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Resident proteins of the exocytic pathway contain at least two types of 
information in their primary sequence for determining their subcellular 
location. The first type of information is found at the carboxyl terminus of 
soluble proteins of the endoplasmic reticulum (ER) and in the cytoplasmic 
domain of some ER and Golgi membrane proteins. It acts as a retrieval 
signal, returning proteins that have left the compartment in which they reside. 
The second type of information has been found in the membrane-spanning 
domain of several ER and Golgi proteins and, though the mechanism by 
which it operates is still unclear, it acts as a retention signal, keeping the 
protein at a particular location within the organelle. The presence of both 
a retrieval signal and a retention signal in a trans-Colgi network resident 
protein suggests that more than one mechanism operates to ensure correct 

localization of resident proteins along the exocytic pathway. 
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Introduction 

Current opinion favours the idea that the vast majority of 
proteins synthesized in the ER leave this organelle by de- 
fault [l]. This unrestricted transport, often referred to as 
the bulk flow, continues along the exocytic pathway un- 
til the proteins reach the plasma membrane. A subset of 
molecules, however, resists bulk flow. These include en- 
zymes involved in post-translational modifications such 
as protein folding, glycosylation, sulphation and phos- 
phorylation. Each of these enzymes needs to be main- 
tained at particular points along the exocytic pathway. 
At least two types of signal would ensure such com- 
partmental localization. The first, termed a retention 
signal, would permit movement along the bulk-flow 
pathway until the correct site had been reached. For- 
ward movement would then be prevented by denying 
the protein access to budding transport vesicles of the 
anterograde pathway. The second type of signal, termed 
a retrieval signal, would only act once the protein had left 
the compartment in which it resides. This signal would 
depend on specific binding to components involved in 
retrograde transport. Resident proteins that contain only 
retrieval signals would be expected to cycle rapidly be- 
tween two or more compartments. The presence of a 
retention signal would reduce the need for recycling in 
direct proportion to the strength of the retention signal. 
The balance between the strengths of retention and re- 
trieval signals would be determined by whether a protein 
functions by remaining exclusively in a compartment 
(e.g. Golgi enzymes) or by cycling between adjacent 

the 

compartments on a pathway (e.g. TGN38; see below). 
Below is a detailed description of examples of both re- 
tention and retrieval signals found in resident proteins 
of the exocytic pathway and the mechanisms by which 
they operate. Examples of less well characterized signals 
can be found in the reference list [2*,3,4’,5’,6,7,8’,S*]. 

The KDEL retrieval signal 

The carboxy-terminal tetrapeptide KDEL (single-letter 
code for amino acids) is found in many proteins resident 
in the lumenal ER. When transplanted into various re- 
porter molecules, it localizes them to the ER, showing 
that it is both necessary and sufficient for this process 
[lo]. However, these reporter molecules display post- 
translational modifications that are carried out by en- 
zymes in the Golgi apparatus, showing that they have 
left the ER at least once during their lifetime. This 
finding has revived an earlier hypothesis that proteins 
resident in the ER escape it and enter the Golgi ap- 
paratus, where they are sorted and returned to the ER 
[ 111. A sorting receptor was postulated and later iden- 
tified both in yeast [12,13] and in mammals [14,15]. At 
steady state, the receptor, termed erd 2, localizes to the cis 
side of the Golgi apparatus and upon ligand binding re- 
distributes to the ER [16]. Biochemical characterization 
of the receptor showed that it specifically binds the ligand 
and does so in a pH-dependent manner, with an opti- 
mum around pH 5.0 [17*]. It has been observed that 

