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Abstract

Preeclampsia remains a leading cause of maternal and perinatal morbidity and mortality.

Accurate prediction of preeclampsia risk would enable more effective, risk-based prenatal

care pathways. Current risk assessment algorithms depend on clinical risk factors largely

unavailable for first-time pregnant women. Delivering accurate preeclampsia risk assess-

ment to this cohort of women, therefore requires for novel biomarkers. Here, we evaluated

the relevance of metabolite biomarker candidates for their selection into a prototype rapid,

quantitative Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) based clinical

screening assay. First, a library of targeted LC-MS/MS assays for metabolite biomarker can-

didates was developed, using a medium-throughput translational metabolomics workflow,

to verify biomarker potential in the Screening-for-Pregnancy-Endpoints (SCOPE, European

branch) study. A variable pre-selection step was followed by the development of multivari-

able prediction models for pre-defined clinical use cases, i.e., prediction of preterm pre-

eclampsia risk and of any preeclampsia risk. Within a large set of metabolite biomarker

candidates, we confirmed the potential of dilinoleoyl-glycerol and heptadecanoyl-2-hydroxy-

sn-glycero-3-phosphocholine to effectively complement Placental Growth Factor, an estab-

lished preeclampsia biomarker, for the prediction of preeclampsia risk in first-time pregnan-

cies without overt risk factors. These metabolites will be considered for integration in a

prototype rapid, quantitative LC-MS/MS assay, and subsequent validation in an indepen-

dent cohort.
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Introduction

Preeclampsia remains a leading cause of maternal death throughout the world and is responsi-

ble for considerable neonatal morbidity and mortality [1]. Management of preeclampsia risk

throughout pregnancy therefore remains a key aspect of prenatal care worldwide. The accurate

prediction of preeclampsia risk early in pregnancy has been flagged as a research priority in

many clinical guidelines [2, 3] as it would enable risk-based prenatal care pathways, and hence

more effective utilisation of prenatal care resources. The possible patient benefits of accurate

preeclampsia risk prediction have recently been reaffirmed in the ASPRE trial, which reported

that aspirin prophylaxis in women identified to be at risk of preeclampsia before 37 weeks of

gestation, so-called preterm preeclampsia, reduced the incidence rate of preterm preeclampsia

by 62% [4].

The National Institute for Health and Clinical Excellence (NICE) in England and the Amer-

ican College of Obstetricians and Gynecologists (ACOG) in the United States recommend the

use of maternal demographic, obstetrical history and overt medical risk factors in simple

dichotomous classifications to determine low or high risk status for the development of pre-

eclampsia [5, 6]. However, the prediction accuracy of such approaches is limited. Using the

NICE guidelines, sensitivity of 39% for preterm preeclampsia and 34% for term preeclampsia

at 10.3% false positive rate (FPR) were reported; the corresponding sensitivity using the

ACOG recommendations were 90% and 89%, but at 64.3% FPR [5, 7, 8]. This led clinical

researchers to develop multivariable models which utilize these clinical risk factors to compute

risk scores, as recently reviewed by Brunelli et al [9]. Several of these were subjected to external

validation in two recent Dutch studies [10, 11], showing such models do have some moderate

risk prediction ability, with some likely to outperform clinical guidelines [10]. However, these

studies also re-iterated that the predictive performance decreased significantly in first-time

pregnant women. Myers et al. further corroborated this finding by showing that in a popula-

tion of low risk nulliparous women, detection rates for preterm preeclampsia were only 16.1%,

26.5% and 22.2% for respectively the NICE classifier [5], the maternal risk based competing

risk model underpinning the classifier used in the Combined Multimarker Screening and Ran-

domized Patient Treatment with Aspirin for Evidence-Based Preeclampsia Prevention

(ASPRE) trial [12], and an alternative risk scoring method as proposed by Sovio et al [13, 14].

