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Abstract: The lymphatic system is critical for maintaining the homeostasis of lipids and interstitial
fluid and regulating the immune cell development and functions. Developmental anomaly-induced
lymphatic dysfunction is associated with various pathological conditions, including lymphedema,
inflammation, and cancer. Most lymphatic endothelial cells (LECs) are derived from a subset of
endothelial cells in the cardinal vein. However, recent studies have reported that the developmental
origin of LECs is heterogeneous. Multiple regulatory mechanisms, including those mediated by
signaling pathways, transcription factors, and epigenetic pathways, are involved in lymphatic
development and functions. Recent studies have demonstrated that the epigenetic regulation of
transcription is critical for embryonic LEC development and functions. In addition to the chromatin
structures, epigenetic modifications may modulate transcriptional signatures during the development
or differentiation of LECs. Therefore, the understanding of the epigenetic mechanisms involved in the
development and function of the lymphatic system can aid in the management of various congenital
or acquired lymphatic disorders. Future studies must determine the role of other epigenetic factors
and changes in mammalian lymphatic development and function. Here, the recent findings on key
factors involved in the development of the lymphatic system and their epigenetic regulation, LEC
origins from different organs, and lymphatic diseases are reviewed.

Keywords: epigenetics; transcription factor; lymphatic endothelium; lymphatic disease

1. Introduction

The lymphatic system is involved in lipid reabsorption, fluid balance, and immune
surveillance. In contrast to the blood circulation system, the lymphatic system, comprising
the lymphatic vessels and lymph nodes (LNs), is blind-ended and unidirectional from the
periphery to the heart. The vasculature of the blood circulatory system can only transport
large molecules owing to the presence of the tightly connected zipper-like structures of the
endothelial cell (EC) junctions [1]. The size limit of the molecules that can pass through the
blood capillary is in the range of 5–12 nm; however, it can be 60 nm in some cases in the
bone marrow [2]. Lymphatic EC (LEC) junctions in lymphatic capillaries exhibit button-like
structures and conditional gating, which allows the transport of large molecules and cells
with a size in the micrometer range [1,3–5]. This structural difference allows the lymphatic
capillaries to complement the blood circulatory system by transporting and cycling back
into circulation from the interstitial fluid the large and fat-soluble molecules which cannot
be transported through the blood circulatory system. Furthermore, the physical separation
of the blood and the lymph provides an environment that is minimally affected by the
blood circulation and blood pressure exerted by the heart [6,7]. Lymphocytes and antigens
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in lymphatic organs must be attached to the epithelium of lymphatic organs to commu-
nicate through the signals involved in eliciting immune responses. The blood circulatory
system transports oxygen and carbon dioxide. Thus, circulating blood creates a dynamic
environment that is not optimal for the maturation of lymphocytes [8]. Hematopoietic
stem cells reside in the bone marrow, thymus (where T-cell development occurs), LNs,
tonsils, and spleen, providing an optimal environment for lymphocyte maturation and
activation [7,9]. Therefore, the loss or impairment of lymphatic system function can lead to
the development of various circulatory and immune-related diseases.

The major aims of treating various diseases are the restoration and enhancement of
lymphatic function. Research on embryonic development is critical for devising therapeutic
strategies for lymphatic diseases. The elucidation of the molecular mechanisms underly-
ing the formation of the lymphatic system in the early developmental stages will enable
the development of useful strategies for the reconstitution of the optimal functioning of
the lymphatic system. Previous studies have utilized high-throughput sequencing (HTS)
technology, genetic knockout (KO) and knock-in experiments, and lineage tracing to reveal
the molecular interactions during lymphatic development. For example, genetic studies
revealed that molecules such as VE-cadherin, a cell–cell adhesion molecule, and CCBE1, a
factor involved in the activation of VEGFC, are essential for lymphangiogenesis [10–12].
Epigenetic factors are also critical mediators of the regulatory mechanisms of key transcrip-
tion factors. Previous studies have reported the importance of epigenetic mechanisms in
lymphatic development [5,13,14]. The mapping of chromatin dynamics using methods
such as chromatin immunoprecipitation sequencing (ChIP-seq), DNase-seq, and assay for
transposase-accessible chromatin-sequencing (ATAC-seq) has enabled detailed description
of chromatin dynamics. Combination of transcriptome and epigenomic analyses, especially
the analysis of chromatin conformation and histone modifications, could provide useful
insights into the molecular mechanisms of lymphatic system development [13].

Additionally, recent studies have employed novel HTS and genetic alteration methods
to identify key factors involved in LEC specification as well as to reveal the molecular
characteristics of lymph capillaries, collecting vessels, valves, and various lymphatic organs,
such as the LN, bone marrow, and spleen [14,15]. In contrast to the heterogeneity of
the endothelium of the blood vessels, the organ-specific heterogeneity of LECs has only
recently begun to be discussed. Additionally, the novel developmental origins of LECs
have been recently discovered [3,14]. This review discusses transcriptional regulation,
epigenetic regulation, and organ specificity during the development of the lymphatic
system. Additionally, molecular alterations in clinical cases of lymphatic diseases have
been outlined to provide insights into developing potential therapeutic strategies for
lymphatic defects.