Abbreviations 
ER-endoplasmic reticulum; NACT I--l\l-acetylglucosaminyltransferase I; TCN-trans-Colgi network. 
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the pIi along the exocytic pathway becomes increas- 
ingly acidic towards the rrans-Golgi tietwork (TGN), 
and it is likely that this allows erd 2 to bind its lig- 
and with high affinity. The binding would then signal 
the receptor and its ligand to be returned to the ER, 
where a more neutral pH would release the ligand into 
the lumen. Erd 2 would then return to its original lo- 
cation, where it would await another round of ligand 
delivery. The cycling of the receptor raises the question 
as to whether the receptor itself has a retrieval signal. Ex- 
tensive mutational analysis of its cytoplasmic domain has 
failed to reveal any mutants deficient in retrograde trans- 
port, arguing that this domain of erd 2 does not contain 
a retrieval signal. Instead, it was shown that an aspartic 
acid residue in one of the seven membrane-spanning do- 
mains was crucial for its retrograde movement [ 18.1. This 
was a rather surprising finding, but helical-wheel repre- 
sentation suggested that this aspartic acid residue was in 
a position to interact with the membrane-spanning do- 
main of another protein. Upon binding to the l&and, 
the receptor would be induced to oligomerize, form- 
ing patches which would trigger retrograde movement. 
Whether the formation of such patches is sufficient for 
recycling or additional signals are needed remains to be 
established. 

The K(X)KXX and the RR retrieval signals 

Several ER-resident membrane proteins have now been 
shown to contain signals similar to that of the KDEL 
motif in their cytoplasmic domains [19,20,21*]. In resi- 
dent proteins with a type I topology (amino terminus is 
in the lumen), the signal has been shown to consist of 
two critical lysines, which have to be in a -3 and a d/-5 
position relative to the carboxyl terminus [-K(X)KXX, 
where X is any amino acid]; in type II proteins (car- 
boxy1 terminus is in the lumen), the signal consists of 
two critical arginines (RR), which have to be within 
the first five amino-terminal residues of the protein. 
When transplanted into reporter molecules, these mo- 
tifs are both necessary and sufficient for ER localization, 
yet allow the reporter molecule to acquire Golgi mod- 
ifications [21*,22*]. They are, therefore, similar to the 
KDEL motif in that they act as retrieval signals, return- 
ing lost ER proteins from as far away as the rratrs-Golgi 
cisternae. It is not clear, though, whether these motifs 
are recognized by receptors similar to the one identified 
for the KDEL motif or whether they interact directly 
with components of a retrograde transport machinery. 
Microtubules play an intrinsic role in retrograde trans- 
port, and the K(X)KXX motif can drive polymerization 
of microtubules in vitro, [23]. This motif has recently been 
shown to bind specifically to coatomer [24*], a compo- 
nent involved in vesicle-mediated transport. Whether or 
not binding to coatomer and microtubules negates the 
need for a receptor remains to be seen. 

It is becoming increasingly clearer that the sole determi- 
nants for correct localization camlot be the double ly- 
sine or the double arginine, nor can it be the KDEL 
retrieval motif, as these motifs can be found in pro- 
teins that are not residents of the ER. For example, 
ERGIC 53, a type I transmembrane protein, and ~63, a 
type II transmembrane protein, contain the double lysine 
and the double arginine motif, respectively [25,26]. Yet 
both these molecules localize to the intermediate com- 
partment, as does the soluble KDEL-containing CaBPl 
(calcium binding protein 1) [27]. Although both mor- 
phological and biochemical evidence shows that the in- 
termediate compartment is physically connected to the 
ER [28], this connection does not explain how these 
molecules may localize at steady state to this ‘sub’ com- 
partment. Furthermore, removal of the K(X)KXX motif 
from an endogenous ER enzyme, UDP glucuronosyl- 
transferase (UDP-GT), does not result in loss of ER re- 
tention [22*] and oligosaccharide analysis of endogenous 
ER proteins has failed to reveal any Golgi modifications 
[29], suggesting that endogenous ER proteins hardly ever 
leave this organelle. Retention signals must, therefore, 
exist in proteins endogenous to the ER as well as to 
the intermediate compartment, and must operate in- 
dependently of the ER retrieval signals described above. 
The latter would then correct for those rare mistakes that 
result in loss of residency. A clue as to where such re- 
tention signals may reside comes f?om studies carried out 
on resident enzymes of the Golgi apparatus. 