The need for novel biomarkers to improve preeclampsia prediction in nulliparous women

without apparent risk factor is further emphasized by the fact that nulliparity is associated with

increased risk (RR = 2.1 (1.9 to 2.4)) and accounts for the largest single population attributable

fraction (32.3%) for preeclampsia [15].

To date, the most studied biomarker in preeclampsia is Placental Growth Factor (PlGF),

the levels of which tend to drop in a sub-group of women destined to develop preeclampsia

[16], and which has some demonstrated risk prediction potential [17]. Its use, in combination

with maternal characteristics, medical history, obstetric history, blood pressure and, where

available, uterine artery doppler measurements, is gaining acceptance for prediction of pre-

term preeclampsia risk in the general pregnancy population [18]. Yet additional biomarkers

are still required to complement PlGF to improve preeclampsia risk prediction in nulliparous

women without apparent risk factors.

The aim of this work was to inform the development of a novel biomarker-assisted test for

the early and accurate prediction of preeclampsia risk in low-risk nulliparous women. With

preeclampsia recognised as being a syndromic condition, accurate prediction of preeclampsia

will require for several biomarkers to account for different preeclampsia subtypes and/or

patient risk profiles [19–21]. Because liquid chromatography-triple quadrupole mass spec-

trometry (LC-QqQ-MS) is a well-established analytic technique used in clinical laboratories
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worldwide for multiplex metabolite analysis, such as neonatal screening for inborn errors of

metabolism [22], we set metabolite “assay-ability” by LC-QqQ-MS as a stage-gate biomarker

selection criterion. This will ensure that any biomarker panel identified will be easily portable

to in vitro diagnostic workflows already operated in clinical laboratories.

We previously reported a metabolomic biomarker discovery study for early pregnancy pre-

diction of later preeclampsia [23]. Building on these results (and those of others; S1 File & S1

Table), we set out to consolidate a panel of metabolite biomarkers which could be used in con-

junction with PlGF to deliver accurate preeclampsia prediction in nulliparous women.

Firstly we developed a translational research workflow based on LC-QqQ-MS based metabo-

lite quantification; only candidate biomarkers amenable to this workflow were considered for

further analysis in a case-control study. Biomarkers with univariable prediction merits were

pre-selected for the development of risk predictor models. Models were evaluated in function of

two pre-defined clinical use scenarios: (1) identify women at risk of developing preterm pre-

eclampsia (primary objective), and (2) identify women at risk of developing preeclampsia at any

stage of the pregnancy (secondary objective). We found that combining dilinoleoyl-glycerol

(DLG) with PlGF effectively predicted increased preterm preeclampsia risk at ca. 15 weeks of

gestation. The further addition of heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine

(1-HGP) expanded the capacity to also identify pregnant women at decreased risk of developing

any form of preeclampsia. PlGF, DLG and 1-HGP were therefore proposed for progression to

the final development stage of a risk prediction test for (preterm) preeclampsia and subsequent

validation in the IMproved Pregnancy Outcomes by Early Detection (IMPROvED) study [24].

Materials and methods

Study design

Previously reported metabolomic biomarkers discovered in plasma samples from participants

of the New Zealand and Australian Cohort of the Screening for Pregnancy Endpoints (SCOPE)

study were considered [23]. A curation was performed to address any metabolite identification

uncertainty, followed by a pragmatic purging of metabolites without readily available reference

materials. The resulting metabolite candidates were selected for LC-MS/MS assay development.

Upon establishment of the Analytical Workflow (see below), the selection was supplemented

with some additional putative metabolite biomarkers as reported by others; plausibility, ready

availability of reference materials, and workflow compatibility were considered (S1 File & S1

Table). The resulting panel of putative metabolite biomarkers was then further assessed for its

potential to meet pre-defined clinical use cases in a case-control study (see below).