2. Diseases Associated with the Lymphatic System

Lymphatic vasculature dysfunction causes diverse pathological conditions, includ-
ing lymphedema, inflammation, and neo-lymphangiogenesis, which can promote tumor
metastasis [16]. Recent studies have reported the role of the lymphatic system in health
and disease [3]. However, the genome-wide mechanisms of lymphatic disorders and the
underlying pathogenesis have not been elucidated. This section discusses the current
knowledge on lymphatic defects in humans and mice, along with their etiological and
genetic factors.

2.1. Lymphedema

Congenital disorders in lymphatic network formation or lymphatic failure can po-
tentially lead to lymphedema, owing to the stagnation of lymphatic circulation and the
accumulation of fluid in the interstitial tissue [17]. Disfiguring and life-threatening diseases
are characterized by leg swelling, tissue fibrosis, impaired immune responses, and fatty-
acid degradation [18]. Lymphedema is categorized into primary (congenital) lymphedema
and secondary lymphedema based on the etiology. The etiological factors for primary
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lymphedema are hereditary genetic mutations, while those for secondary lymphedema
are infection, radiation damage, and postoperative complications. Various genetic mu-
tations that induce primary lymphedema are summarized in Table 1 [3,19]. Mutations
in key transcription factors, including FOXC2, SOX18, and GATA2, can cause primary
lymphedema [20–25]. Most patients with primary lymphedema exhibit impaired lym-
phatic valve function and hypoplasia or hyperplasia of the lymphatic vessels. The most
prevalent secondary lymphedema is caused by infection with parasites, such as Wuchereria
bancrofti and Brugia malayi [26]. Infections from parasites that cause filariasis (known as
elephantiasis) are common in tropical regions. Surgical removal of cancer tissue or radiation
therapy can also induce secondary lymphedema by damaging lymphatic vessels and LNs.
Approximately 20% of patients with breast cancer develop lymphedema because of the side
effects of surgery or radiation [27]. Another potential molecular mechanism involved in
the formation of lymphedema has been suggested by Díaz-Flores et al. Their recent studies
have shown that during human LN development, intussusceptive lymphangiogenesis is
induced by highly abundant and evenly distributed VEGFC [28]. In turn, intussusceptive
lymphangiogenesis has been found to participate in the formation of the meshwork of
processes in the LN sinuses. Their studies provided the foundation for the explanation
of the role of intussusceptive lymphangiogenesis in clinical cases of lymphedema [28,29].
Furthermore, Ogino et al. showed that transplantation of adipose-derived stem cells accel-
erated LEC proliferation, increased lymphatic vessel numbers, and mitigated fibrosis of the
surrounding interstitial tissue via intussusceptive lymphangiogenesis [30].

Table 1. Genetic disorders associated with primary lymphedema.

Genes Disorders Phenotype OMIM Reference

VEGFR3 Nonne–Milroy disease

- Congenital bilateral lower limb
lymphedema

- Chylous ascites
- Apparent at birth (Type I)

153,100
(Butler et al., 2007,
Butler et al., 2009)

[31,32]

VEGFC Congenital primary
lymphedema of Gordon

- Similar to VEGFR3 phenotype 615,907
(Balboa-Beltran et al.,
2014, Gordon et al.,

2013) [33,34]

GJC2 Late-onset autosomal
dominant lymphedema

- At birth or early childhood
- Impact on all extremities 613,480 (Ferrell et al., 2010) [35]

FOXC2 Lymphedema–distichiasis
syndrome

- Distichiasis
- Leg lymphedema
- Physiological number of

lymphatic vessels but
dysfunctional lymphatic drainage

153,400
(De Niear et al., 2018,

Rezaie et al., 2008)
[20,21]

SOX18

Hypotrichosis-lymphedema-
telangiectasia-renal defect

syndrome and hypotrichosis-
lymphedema-telangiectasia

syndrome

- Rare
- Absence of eyebrows and

eyelashes
- Hypotrichosis, lymphedema,

telangiectasia, and renal features

137,940
607,823

(Irrthum et al., 2003,
Moalem et al., 2015)

[22,23]

EPHB4
Autosomal dominant

lymphatic-related hydrops
fetalis (LRHF)

- Non-immune LRHF in utero,
resulting in embryonic lethality 617,300 (Martin-Almedina et al.,

2016) [36]
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Table 1. Cont.

Genes Disorders Phenotype OMIM Reference

CCBE1
Hennekam-lymphangiectasia-

lymphedema syndrome
Type 1 - Severe defects, including

intestinal lymphangiectasias,
mental retardation, and facial
dysmorphism

235,510 (Connell et al., 2010) [37]

FAT4 Type 2 616,006 (Alders et al., 2014) [38]
ADAMTS3 Type 3 618,154 (Brouillard et al., 2017) [39]

FBXL7 Hennekam-lymphangiectasia-
lymphedema syndrome

- (Boone et al., 2020) [40]

GATA2 Emberger syndrome - Myeloblastic leukemia 614,038
(Emberger et al., 1979,
Mansour et al., 2010)

[24,25]

CELRS1 Late-onset hereditary
lymphedema

- Non-syndromic
- Limited to females - (Gonzalez-Garay et al.,

2016) [41]

KIF11

Microcephaly-
chorioretinopathy-

lymphedema
syndrome

- Microcephaly, chorioretinopathy,
lymphedema, or mental
retardation

152,950 (Birtel et al., 2017) [42]