The membrane-spanning domain as a retention 
signal 

So far, all characterized Golgi glycosylation enzymes 
have been shown to have a type II topology and to 
be anchored in the membrane by their uncleaved sig- 
nal peptide. It is this domain that has received a lot of 
attention during the past three years as several groups, 
including ours, have shown that the membrane-span- 
ning domain (the signal anchor) and part of its flanking 
regions contain sufficient information for Golgi local- 
ization (see [30,31*] for references). This was shown 
by replacing the membrane-spanning domain and part 
of the flanking regions of various reporter molecules 
with corresponding regions of different Golgi-resident 
enzymes. These reporter molecules were found to be 
retained in the Golgi apparatus, and in those studies 
in which immuno-electron microscopy was used, were 
even retained in the correct cisternae (see [30,31*] for 
references). Similarly, the membrane-spanning domains 
of a resident protein of the nuclear membrane, which 
is continuous with the ER, were found to be sufEcient 
for correct localization [32]. The mechanism for Golgi 
retention could not be saturated by overexpression, sug- 
gesting that retention is not a receptor-mediated event. 
This led to the conclusion that the membrane-spaIlniIlg 
domain is a retention rather than a retrieval signal, and 



Retention and retrieval Nilsson and Warren 519 

two types of model have been put forward to explain 
how a membrane-spanning domain could mediate re- 
tention. The first model is based on retention through 
oligomerization, and the second model postulates reten- 
tion through differences in membrane thickness along 
the exocytic pathway. 

Retention through oiigomerization 

We and others noted that overexpression of Bl,Cgalac- 
tosyltransferse (GalT) and a2,6-sialyltransferse (SialylT) 
did not lead to cell-surface expression [33,34]. Instead, 
these rrans-Golgi enzymes backed up into the ER, 
an observation consistent with premature oligomeriza- 
tion caused by high levels of expression. Because the 
membrane-spanning domain and part of the flanking 
regions df both GalT and SialylT were sufficient to 
mediate this effect, it was postulated that these domains 
would aid in the formation of oligomeric structures that 
are large enough to ensure exclusion from anterograde 
transport vesicles [31*,33,35]. 

Evidence exists for higher order structures consistent 
with such oligomers. Machamer and co-workers [36] 
showed that the first membrane-spanning domain of 
the El protein of IBV (avian coronavirus infectious 
bronchitis virus) mediates oligomerization of a reporter 
molecule, the G protein of VSV (vesicular stomatitis 
virus), in the Golgi apparatus. Extensive mutational anal- 
ysis of the IBV El membrane-spanning domain showed 
that polar residues, lining one face of a predicted a-helix, 
are important both for the retention and oligomeriza- 
tion of this molecule [37*]. This type of sidedness of 
polar residues is also found in the membrane-spanning 
domains of other resident Golgi enzymes, suggesting a 
role for these residues in Golgi retention. 

Another example of higher order structures comes from 
work on purifed rat liver Golgi membranes, from which 
large structures can be isolated after detergent extraction. 
These structures consist mainly of rrre&LGolgi enzymes 
and can be reversibly disassembled by the addition of salt 
[38]. It is not yet clear what type of interactions main- 
tain these structures under detergent conditions, but it 
is clear that rrrc&a/-Golgi enzymes have the capacity 
to form hetero-oligomers. This was demonstrated by 
selectively localizing N-acetylglucosaminyltransferase I 
(NAGT I) to the ER [39*]. The cytoplasmic domain 
of this enzyme was replaced with that of an ER-resident 
protein, the human invariant chain, ~33, which harbours 
a double arginine retrieval signal at its amino terminus 
[21*]. When this p33/NAGT I hybrid protein was ex- 
pressed in the ER, another rrrcdial enzyme, mannosidase 
11, accumulated in this compartment also. It seems likely 
that these were not the only rr&ia/ enzymes to accumu- 
late in the ER, as increasing levels of p33/NAGT I re- 
sulted in a complete disappearance of recognizable Golgi 

stacks. This not only argues for extensive oligomers, but 
also suggests that medial enzymes play a structural role in 
the organization of the Golgi stack. We also showed that 
the membrane-spanning domain and part of the stalk re- 
gion of NAGT I were necessary but not sufficient for 
these effects, linking these parts of the molecule to the 
formation of hetero-oligomers [39*]. 