Study population

All samples were obtained from participants in the European centres of the SCOPE study

(Cork, Ireland; Leeds, London and Manchester, UK) between November 2004 and August

2008. Blood samples were prospectively collected from low-risk nulliparous women between

14 weeks and zero days and 16 weeks and six days gestation (or 15±1 week). The diagnosis of

preeclampsia was made at any stage during pregnancy after recruitment until delivery, or in

the first 2 weeks postpartum.

Preeclampsia was defined according to the International Society for the study of Hyperten-

sion in Pregnancy (ISSHP) [25] (S2 File). Clinical data on known preeclampsia risk factors

were collected at 15±1 and 20±1 weeks of gestation by interview and examination of the

women. Ultrasound data were obtained at 20 weeks on fetal measurements, anatomy, uterine

and umbilical artery Doppler, and cervical length. Fetal growth, uterine and umbilical Dop-

plers were measured at 24 weeks. Pregnancy outcome was tracked and each woman seen
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within 48 hours of delivery at which stage new-born measurements were obtained [26]. Cus-

tomised birthweight centiles were based on the UK customised centiles, adjustments were

made for maternal height, weight at 15±1 weeks visit, ethnicity, sex and weight of the new-

born and gestation at delivery [27].

Inclusion and exclusion criteria. The inclusion criteria were nulliparity, singleton preg-

nancy, gestational age between 14 weeks and zero days and 16 weeks and six days, and

informed consent to participate. The exclusion criteria applied included: i) uncertainty of last

menstrual period (LMP) and unwillingness to have an ultrasound scan at� 20 weeks’ gesta-

tion; ii) known major fetal anomaly or abnormal karyotype; iii) underlying medical conditions

(essential hypertension treated pre-pregnancy, moderate-severe hypertension at booking

[�160/100 mmHg], diabetes, renal disease, systemic lupus erythematosus, anti-phospholipid

syndrome, sickle cell disease, HIV positive), previous knife cone biopsy,�3 miscarriages or

�3 terminations, current ruptured membranes, major uterine anomaly, cervical suture; and

iv) treatment with: long term steroids, low-dose aspirin, calcium (>1 g/24h), eicosopentaenoic

acid, vitamin C�1000 mg, vitamin E� 400 IU, or low molecular weight heparin.

Ethical considerations. Ethics approval was gained from local ethics committees of each

participating centre (Manchester, Leeds, and London 06/MRE01/98, Cork ECM5 (10) 05/02/

08) and written informed consent was obtained from all participants. Collection of data and

biological samples complied with standardised procedures in all participating centres and was

conducted in accordance with the principles of the Declaration of Helsinki.

Case-control study. Biobanked EDTA plasma samples from all participants with a con-

firmed pregnancy outcome of the European branch of SCOPE were available. Within the

n = 2364 cohort of pregnant women, 97 developed preeclampsia and 2266 did not develop pre-

eclampsia. EDTA plasma samples from the 97 preeclampsia case patients and 335 randomly

selected non-preeclampsia control patients were considered for analysis in the case-control

study. The demographic and clinical characteristics of the control population selected for the

study were compared pairwise and the lack of significant bias was verified (p<0.01, multiple

testing correction, Chi square, Mann Whitney U test, Kruskal-Wallis test and Spearman corre-

lation test as applicable).

Clinical use cases

In consultation with a panel of clinicians, two relevant clinical use scenarios were established

for stratifying nulliparous pregnant women without overt risk factors to their preeclampsia

risk. These translated to three performance criteria for eventual predictor models relevant to

the intended use population: (1) a rule-in classification to identify women at high risk of devel-

oping preterm preeclampsia (risk� 5%, Positive Predictive Value (PPV)�0.05); (2a) a rule-in
classification identifying women at high risk of developing preeclampsia at any stage of the

pregnancy (risk�15%, PPV�0,15); and (2b) a rule-out classification identifying women at low

risk of developing preeclampsia at any stage of the pregnancy (risk�1%, Negative Predictive

Value (NPV)�0.99). Given that the target pregnancy population constitutes healthy first-time

pregnant women, the comparator for the different classifications was defined as prediction

models constituting any of the following established predictors: PlGF, body mass index (BMI)

and Mean Arterial Pressure (MAP): the second set of blood pressure measurements was used

to calculate MAP, as reported earlier [28].