PIEZO1 Generalized lymphatic
dysplasia

- Uniform widespread edema
- Intestinal and/or pulmonary

lymphangiectasia
- Pleural effusions, chylothorax,

and/or pericardial effusions

616,843 (Fotiou et al., 2015) [43]

RASA1
Capillary

malformation-arteriovenous
malformation/lymphedema

- Capillary malformations and
arteriovenous malformations 608,354 (Revencu et al., 2013)

[44]

PTPN14 Choanal atresia-lymphedema
- High-arched palate, hypoplastic

nipples, and mild pectus
excavatum

613,611 (Hiramatsu et al., 2017,
Qazi et al., 1982) [45,46]

CALCRL Hydrops fetalis
- Lymphatic dysplasia
- Non-immune 114,190 (Mackie et al., 2018) [47]

ITGA9 Fetal chylothorax
- Missense mutation causes

lymphedema in fetuses - (Ma et al., 2008) [48]

RELN Cerebellar hypoplasia
- Neonatal lymphedema
- Chylous ascites - (Hong et al., 2000) [49]

Modified from Gordon et al., 2020, and Oliver et al., 2020 [3,19].

2.2. Lipid Homeostasis and Obesity

The lymphatic vasculature is involved in absorbing various nutrients and lipid
molecules from the intestine. Lipid molecules are packaged into chylomicrons, which
are absorbed in the gut villi and reabsorbed by mesenteric lymphatic vessels [50]. The
lymphatic system is essential for regulating lipid metabolism and homeostasis. Dys-
functional mesenteric lymphatic vessels can lead to the accumulation of lipids in the
abdominal cavity [51]. Mouse models of lymphatic disorders often exhibit accumulation
of subcutaneous fat and abdominal chylous ascites or enhanced adipogenesis. Metabolic
syndrome associated with obesity also leads to lymphatic anomalies [52–54]. The secretion
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of pro-inflammatory signals from the adipocytes can induce chronic inflammation and
lymphatic dysfunction.

2.3. Inflammation

Lymphatic vessels enable the transportation of activated antigen-presenting cells
to secondary lymph organ LNs during adaptive immune responses. In response to in-
flammatory stimuli, such as pro-inflammatory cytokines, activated immune cells exhibit
upregulated expression of VEGFC [55,56] and enhanced lymphatic drainage [57]. The inhi-
bition of VEGFR3 signaling results in lymphedema and prolonged immune responses after
irradiation with UVB [58]. LECs also participate in the process of inflammatory response
regulation by mediating antigen presentation and inducing CD4 T-cell tolerance [59,60].
Recent studies suggest that LECs present peptide:MHC-II complexes acquired from den-
dritic cells (DCs) [59–61] or participate in the process of antigen presentation of DCs by
providing various peripheral tissue antigens (PTAs) to induce CD4 T-cell tolerance [61].

The role of lymphangiogenesis in transplant rejection is mediated through the CCL21/
CCR7 pathway. In human kidney transplants, lymphatic vessels in the host tissue produce
CCL21, attract CCR7-expressing DCs [62], and initiate adaptive immunity. However, the
inhibition of VEGFR3 signaling downregulates CCL21 in transplanted LECs and impairs
immune responses [63]. This suggests that lymphangiogenesis inhibitors are potential
immunosuppressive agents.

2.4. Cancer

Skobe et al. demonstrated that lymphatic vessels serve as an avenue for metastasis
during cancer progression [64]. Studies on animal models of cancer progression have
reported that tumor cells secrete lymphangiogenic factors, including VEGFA, VEGFC, and
VEGFD; induce active metastasis; and promote the circulation of cancer cells into LNs
and other sites [65–68]. Treatment with VEGFA and VEGFC inhibitors decreased tumor
metastasis into LNs and lungs in a mouse mammary-gland cancer model [69]. On the other
hand, immune modulation by LV is also critical for the trafficking of DC and initiating anti-
tumor adaptive immunity (i.e., T-cell responses), suggesting a dual function of lymphatics
in tumor metastasis depending on tumor types and tumor progression [70,71].

In physiological conditions, the expression of VEGFR3 is restricted to LECs. However,
VEGFR3 is expressed in malignant blood endothelial cells (BECs) during metastasis [72–74].
Moreover, VEGFR3 activity suppressed tumor angiogenesis in a mouse model. These
studies indicate that the inhibition of lymphangiogenesis can potentially suppress tumor
metastasis. On the other hand, recent studies have shown that VEGFC treatment with lym-
phatic expansion could enhance anti-tumor immunity and the efficacy of immunotherapy
or radiotherapy for glioma, suggesting a dual function of the lymphatic system on tumor
metastasis in a context-dependent manner [75–77].

2.5. Novel Functions of the Lymphatic System and Associated Diseases

Myocardial infarction (MI), a coronary artery disease, results from decreased blood
flow caused by plaque formation in the interior arterial walls [78]. The accumulation of
plaques containing lipids and cholesterols in the arteries leads to the narrowing of the arter-
ies, which may result in heart injury, stroke, and atherosclerosis [79]. Recent studies have
demonstrated that lymphangiogenesis induction can improve the prognosis of myocardial
edema and inflammation caused by MI and delay atherosclerosis [80–82]. In the MI mouse
model, VEGFC administration improved cardiac function by promoting lymphangiogenic
responses [83]. Further validation was performed using a rat MI model. Sustained re-
lease of VEGFCC152S resulted in the maintenance of fluid balance and the alleviation of
fibrosis and cardiac inflammation in the rat MI model [80]. These studies suggest that the
VEGFC–VEGFR3 pathway is a potential therapeutic target for cardiac diseases.