Retention through membrane thickness 

The striking observation that the membrane-spanning 
domain of SialylT could be replaced with polyleucines 
without loss of Golgi localization suggested that the 
primary sequence of this domain was not required for 
Golgi localization [34], a conclusion supported by the 
recent work of Dahdal and Colley [40]. Furthermore, 
Masibay er al. [41*] observed that the hydrophobic parts 
of membrane-spanning domains of Golgi residents are, 
on average, shorter than those of plasma membrane pro- 
teins. This is due, in part, to the presence of more po- 
lar residues in the membrane-spanning domains of Golgi 
residents. This, coupled with the observation that length 
of the membrane-spanning domain was important for 
retention [34,41-l, led Bretscher and Munro [42] to sug- 
gest that the thickness of the membrane determines the 
point at which resident Golgi enzymes are retained. This 
model relies on the observation that the ER has a low 
cholesterol content as compared with the plasma mem- 
brane. Early work by Orci et al. [43] suggested that a 
gradient of cholesterol exists across the Golgi stack. This 
gradient would be maintained by budding vesicles selec- 
tively enriching their membrane with cholesterol. These 
vesicles would, therefore, have a thicker membrane than 
the compartment from which they bud. The distribution 
of Golgi enzymes across the Golgi stack would thus re- 
flect the different lengths of their membrane-spanning 
domains. 

There is insufflcient evidence to decide which of these 
two mechanisms is correct or whether the truth lies 
somewhere in between. However, it is worth pointing 
out that retention itself must be a regulated process. For 
example, resident enzymes of the Golgi apparatus en- 
ter transport vesicles during mitosis [44,45]. This is so 
that the Golgi apparatus can be broken down into vesi- 
cles, a process that appears to ensure equal partitioning of 
the organelle between the two daughter cells [46]. One 
possible mechanism would involve changing the phos- 
phorylation state of the cytoplasmic domains of each 
resident enzyme. As the cytoplasmic domains of Golgi 
residents are known to play an accessory role in re- 
tention [33], this might be expected to relax retention, 
thereby allowing residents to enter budding vesicles. Be- 
cause resident enzymes play a significant role in main- 
taining organelle structure [39-l, an understanding of 
the mechanisms that regulate retention will ultimately 
lead to the rules that govern organelle structure. 
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Retention and retrieval . 

So far, we have described two different signals for com- 
partmentalization along the exocytic pathway and sug- 
gested that both might be present in some proteins. 
Diiect evidence that this is the case has been pro- 
vided by work on TGN3rr, a resident of the truns Golgi 
network. TGN38 [47*-49*] and other proteins of the 
TGN, in both mammals (furin; [50]) and yeast (dipep- 
tidy1 aminopeptidase A; [51]), have been shown to have 
a localization signal in their cytoplasmic tail. In the case 
of TGN38, this tyrosine-based signal (-YQRL-) can be 
transplanted into various reporter molecules which then 
localize to the TGN, showing that it is both necessary 
and sufficient for localization. Deletion or point muta- 
tion of this signal leads to the accumulation of TGN38 
on the cell surface, suggesting that it normally acts as 
a retrieval signal. This conclusion is borne out by the 
observation that TGN38 is known to cycle between 
the TGN and the plasma membrane and by the re- 
semblance of the YQRL motif to other internaliza- 
tion signals found in plasma membrane receptors (e.g. 
the transferrin receptor). Although the YQRL signal by 
itself can localize TGN38, an additional signal exists in 
the membrane-spanning domain which is also sufficient 
for localization to the TGN [52*]. This signal is similar to 
those retention signals just described for Golgi-resident 
enzymes. It now remains to be seen whether retention 
and retrieval signals can co-exist in other resident pro- 
teins along the exocytic pathway. 
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