Reagents and instrumentation

Chemicals and reagents used were of high-performance liquid chromatography (HPLC) and

mass spectrometry (MS) grade or higher (Fischer Scientific, Blanchardstown, Ireland).
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Metabolite reference substances and stable isotope-labelled standards were purchased from Fluka

(Arklow, Ireland), Fischer Scientific (Blanchardstown, Ireland), IsoSciences (King of Prussia, PA,

USA), Sigma-Aldrich (Wicklow, Ireland), Avanti Lipids (Alabaster, Alabama, USA), QMX Labo-

ratories (Thaxted, UK), LGC (Teddington, U.K), Alfa Chemistry (Holtsville, NY, USA), Generon

(Maidenhead, UK), Larodan (Solna, Sweden) and R&D Systems (Abingdon, UK).

For sample preparation, a liquid handling robot, equipped with a 96 LT disposable Tip

Head, an orbital shaker station and a Peltier Thermal Station, was used (Agilent Bravo Auto-

mated Liquid Handling Platform, Agilent Technologies, Santa Clara, CA, USA).

Targeted metabolite LC-MS/MS analysis was performed using a 1260 Infinity LC system

(Agilent Technologies, Waldbronn, Germany) coupled to an Agilent Triple Quadrupole 6460

mass spectrometer (QqQ-MS) equipped with a JetStream Electrospray Ionisation (ESI) source

(Agilent Technologies, Santa Clara, CA, USA).

Analytical workflow

An analytical workflow which complied with pre-defined requirements (outlined in S3 File)

was developed. A library of targeted LC-MS/MS assays, based on Multiple Reaction Monitor-

ing (MRM), was established for the pre-selected metabolites and, if commercially available,

corresponding stable-isotope labelled metabolite internal standards (SIL-IS). The panel of

metabolites and SIL-IS were distributed over two multi-analyte LC-MS/MS methods. These

featured two complementary chromatographic separations, i.e., Reversed Phase Liquid Chro-

matography (RPLC) and Hydrophilic Interaction Liquid Chromatography (HILIC). For

RPLC, Zorbax Eclipse Plus C18 Rapid Resolution HD 2.1mm x 50mm, 1.8-Micron (P.N.

959757, Agilent Technologies) columns were used, and for HILIC, Ascentis Express HILIC

15cm x 2.1mm, 2.7 Micron (P.N. 53946-U, Sigma-Aldrich) columns. Both chromatographic

methods used 10-minute gradient elution programs and solvent systems enabling direct

hyphenation with ElectroSpray Ionisation (ESI)-MS detection. ESI polarity switching was

applied in function of metabolite ionisation characteristics. Mass spectrometry instrument

parameters were optimised, and LC-MRM assay parameters established for all metabolites and

SIL-IS. Further details on the assays and LC-MRM parameters are available in S4 File and S2,

S3 Tables respectively.

Sample analysis

Clinical samples (40 μL), calibrators and Quality Control samples (QCs) were re-configured in

analytical batches of 96 samples. The positions of Calibrators (n = 8), Analytical QCs (2�3),

and study pool QCs (n = 9) were kept identical across batches. Fifteen percent of clinical sam-

ples were selected for duplicate analysis. The samples, inclusive the duplicate samples, were

randomised for the analytical process using stratified randomisation over clinical centre, eth-

nicity, and preeclampsia. The absence of potential sources of experimentally induced bias was

confirmed by computing pairwise dependencies between the randomisation outputs (selec-

tion, batch, order) and clinical parameters; no significant associations were found. Further

information on the study and sample preparation is given in S5 File and S4, S5 Tables.

