard is to compute the

mean embedding across the length of the sequence [16, 17, 20, 21, 24]. However, for locally-

defined properties, such as enzymatic catalysis or ligand binding at an active site, this mean

pooling strategy may be sub-optimal [59]. Previous approaches have largely considered deep

mutational scans with few mutations at carefully selected positions [14]. In these settings,

mean pooling strategies may be a good approximation of local protein structural changes, as

embeddings at distal positions from the mutation would be nearly constant across protein var-

iants. In our setting, however, we have metagenomically sampled sequences with large inser-

tions and deletions, which presents an ideal testing ground to evaluate pooling strategies.

We test 3 alternative pooling strategies to mean pooling, where we first compute a multiple

sequence alignment (MSA) and pool only a subset of residues in each sequence corresponding

to a subset of columns in the MSA (Fig 5A). We rank order the columns in the MSA to be

pooled based upon the (i) proximity to the active site of a single “reference structure” (Section

“Active site pooling”) (ii) coverage (i.e., pooling columns with the fewest gaps), or (iii) conser-

vation (i.e., pooling columns that have the highest frequency of any single amino acid type)

Fig 5. Structure-based pooling improves enzyme activity predictions. (A) Different pooling strategies can be used to combine amino acid

representations from a pretrained protein language model. Yellow coloring in the schematic indicates residues that will be averaged to derive a

representation of the protein of interest. (i) We introduce active site pooling, where only embeddings corresponding to residues within a set radius

of the protein active site are averaged. By increasing the angstrom radius from the active site, we increase the number of residues pooled. Crystal

structures shown are taken from the BKACE reference structure, PDB: 2Y7F rendered with Chimera [60]. (ii, iii) We also introduce two other

alignment based pooling strategies: coverage and conservation pooling average only the top-k alignment columns with the fewest gaps and highest

number of conserved residues respectively. (iv) Current protein embeddings often take a mean pooling strategy to indiscriminately average over all

sequence positions. (B) Enzyme discovery AUPRC values are computed for various different pooling strategies. Each strategy is tested for different

thresholds of residues to pool, comparing against both KNN Levenshtein distance baselines and a mean pooling baseline. The same hyperparameters

are used as set in Fig 2 for ridge regression models. The kinase repurposing regression task from Hie et al. is shown with Spearman’s ρ instead of

AUPRC as interactions are continuous, not binarized. All experiments and are repeated for 3 random seeds.

https://doi.org/10.1371/journal.pcbi.1009853.g005
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(Table 1). To expand this analysis beyond catalysis to drug discovery, we also consider a por-

tion of the kinase inhibitor dataset from Davis et al. [39], subsetted down to a single kinase

family (PF00069), rather than the whole human kinome (Table 1). We compare these pooling

strategies across the enzyme discovery datasets tested, as well as the protein-inhibitor kinase

dataset. We use ridge regression models with pretrained ESM-1b [20] embeddings, and split

the data as in the enzyme discovery setting, varying only the pooling strategy from our previ-

ous analysis (Fig 2). In the case of the kinase regression dataset, we use the Spearman rank cor-

relation to evaluate performance.

In all cases tested, the active site pooling performance peaks when pooling only a small

number of residues around the active site (< 60 amino acids), showing gains in performance

over other pooling strategies as well as the mean pooling baseline (Fig 5B). This corresponds

to a distance of < 10 angstroms away from the active site (Fig 5Ai). This may indicate an

optimal range at which residue positioning is relevant to promiscuity. In the case of the

kinases, the Levenshtein distance baseline outperforms the mean pooling method with

respect to Spearman rank correlation, but using active site aware pooling outperforms both.

We find that the performance increase is steeper in the kinase repurposing setting compared

to other datasets, potentially due to both the regression nature of the dataset and also the

non-dynamic binding of compound inhibitors in comparison to the other tasks, which focus

on enzymatic catalysis not protein inhibition. Interestingly, for the halogenase dataset, no

alternative pooling strategies outperform mean pooling (Fig F in S1 Text), likely because the

halogenase enzymes have high variance in solubility, a global property that could be driving

enzyme activity [45]. Similarly, for the esterase dataset, coverage pooling is far more effec-

tive, indicating that a combination of targeted pooling residue strategies may be most effec-

tive (Fig F in S1 Text). While performance gains from active site aware pooling are modest,

this strategy provides a simple but principled way to incorporate a structural prior into

enzyme prediction models, particularly for metagenomic data with high numbers of

sequence indels which may introduce unwanted variance into a mean pooled protein

representation.