The brain tissue has an alternative fluid drainage system called the glymphatic sys-
tem [84]. Meningeal lymphatic vessels (mLVs) are located in the dura mater on the surface
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of the brain along the dural sinus. Similar to the lymphatic system in other tissues, the
glymphatic system promotes waste clearance and drains cerebrospinal and interstitial
fluids of the brain into the mLVs [85,86]. A recent study demonstrated that mLVs, and not
the dural sinuses, are the primary drainage system of cerebrospinal fluid [87]. Moreover,
mLVs are reported to be involved in the pathogenesis of neurodegenerative diseases, such
as Alzheimer’s disease (AD), Parkinson’s (PD) disease, and stroke. mLVs may play an im-
portant role in the clearance of toxic amyloid-beta and inflammatory mediators, which are
reported to cause AD [84,88]. Treatment with VEGFC promotes brain lymphangiogenesis
and glymphatic perfusion [89]. PD is characterized by impaired dopaminergic neurons
and α-synuclein aggregation [90]. The blockage of mLVs in A53T mice overexpressing
human α-synuclein resulted in a PD phenotype [91]. Furthermore, a stroke animal model
exhibited a dysfunctional meningeal lymphatic system [92]. These studies suggest that
targeting the meningeal lymphatic system may serve as an effective therapeutic strategy
for neurodegenerative diseases.

In the eyes, Schlemm’s canals (SCs) are endothelium-lined channels that express
both blood and lymphatic endothelial markers [93,94]. Proper functioning of the SC is
required for draining the aqueous humor from the intraocular chamber and balancing
ocular pressure [95]. Glaucoma, which is characterized by damage to the optic nerve, can
lead to irreversible blindness. Increased intraocular pressure is one of the etiological factors
for glaucoma. Decreased aqueous humor drainage in the SC increases ocular pressure and
consequently leads to optic neuropathy [96]. The modulation of PROX1, VEGFR3, and
TIE2 signals, which mediate SC development, can be a potential novel therapeutic strategy
for glaucoma.

Lymphatic anomalies in patients with Crohn’s disease are characterized by a leaky
lymphatic system at the inflamed intestinal wall and impaired drainage of LNs [97]. Tertiary
lymphoid organs and B cell–rich structures were observed along with mesenteric collecting
vessels in patients with Crohn’s disease. The involvement of lymphatic vasculature in
pathological conditions has not been completely elucidated. Thus, further studies are
needed to understand the mechanisms of lymphatic development and to devise novel
therapeutic strategies.

3. Key Transcription Factors of LECs and Epigenetic Regulation of Their Transcription
3.1. Historical Aspects of Lymphatic Vessel Development

In 1902, Florence Sabin injected Indian ink into the jugular area of pig embryos and
observed the primitive lymphatic organs connect with the blood vasculature in the cardinal
vein [98]. The primitive lymphatic organ, called the ‘lymph sac,’ was assumed to be the
origin of the lymphatic vessels. This was the first study to suggest that the lymphatic
vasculature originated from the cardinal vein. Sabin’s findings have been validated using
lineage-tracing experiments with LEC-specific markers and the cardinal vein origin of
lymphatic vasculature is considered to be a widely accepted concept. Studies based on
this concept have examined the development of the lymphatic system from the lymph sac
to explain the mechanism of LEC differentiation. Srinivasan et al. used a lineage-tracing
mouse model to demonstrate that LECs are differentiated from a subset of the endothelium
in the cardinal vein. [99]. The markers for cells involved in LEC lineage specification
include PROX1, LYVE1, NRP2, VEGFR3, and PDPN (Figure 1) [100,101]. Various stud-
ies have demonstrated that PROX1, is the ‘master regulator’ of LEC specification and
maintenance [102]. PROX1 activity in the cardinal vein ECs upregulates the transcription
of LEC-specific genes and downregulates the transcription of BEC-specific genes [103].
Multiple Prox1 KO and overexpression studies have verified the critical role of PROX1 in
lymphatic vessel development and maintenance [84,100,104]. Thus, the initiation of active
Prox1 transcription in ECs indicates LEC lineage specification. This observation led to an
in-depth investigation of the transcriptional regulation of Prox1.
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Figure 1. A schematic illustration of mouse lymphatic system development. During embryonic
development (at approximately E9.5), a subset of blood endothelial cells in the cardinal vein expresses
some initial lymphatic markers, such as LYVE1, NR2F2, SOX18, AND PROX1. The lymphatic
endothelial cell (LEC) progenitors migrate into the lateral mesenchymal space, which is mediated
by VEGFC signaling, and form primitive lymph sacs. The sprouting of LECs and the branching of
lymphatic vessels from lymph sacs lead to the development of peripheral lymphatic vessels. CV:
cardinal vein; LS: lymph sac; BEC: blood endothelial cell; LEC: lymphatic endothelial cell.