Discussion

Data-driven models of enzyme-substrate compatibility have the potential to drive new insights

in basic biology research and also to accelerate engineering efforts focused on the design of

new enzymatic synthesis routes. In addition, the same classes of models can be used for com-

pound-protein interaction prediction for both drug discovery and drug repurposing efforts.

In this work, we take a critical step toward opening up this suite of problems to machine

learning researchers by providing several high quality, curated datasets and standardized splits

to evaluate model performance and generalizability. While the small number of unique

enzymes and unique substrates in each dataset makes quantitative performance sensitive to

hyperparameters and dataset splitting decisions, this collection of data is an essential starting

point to develop new modeling strategies and motivate future, higher throughput enzyme

activity screening.

Our experiments show that pretrained representations for proteins, coupled with structure-

informed pooling techniques, can go beyond standard sequence similarity based approaches

to predict protein function, an exciting demonstration of how representation machine learn-

ing can impact protein engineering. Nevertheless, despite this excitement, our analysis makes

clear that current CPI modeling strategies cannot consistently leverage information from mul-

tiple substrate measurements effectively, a problem broadly applicable to CPI models. That is,

models designed to learn interactions do not outperform single-task models.
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Conclusion

To predict enzyme-substrate compatibility or design selective inhibitors against a protein fam-

ily, we need new strategies to jointly embed proteins and compounds to enable more robust

extrapolation to new combinations thereof. Such a scheme would allow learned interactions to

be more explicitly transferred from larger databases onto smaller, but higher quality screen.

This will be an exciting frontier in protein and compound representation learning, as the field

seeks to go beyond protein structural prediction to protein function prediction. Further, with

the exception of our structure informed (MSA-informed) pooling, our analysis remains

sequence based. The relative performance of structure-based tools such as molecular dynamics

for the prediction of enzyme-substrate scope remains an exciting question that this data, cou-

pled with recent advances in protein structure prediction [61–63], can help to address.

Methods

Dataset preparation

Each dataset is collected from their respective papers [39, 45–50]. Activity binarizations are

chosen to closely mirror the original dataset preparation with exact cutoff thresholds described

in S1 Text. Additionally, certain enzymes were filtered based upon low solubility or activity

that may result from screening decisions (see S1 Text).

Davis kinase filtering

Kinases used in reanalysis of Hie et al. are tested exactly as prepared [42]. To evaluate structure

based pooling using this dataset, we further subset the original dataset such that each entry

only contains one domain from the PFAM family, PF00069, described in the SI with dataset

statistics in Table 1.

Hyperparameter optimization

All hyperparameters are set on a held out enzyme-substrate dataset using the hyperparameter

optimization framework Optuna [64]. Hyperparameter optimization is set using up to 10 trials

of leave-one-out cross validation on the thiolase dataset and halogenase dataset for enzyme dis-

covery and substrate discovery tasks, respectively. Hyperparameters are chosen to maximize

the average area under the precision recall curve. For nearest neighbor models, the number of

neighbors is treated as a hyperparameter between 1 and 10.

For logistic ridge regression models, the regularization coefficient, α is set from {1e − 3,

1e − 2, 1e − 1, 1e0, 1e1, 1e2, 1e3, 1e4}. For both feed-forward dot product and concatenation

models, hyperparameters for dropout ([0, 0.2]), weight decay ([0, 0.01]), hidden dimension

([10, 90]), layers ([1, 2]), and learning rate ([1e − 5, 1e − 3]) are chosen. All neural network

models are trained for 100 epochs using the Adam optimizer and Pytorch [65].

For linear ridge regression used in reanalysis of kinase data, a default hyperparameter regu-

larizer value of α = 1e1 is set.

Evaluation metrics

To evaluate models in the enzyme discovery direction, activity on each substrate is considered

to be its own “task”. The data is divided up into a set number of folds, and models are re-

trained to make predictions on each held out fold. A single, separate AUPRC value is com-

puted for the activity on each substrate task and then averaged across substrate tasks. AUPRC

values are computed using the average precision function from sklearn [66]. For the halo-

genase, thiolase, and glycosyltransferase datasets, this is done with leave-one-out cross
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validation. For the phosphatase, BKACE, and kinase datasets, to limit the number of trials, we

use 10 fold cross validation repeated 5 times. This procedure is repeated for 3 random seeds.

An identical procedure is conducted on the task of substrate discovery, where each enzyme

is separately evaluated as its own “task”. In this case, the glycosyltransferase, esterase, and

phosphatase datasets are evaluated with 5 repetitions of 10 fold cross validation.