3.2. Regulatory Networks of Epigenetic and Transcription Factors in Lymphatic Vessel Formation
and Function

Transcriptome analysis and cellular imaging (for molecular colocalization) studies
have revealed a high degree of correlation between PROX1 and other transcription factors
involved in the development and maturation of lymphatic vasculature. Various transcrip-
tion factors, including NR2F2, SOX18, GATA2, MAFB, FOXC2, NFATC1, and HHEX, are
reported to be involved in the transcriptional regulation of PROX1. In turn, PROX1 is
reported to be involved in the transcriptional regulation of LEC factors [104–109]. Addition-
ally, several studies have reported the role of epigenetic modulators of transcription factors
involved in lymph system development (Figure 2) [110–114]. The epigenetic factors that
regulate chromatin conformational changes and histone modifications are indispensable
to the optimal development of the lymphatic system. Analysis of gene expression and
epigenetic modifications will provide valuable insights into the mechanisms underlying
lymphatic development.

The binding motif of the transcription factor NR2F2 is located approximately 9.5 kb up-
stream of the open reading frame of mouse Prox1 [106]. This sequence is conserved among
various mammals [106]. β-Galactosidase staining and immunofluorescence analyses have
demonstrated the colocalization of NR2F2 with PROX1 and LYVE1 in the LECs [105,106].
Nr2f2 KO decreased the migration of PROX1-positive cells in the tissue around the cardinal
vein of E11.5 and E13.5 mice. Additionally, the lymph sac was absent in Nr2f2 KO mice [106].
However, Nr2f2 deletion in PROX1-positive cells at E13.5 or later developmental stages did
not result in major lymphatic defects. This indicates that NR2F2 promoted Prox1 expression
only during early developmental stages [106]. BRG1, which regulates the expression of
NR2F2 [110], is a catalytic ATPase that constitutes the SWITCH/sucrose nonfermentable
SWI/SNF-like complex. The SWI/SNF complex is an ATP-dependent chromatin remod-
eling complex that inhibits DNA-histone interactions. In the absence of BRG1, the Nr2f2
promoter exhibits a highly compact structure, which results in the downregulation of Nr2f2
expression. Brg1 KO in endothelial cells recapitulated the genetic depletion of Nr2f2 with
the downregulation of lymphatic markers and the upregulation of arterial markers [110].
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Figure 2. Epigenetic factors that regulate the transcription of LEC-associated factors that modulate
chromatin conformation or the recruitment of cofactors [110–114]. Arrowheads represent the initiation
of transcription or promotion of acetylation or methylation and flat-headed lines represent the
repression of protein function or transcription. LEC: lymphatic endothelial cell; kb: kilobasepair;
KO: knock-out; cKO: conditional knock-out; iKO: inducible knock-out; K79-Me: methylation on 79th
lysine (K) residue of histone H3; K27-Ac: acetylation on 27th lysine (K) residue of histone H3; OSS:
oscillatory shear stress; K9-Ac: acetylation on 9th lysine (K) residue of histone H3; FAO: fatty acid
oxidation (in mitochondria); Ac-CoA: acetyl coenzyme A.

SOX18 binds to Prox1 at two sites (1135–1130 bp and 813–808 bp) upstream of the
transcription start site of Prox1 [104]. The results of the luciferase reporter-gene assay
with the mlEnd cell line and in vivo immunofluorescence experiments revealed that both
binding sites must be intact for SOX18 to drive the expression of the reporter gene during
LEC development [104]. Prox1 expression was downregulated in the absence of functional
SOX18. Conversely, the exogenously expressed Sox18 restored the expression of Prox1 [104].
Sox18-null mice completely lack LECs but contain other PROX1-positive cells, such as
myocardial cells [104]. These results indicate that the transcription factor SOX18 specifically
mediates the differentiation of BEC to LEC in the cardinal vein. DOT1L, a histone H3K79
methyltransferase, is involved in the transcriptional regulation of Sox18 [111]. RNA-
sequencing (RNA-seq) analysis revealed that the expression of Sox18 is downregulated
in LECs from E15.5 Dot1l KO mouse skin. Meanwhile, ChIP-seq revealed that H3K79
methylation was reduced in the gene body of Sox18 in these LECs [111]. Similar ChIP-seq
results were obtained for other LEC development-related genes, such as Flt4, Ramp2, and
Foxc2 [111].
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MAFB promotes the transition of vascular ECs to LECs by upregulating the transcrip-
tion of genes that promote LEC fate [107]. The binding motif of MAFB is in the first intron of
Prox1. The induction of MAFB in primary LEC cell culture through VEGFR3, an upstream
signal-transducing factor of MAFB, upregulated the expression of Prox1. MAFB is reported
to bind to genes encoding other major factors regulating LEC specification, such as Klf4,
Nr2f2, and Sox18. Short-interfering RNA-mediated Mafb knockdown downregulated the
expression of Prox1. The role of MAFB in lymphatic development has been demonstrated
using the back skin of Mafb KO E14.5 mouse embryos [107]. In these embryos, lymphatic
vessel sprouting was delayed or incomplete.