Filtering imbalanced tasks

Certain enzymes have activity on only a few substrates and certain substrates have activity on

only a few enzymes. To avoid computing AUPRC values on these tasks, we filter to only incor-

porate tasks with a maximum fraction of either 0.9 positives or negatives. The remaining tasks

can be found in Table B in S1 Text.

Kinase inhibitor reanalysis

We modify the code from Hie et al. directly to reproduce their GP, GP + MLP models, and

add our no-interaction models. GP + MLP models involve first fitting an MLP model followed

by a GP to predict residual loss. First, all kinases are converted into features using a pretrained

language model [16, 17] and all inhibitors are converted into features using a pretrained

JT-VAE [53] or Morgan fingerprints. We create a training set of kinase, inhibitor pairs with

labeled Kd values, and establish 3 separate segments of the test data: new kinases (repurposing),

new inhibitors (discovery), and new kinase+inhibitor pairs. The data is split into four quad-

rants and one quadrant is used for training models. GP and linear models are implemented

with scikit-learn [66] and MLP models are implemented with Keras [67], following

parameter choices from the original study [42]. Linear regression models are parametrized

with α = 10 and normalization set to True. Prior to training single-task models, we standardize

the regression target values based upon the training set to have a mean of 0 and variance of 1,

as we find it helps with stability with less training data.

To test the ability of models to prioritize candidates, we repeat the train/test split and rank

the entire test set by predicted Kd, using an additional upper confidence bound (β = 1) metric

to adjust rank for the GP + MLP model that uses uncertainty. The top k = 5 and k = 25 com-

pound-kinase pairs are evaluated by their average true Kd. All kinase-inhibitor reanalysis

experiments were repeated for five random seeds.

Pooling strategies

We use the program Muscle with default parameters to compute a multiple sequence align-

ment (MSA) on each dataset for pooling. Because many positions in certain datasets have high

coverage, ties are randomly broken when choosing a priority for pooling residue embeddings.

This explains the large variance in the glycosyltransferase results shown (Fig 5) taken over sev-

eral seeds. Coverage and conservation based pooling strategies are sampled for i 2 {1, 2, 3, 6,

11, 19, 34, 62, 111, 200} pooling residues, each repeated for 3 random seeds.

Active site pooling

To pool over active sites of proteins, we identify a reference crystal structure within each pro-

tein family or super family (Table 1). For each of these crystal structures, we select either an

active site bound ligand or active site residue(s) from the literature. We attempt to pool resi-

dues within a Cartesian distance from these sites ranging from 3 to 30 angstroms to roughly

mirror the number of residues pooled for coverage and conservation methods. Angstrom
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shells are calculated using Biopython [68] and an in depth description of active sites used

can be found in Table A in S1 Text.

Supporting information

S1 Text. Fig A: Dataset substrates 6 exemplar molecule substrates are randomly chosen from

each dataset and displayed. Fig B: Dataset diversity. Distributions of top-5 enzyme similarity

(left) and substrate similarity (right) are shown across enzyme datasets collected. Enzyme simi-

larity is calculated as the percent overlap between two sequences in their respective multiple

sequence alignment, excluding positions where both sequences contain gaps. Substrate similar-

ity is computed using Tanimoto similarity between 2048-bit chiral Morgan fingerprints. Fig C:

Enzyme discovery benchmarking with AUCROC. On the 6 different datasets tested (thiolase

datasets used for hyperparameter optimization), K-nearest neighbor baselines with Levenshtein

edit distance are compared against feed-forward networks using various featurizations and

ridge regression models in terms of AUC ROC performance. ESM-1b features indicate protein

features extracted from a masked language model trained on UniRef50 [20]. Concatenation

and dot product architectures are indicated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•

{sub repr.}” respectively. Halogenase and glycosyltransferase datasets are evaluated using leave-

one-out splits. BKACE, phosphatase, and esterase datasets are evaluated with 5 repeats of 10 dif-

ferent cross validation splits. AUC ROC is calculated using scikit-learn for each substrate task

separately before being averaged. Error bars represent the standard error of the mean across 3

random seeds. Each model and featurization is compared to “Ridge: ESM-1b” using a 2-sided

Welch T test, with each additional asterisk representing significance at [0.05, 0.01, 0.001,