Oscillatory shear stress (OSS) generated by lymph flow upregulates the expression
levels of GATA2, FOXC2, and NFATC1, which regulate PROX1 transcription in LECs [109].
Physical stimuli promote the transcription of GATA2 [115]. GATA2, FOXC2, and NFATC1
may regulate PROX1 expression through their binding consensus sequences located close
to each other at the first intron of PROX1 (approximately 11 kb upstream from the tran-
scription start site) [109]. FOXC2 and NFATC1 can form a complex. The downregulation of
FOXC2 or NFATC1 results in impaired lymphatic vessel development. However, GATA2
interacts directly with neither FOXC2 nor NFATC1. This indicates that GATA2 transforms
the enhancer region of PROX1 into an ‘active’ state rather than directly inducing the tran-
scription of PROX1. GATA2 regulates the opening of the PROX1 promoter region, whereas
HDAC3 regulates the promoter region of Gata2 by inducing acetylation of H3K27 [112]. In
the proposed model, HDAC3 is recruited to the intragenic enhancer of Gata2 in response
to OSS. Next, TAL1, GATA2, ETS1/2, and HDAC3 form a complex and promote the re-
cruitment of EP300. Finally, the EP300-mediated accumulation of H3K27ac promotes the
expression of GATA2.

The binding site of HHEX is located 800 bp upstream of the transcription start site
of human PROX1 [116]. The in vitro binding of HHEX to the PROX1 promoter region
was confirmed using cultured human umbilical vein endothelial cells. This suggests that
HHEX directly regulates the expression of PROX1. Hhex knockdown downregulated the
expression of Prox1 in mouse and human LECs. Hhex KO in TIE2-positive cells impaired
the proliferation, maturation, and sprouting of lymphatic vessels. HHEX is involved in the
transcription of Vegfc and Flt4, which are involved in the development of lymphatic vessels.
However, the binding of HHEX to the Vegfc and Flt4 promoters could not be confirmed.
This suggests that HHEX may indirectly regulate the transcription of VEGFC and FTL4 and
that the role of HHEX in lymphatic vessel development is mediated only by the activity of
PROX1. Thus, the role of HHEX in LEC specification may be limited to the transcriptional
regulation of PROX1.

The binding of PROX1 to target genomic DNAs induces the recruitment and transcrip-
tional regulation of other co-factors [117,118]. Homeobox proteins share the helix-turn-helix
(HTH) structure [119]. Similar to other homeobox proteins, the HTH structure of PROX1
enables it to directly bind to the major groove of DNA. The binding of PROX1 to DNA is
followed by the recruitment of other epigenetic modifiers and transcription factors, such
as the histone acetyltransferase EP300 [118]. Histone acetylation mediated by PROX1 and
EP300 in the promoter region induces the unpacking of chromatin, the recruitment of other
transcriptional factors, such as polymerase II, and the upregulation of the transcription of
these genes. ChIP-seq analysis revealed that PROX1 binds to the promoter region of genes
encoding proteins involved in lymphatic vessel development, such as VEGFR3, NRP2,
SOX18, and PROX1 [106,115,120]. PROX1 targets CPT1A, which positively regulates the
rate of fatty acid β-oxidation (FAO) [114]. Subsequently, the upregulated FAO induces
acetyl coenzyme A production, which is utilized by EP300 for histone acetylation. The
EP300/PROX1 complex promotes the histone acetylation of target gene promoters, in-
cluding the promoter of PROX1. Thus, CPT1A is a part of the positive feedback loop of
PROX1. PROX1 epigenetically regulates the expression of CYP7A1, which is involved in
the bile acid synthesis pathway in the liver [121]. Co-immunoprecipitation (CoIP) studies
with human hepatoblastoma cells (HepG2 cells) and GST-pull down assays performed
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using human embryonic kidney cells (HEK293T cells) revealed that the binding of PROX1
to the promoter represses the expression of target genes by recruiting the LSD1/NuRD
complex, directly binding to the LSD1 unit, and promoting H3K4 hypomethylation. The
role of CHD4, a subunit of the NuRD complex, in lymphatic development has been pre-
viously reported [113]. In the absence of VEGFC signaling, the Yap/Taz complex recruits
the CHD4/NuRD complex to the PROX1 promoter and regulates PROX1 expression in
a negative feedback loop through the deactivation of the Hippo signaling pathway [122].
This regulatory mechanism is critical for the patterning of the lymphatic plexus.

Previous studies on the transcriptional regulation of PROX1 have provided useful
insights into the key factors involved in LEC specification. However, the elucidation of
the comprehensive transcription regulation mechanism of transcription factors and other
LEC-specifying genes throughout embryonic development is currently ongoing. In the
myriad questions to be answered, findings suggest that the promoters and enhancers of
LEC specification-related genes play important roles in LEC specification. The TFs with
major roles in LEC fate determination and proliferation interact with the promoter of Prox1
gene, and the modification of promoter accessibility by epigenetic regulation is believed
to be a key factor in lymphatic system development. Future studies could focus on the
dynamics of epigenetic alterations, which will further aid in understanding the lymphatic
system development process.