0.0001] thresholds respectively after applying a Benjamini-Hochberg correction. Fig D: Full

substrate discovery AUC ROC results. CPI models and single task models are compared on

the glycosyltransferase, esterase, and phosphatase datasets, all with 5 trials of 10-fold cross vali-

dation. Error bars represent the standard error of the mean across 3 random seeds. Each model

and featurization is compared to “Ridge: Morgan” using a 2-sided Welch T test, with each addi-

tional asterisk representing significance at [0.05, 0.01, 0.001, 0.0001] thresholds respectively

after applying a Benjamini-Hochberg correction. Pretrained substrate featurizations used in

“Ridge: JT-VAE” are features extracted from a junction-tree variational auto-encoder (JT-VAE)

[53]. Concatenation and dot-product architectures are indicated with “[{prot repr.}, {sub

repr.}]” and “{prot repr.}•{sub repr.}” respectively. In the interaction based architectures,

“ESM-1b” indicates the use of a masked language model trained on UniRef50 as a protein

representation [20]. Models are hyperparameter optimized on a held out halogenase dataset.

Fig E: Substrate Discovery Extended Analysis (i) Average AUPRC on each individual

“enzyme task” is compared between compound protein interaction models and single-task

models. Points below 1 indicate substrates on which single-task models better predict enzyme

activity than CPI models. CPI models used are “FFN: [ESM-1b, Morgan]” and single-task mod-

els are “Ridge: Morgan”. (ii) AUPRC values from the ridge regression model broken out by

each task are plotted against the fraction of active enzymes in the dataset. Best fit lines are

drawn through each dataset to serve as a visual guide. Fig F: MSA and structure based pooling

across all datasets tested (i) Active site, coverage, conservation, and mean pooling are plotted

for all 5 enzyme discovery datasets tested. Both AUCROC and AUPRC values are shown. These

are compared against the Levenshtein distance baseline (dotted). (ii) Equivalent analysis is con-

ducted on the filtered kinase dataset extracted from Davis et al. with MAE, RMSE, and Spear-

man rank correlation shown [39]. The same hyperparameters are used as set in Fig 2 for ridge

regression models. All experiments are repeated for 3 random seeds following the same split

evaluation as in other enzyme discovery model benchmarking. Fig G: Enzyme discovery
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halogenase prediction results Ground truth binary enzyme-substrate activities (left) are com-

pared against a single seed of predictions made through cross validation using a single-task

ridge regression model (middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). Fig

H: Enzyme discovery glycosyltransferase prediction results Ground truth binary enzyme-

substrate activities (left) are compared against a single seed of predictions made through cross

validation using a single-task ridge regression model (middle) and a CPI based model, FFN:

[ESM-1b, Morgan] (right). Fig I: Enzyme discovery BKACE prediction results Ground truth

binary enzyme-substrate activities (left) are compared against a single seed of predictions made

through cross validation using a single-task ridge regression model (middle) and a CPI based

model, FFN: [ESM-1b, Morgan] (right). Fig J: Enzyme discovery esterase prediction results.

Ground truth binary enzyme-substrate activities (left) are compared against a single seed of pre-

dictions made through cross validation using a single-task ridge regression model (middle) and

a CPI based model, FFN: [ESM-1b, Morgan] (right). Fig K: Enzyme discovery phosphatase

prediction results Ground truth binary enzyme-substrate activities (left) are compared against

a single seed of predictions made through cross validation using a single-task ridge regression

model (middle) and a CPI based model, FFN: [ESM-1b, Morgan] (right). Fig L: Substrate dis-

covery glycosyltransferase prediction results Ground truth binary enzyme-substrate activities

(left) are compared against a single seed of predictions made through cross validation using a

single-task ridge regression model (middle) and a CPI based model, FFN: [ESM-1b, Morgan]

(right). Fig M: Substrate discovery esterase prediction results Ground truth binary enzyme-

substrate activities (left) are compared against a single seed of predictions made through cross

validation using a single-task ridge regression model (middle) and a CPI based model, FFN:

[ESM-1b, Morgan] (right). Fig N: Substrate discovery phosphatase prediction results Ground

truth binary enzyme-substrate activities (left) are compared against a single seed of predictions

made through cross validation using a single-task ridge regression model (middle) and a CPI

based model, FFN: [ESM-1b, Morgan] (right). Table A: Active site structure references used

in pooling. All structure informed pooling strategies require a catalytic center in order to define

various angstrom shells of residues to pool over. This table provides the PDB reference crystal

structure as well as the reference residues or structural elements used to define the pooling cen-

ter, from which spherical radii originate. Table B: Summary of valid substrate and sequence

“tasks”. In each dataset, only certain substrates and sequences are defined as valid “tasks” based

upon the balance between active and inactive examples. Each substrate or sequence used for an

enzyme or substrate discovery task respectively requires at least 2 positive examples and at a

minimum, 10% of examples in that task must be part of the minority class. This table defines

the number of valid substrate and sequence tasks. Table C: Enzyme substrate compatibility

models. Summary and classifications of different models utilized. Table D: Kinase reanalysis

models. Summary and classifications of different models utilized in our reanalysis of Hie et al.