4. Heterogeneity in LEC Origin

In the theories based on Sabin’s research, the cardinal vein is the sole source of the
entire lymphatic system, and this was a widely accepted dogma [98]. However, several
studies have demonstrated that cells of non-venous origin are involved in the formation of
the lymphatic system. Studies demonstrated that non-CV EC-origin LEC progenitors also
contribute to the formation of the lymph sac [120,123,124]. The additional sources of LEC
progenitor include the intersomitic vessels and the superficial venous plexus [120,123]. In
addition, an elegant 3D imaging study clearly showed a stepwise process of lymph sac
formation: (1) LECs emerge from the CV, dorso-laterally migrate, and form a meshwork
along with LECs originating from other vessels. (2) The LECs further undergo coales-
cence to form a lumen structure (called a peripheral longitudinal lymphatic vessel) at
the first lateral intersegmental vessel branch. (3) LECs located close to the CV aggregate
simultaneously and form a primordial thoracic duct (pTD) [123]. These cells emerge at
different developmental stages, acquire tissue-specific functionalities, and complement
the vein-derived lymphatic system [83,101,125–128]. Further studies on cells of different
sources can aid in the elucidation of the molecular mechanisms underlying lymphatic
development. The understanding of the transition from a non-venous source to LEC will
enable the identification of factors required for LEC fate determination. The analysis of the
heterogeneity of LEC from different tissues can potentially explain the regulation of the
LEC developmental process. Some recent studies have successfully characterized LECs of
non-venous origin (Figure 3).

The mesentery is a rich source of vasculature. The anatomy of the mesentery enables
the analysis of vasculature functions without the need for sectioning. Additionally, a
new concept of the non-venous developmental process has been defined using these
vasculatures. Stanczuk et al. established a mouse lineage with heterozygous Flt4-null and
heterozygous kinase-dead Pik3ca alleles (Vegfr3lz/+;p110aD933A/+), which exhibited poorly
developed lymphatic vessels in the mesenteric root [101]. However, lymphatic vessels in the
diaphragm and skin were not affected. Based on this evidence, the authors hypothesized
a tissue-specific activity of the VEGFR3/PI3K axis. Further investigations revealed that
the mesenteric lymph sac originates from a venous source. However, PROX1-positive and
NRP2-positive ECs in the mesenteric membrane were discontinued from the mesenteric
root. Clusters of these cells were observed between E13 and E13.5. These clusters formed
the mesenteric lymphatic vasculature by E14.5. Lineage-tracing analysis confirmed that
the source of the lymphatic vasculature was c-KIT-positive/VAV1-negative hemogenic
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endothelium. In the proposed model, the lymph vessels in the mesenteric root differentiate
from the lymph sac, while the collecting lymph vessels in the mesenteric membrane and
lymphatic capillaries in the intestine differentiate from the c-KIT lineage. The lack of
DOT1L impairs the formation of the lymphatic vessel only when c-KIT-positive cells are
affected [111]. This demonstrates the presence of tissue-origin specificity in the epigenetic
mechanism that drives LEC specification. Similar to blood circulatory system development,
Stanczuk et al. distinguished the formation of lymphatic vessels based on the sprouting
from the lymph sac and the development of non-venous mesenteric lymphatic vessels
and coined the term ‘lymphvasculogenesis.’ This study not only introduced the question
of tissue-specific LEC heterogeneity but also identified the mammalian LEC population
derived from a non-venous source, which has not been completely elucidated.

Figure 3. Current models of the origins of organ-specific LECs in mice. Several studies have used var-
ious lineage-tracing methods to demonstrate that the diverse non-venous source-derived lymphatic
progenitors contribute to the development of tissue-specific lymphatic vessels [83,95,101,125–130].

Martinez-Corral et al. discovered a novel source of LECs in the skin of mouse em-
bryos [125]. The authors reported the discontinuation of the lymphatic vessels in the
lumbar and cervical regions in the skin of E13.5 and E15.5 mice. During lineage-tracing
of lumbar LEC, the authors used Tie2-Cre;R26-mTmG mice, which allowed the distinct
identification of Tie2-expressing cells. In this mouse line, the activation of Cre recombi-
nase permanently removed the sequence encoding tomato and labeled the cell with green
fluorescent protein (GFP). Whole-mount analysis of the skin revealed LECs without GFP
expression. Flow cytometry analysis of LYVE1-positive and PDPN-positive cells revealed
that some LECs originated from non-Tie2-expressing cells. To identify the origin of LECs
that do not originate from the lymph sac, the authors used Prox1-CreER;R26-mTmG mouse
lineage injected with 4-Hydroxytamoxifen (4-OHT) at E12.5. The authors hypothesized
that all LECs express GFP if all LECs were derived from the lymph sac and, otherwise,
cells expressing tomato would be present in the lymphatic vasculature. In E17.5 mice, the
presence of cells expressing tomato was observed at the sprouting points of the vascula-
ture. Pichol-Thievend et al. proposed that these cells originate from the blood capillary
plexus [126]. Prox1 expression in the blood capillaries and some PROX1-positive cells at
E13.5 has been observed in the lumen of the blood vasculature. The consensus finding
between these two studies is that there is a source of LECs that is not derived from the
lymph sac. However, the expression of Tie2 in the originating cells was a disputed finding
between the two studies. Pichol-Thievend et al. suggested that the discrepancy in the study
by Martinez-Correl could be attributed to variability in Tie2-Cre-mediated recombination.

Klotz et al. reported that the origin of significant portions of cardiac lymphatic
vessels was not from the lymph sac [83]. During mouse embryonic stages, the lymphatic
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vasculature on the heart was observed to emerge from the ventral side and postnatally
complete a network with the cardiac vein and artery on the surface of the heart. In the hearts
of E14.5 mice, the majority of the lymphatic tissue was labeled using Tie2-Cre-mediated
labeling. The results of this experiment were consistent with the previous knowledge of
the origin of LEC. However, approximately 19% of the lymphatic vessels in the heart did
not exhibit Tie2 expression and were of non-venous origin. These non-venous LECs did
not originate from the epicardium, cardiac mesoderm, or cardiac neural crest. The authors
hypothesized that these LECs originated from the TIE2-negative population of primitive
hematopoietic cells within the yolk sac. This hypothesis was validated by verifying the
expression of VAV1, PDGFRB, and CSF1R in these cells. The contribution of VAV1-positive
cells to the cardiac lymphatic vessels was verified by the presence of lymphatic vessels after
the ablation of Prox1 expression in TIE2-positive cells and Vav1-Cre-mediated Prox1-EGFP
expression in cardiac lymphatic vessels. Newer studies have proposed ISL1 as a marker
for LEC precursor cells of the ventral cardiac lymphatic vessels. ISL1 is another factor
that marks the LEC population of non-venous origin [127,128]. Additionally, ISL1-positive
cells, which belong to a group of multipotent cell populations in the second heart field,
are involved in the formation of the outflow tract and facial skin [127,131]. Interestingly,
ISL1-positive cells originated exclusively from the ventral surface of the heart below the
atrium. Further analysis revealed that the absence of LEC of the ISL1-positive lineage does
not affect the dorsal lymphatic vessels. This was speculated to be due to the maturation
of ISL1-positive LECs in response to a high concentration of retinoic acid in the ventricle
region [128].

In contrast to the century-old perspective of examining LEC origin in the lymph sac
or other tissue-specific sources during organ development, Oliver et al. proposed that the
paraxial mesoderm is the origin of all LECs [130]. The authors reported that myogenic
precursors in a somatic paraxial mesodermal cell line expressing PAX3 form the jugular
lymph sac and its derivative lymphatic vessels, such as the lymphatic vessels in the heart,
lung, and skin. Lineage-tracing using Myf5-Cre or Mef2c-AHF-Cre cell lines in combination
with ROSA26tdTomato can label PAX3-independent myogenic precursors from the paraxial
mesoderm. These precursors served as LEC progenitors. The Myf5-Cre line contributes to
the formation of lymphatic vessels in the lower jaw, meninges, ear skin, and a small portion
of the lymph sac. The Mef2c-AHF-Cre line contributes to the formation of the second
heart field. According to the ISL1 LEC study, these cells differentiate into LECs in the
anterior jugular lymph sac, ventral cardiac LEC, and cervicothoracic dermis. The authors
have claimed that they have captured the earliest steps in LEC differentiation before the
involvement of the SOX18-NR2F2-PROX1 axis. This study warrants further lymphatics-
related research focusing on the paraxial mesodermal lineage. Studies on the signaling
network between the paraxial mesoderm lineage cells and the surrounding environment
could provide useful insights into the molecular signals required for LEC specification.
Additionally, the contribution of other PAX3-positive non-paraxial mesoderm sources to
the LEC population could be investigated. The early lineage of mesenteric and intestinal
lymphatic vessels has not been identified. Additional investigation of c-KIT-positive cells
could reveal specific requirements for LEC specification.

The blood vessels and their tissue-specific functions have been extensively studied,
and their tissue-specific functionalities have been highlighted. The identification of tissue-
specific BECs led to the speculation of tissue-specific LECs. Thus, various studies have
examined the different origins of LECs and endorsed their tissue specificity. Further studies
are needed to examine the process of progenitors in the specification of definitive LEC fate,
which will provide useful information on the mechanism of LEC induction. The increased
number of HTS analyses and the discoveries of key factors have laid the foundation for the
elucidation of LEC differentiation and the development of novel therapeutic strategies for
LEC-related diseases, and the prospects are promising.
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5. Conclusions

Lineage-tracing experiments and sequencing technologies with increased precision
and functionality have enabled the elucidation of lymphatic system developmental pro-
cesses. In the last decade, lineage-tracing studies have identified various key factors
involved in lymphatic development and the contribution of previously unknown cells to
the formation of LECs. Oliver et al. used lineage-tracing to demonstrate that priming for
LEC specification occurs during mesoderm formation, before the emergence of the lymph
sac [130]. However, some studies have raised concerns about the accountability of Cre-
mediated recombination in lymphatic vessel-related studies [125,126]. Hence, additional
validation steps must be considered in lineage-tracing experiments.

While lineage-tracing experiments focus on the origin of the LECs, sequencing experi-
ments reveal the mechanism of LEC specification. HTS can identify the transcription profile
of developing cells and indicate the importance of epigenetic regulation in developmental
processes. Moreover, single-cell sequencing has increased in its precision and capacity
to scope more cells [132] and databases, such as the EC atlas and MOCA, accumulating
a vast amount of single-cell sequencing data [133,134]. However, these databases are
not constructed specifically for LEC studies. The amount of LEC data included in these
databases is insufficient for independent LEC analysis. Single-cell sequencing analysis
of LECs from two or more different embryonic organs could provide useful information
for the characterization of tissue-specific LEC development. In addition to the techniques
currently used for developmental studies, recent studies have developed novel, cutting-
edge techniques, such as artificial intelligence-based predictions of protein structure and
function [135]. These techniques may aid in elucidating molecular interactions during
LEC development and in establishing a complete LEC development map. Consequently, a
complete LEC development map can contribute to the identification of effective therapeutic
strategies for LEC-related diseases and determine the physiological advantage of enhanced
lymphatic vessel functionalities.
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