[42]. Table E: Full enzyme discovery area under the precision recall curve (AUPRC) results.

On the 6 different datasets tested (thiolase datasets used for hyperparameter optimization), K-

nearest neighbor baselines with Levenshtein edit distance are compared against feed-forward

networks using various featurizations and ridge regression models. Pretrained features (“ESM-

1b”) indicate protein features extracted from a masked language model trained on UniRef50

[20]. Two compound protein interaction architectures are tested, both concatenation and dot

products, indicated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub repr.}” respectively.

Halogenase and glycosyltransferase datasets are evaluated using leave-one-out splits, whereas

BKACE, phosphatase, and esterase datasets are evaluated with 5 repeats of 10 different cross val-

idation splits. Average precision is calculated using scikit-learn for each substrate task separately

before being averaged. Average values are presented across 3 random seeds ± standard error.

Table F: Full enzyme discovery area under the receiver operating curve (AUC-ROC) results.
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On the 6 different datasets tested (thiolase datasets used for hyperparameter optimization),

K-nearest neighbor baselines with Levenshtein edit distance are compared against feed-forward

networks using various featurizations and ridge regression models. ESM-1b features indicate

protein features extracted from a masked language model trained on UniRef50 [20]. Two com-

pound protein interaction architectures are tested, both concatenation and dot products, indi-

cated with “[{prot repr.}, {sub repr.}]” and “{prot repr.}•{sub repr.}” respectively. Halogenase

and glycosyltransferase datasets are evaluated using leave-one-out splits, whereas BKACE,

phosphatase, and esterase datasets are evaluated with 5 repeats of 10 different cross validation

splits. AUC ROC is calculated using scikit-learn for each substrate task separately before being

averaged. Average values are presented across 3 random seeds ± standard error. Table G: Full

substrate discovery area under the precision recall curve (AUPRC) results. CPI models and

single task models are compared on the glycosyltransferase, esterase, and phosphatase datasets,

all with 5 trials of 10-fold cross validation. Each model and featurization is compared to “Ridge:

Morgan” using a 2-sided Welch T test, with each additional asterisk representing significance at

[0.05, 0.01, 0.001, 0.0001] thresholds respectively after applying a Benjamini-Hochberg correc-

tion. Pretrained substrate featurizations used in “Ridge: JT-VAE” are features extracted from a

junction-tree variational auto-encoder (JT-VAE) [53]. Two compound protein interaction

architectures are tested, both concatenation and dot-product, indicated with “[{prot repr.}, {sub

repr.}]” and “{prot repr.}•{sub repr.}” respectively. In the interaction based architectures, ESM-

1b indicates the use of a masked language model trained on UniRef50 as a protein representa-

tion [20]. Average precision is calculated using scikit-learn for each substrate task separately

before being averaged. Models are hyperparameter optimized on a held out halogenase dataset.

Values represent mean values across 3 random seeds ± standard error. Table H: Full substrate

discovery area under the receiver operating curve (AUC-ROC) results. CPI models and sin-

gle task models are compared on the glycosyltransferase, esterase, and phosphatase datasets, all

with 5 trials of 10-fold cross validation. Each model and featurization is compared to “Ridge:

Morgan” using a 2-sided Welch T test, with each additional asterisk representing significance at

[0.05, 0.01, 0.001, 0.0001] thresholds respectively after applying a Benjamini-Hochberg correc-

tion. Pretrained substrate featurizations used in “Ridge: JT-VAE” are features extracted from a

junction-tree variational auto-encoder (JT-VAE) [53]. Two compound protein interaction

architectures are tested, both concatenation and dot-product, indicated with “[{prot repr.}, {sub

repr.}]” and “{prot repr.}•{sub repr.}” respectively. In the interaction based architectures,

“ESM-1b” indicates the use of a masked language model trained on UniRef50 as a protein

representation [20]. Models are hyperparameter optimized on a held out halogenase dataset.

Values represent mean values across 3 random seeds ± standard error.
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