All batches were first analysed by RPLC-MS/MS and then by HILIC-MS/MS. Following

mass spectrometric analysis, the mass spectrometric signals of all measured quantifier and

qualifier transitions of the 54 assay-able metabolites and 38 SIL-IS were quantified using a pre-

defined quantification method compiled in Masshunter Quant Software vB.07.00 (Agilent

Technologies, Santa Clare, CA, USA) across all the samples analysed in the study. All data

were then reviewed by two independent analysts and any erroneous signal integration calls

made by the software curated; all manual curation was recorded for data integrity purposes.
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PlGF was analysed earlier as part of a large-scale assessment of putative protein biomarkers

within the SCOPE study using a Luminex Sandwich assay [28]. The latter data were made

available by the SCOPE consortium for this study.

Data pre-processing and quality assurance

All laboratory personnel were blinded to sample status (case or control) at all stages of the

study. Structured review of the calibrator signal data and signal data across all sample types

was performed to confirm metabolite quantifier transition selection, absence of interference in

the SIL-IS transitions, and final metabolite quantification metric. Next, pairwise dependencies

between metabolite quantification metrics and recorded experimental variables were com-

puted using the appropriate statistical tests; no aberrant correlations were found other than

some minor inter-day batch effects in some of the quantifications. For the metabolite quantifi-

cations exhibiting batch-to-batch differences, the relative concentrations were scaled per batch

using the ratio of the median concentration for the given batch over the overall median con-

centration (S6 Table).

Data missingness and imprecision criteria were assessed: data missingness for a given

metabolite quantification should be< 20% across all clinical samples, with the exception of

cotinine, a reporter metabolite for smoking status. Two imprecision metrics, expressed as coef-

ficient of variance (CV), were calculated: 1) for the replicate study-QC pool samples across all

batches and 2) for the 15% technical duplicates (randomly distributed across all samples).

Metabolites were selected when %CV� 25% for both metrics. Summary of the assay selection

for biomarker analyses based on quality assurance evaluation is provided in S6 Table.

Statistical analysis

Statistical analyses were performed using the statistical software R version 3.5 [29].

Predictor selection. In a first phase, variables were evaluated based on their stand-alone

predictive performance for preterm preeclampsia (<37 weeks of gestation), term preeclampsia

(> = 37 weeks of gestation) and preeclampsia. Variables considered were: all analytes as well

as the established risk factors for preeclampsia, blood pressure (MAP) and BMI. The discrimi-

native performance of each individual variable was quantified using the area under the receiver

operating curve (AUROC) [30]. Variables with a lower limit of the 95% confidence interval of

AUROC greater or equal to 0.50 (p�0.05) and AUROC greater than 0.60 were selected as

potential predictive markers for preeclampsia. In addition, false discovery rates (FDR) were

evaluated across the outcomes using label permutation as described by Storey and Tibshirani

using a conservative value for the proportion of truly null values, π0, of 1 and 2 x 104 permuta-

tions [31].

Modelling. The concentrations and relative concentrations of analytes were log-trans-

formed before any modelling. Analysis was performed on complete cases.

First, multivariable models were developed for the outcome ‘any preeclampsia’ using partial

least squares–discriminant analysis (PLS-DA) [32]. Comparator models based on any combi-

nation of PlGF, MAP and BMI were generated and evaluated in view of the clinical use cases

defined (S7 Table). Then, PLS-DA models for all preeclampsia were generated for all combina-

tions of PlGF, DLG and 1-HGP, followed by their evaluation. Secondly, recursive partitioning

was applied [33, 34] as an approximation for a Bayesian approach. Models were trained for

each of the two outcomes with all combinations of one to three of the preselected predictors.

Two to three partitions were made. PlGF was imposed as the first partition step. One to two

predictors per step were allowed. When two predictors were used in a partition, these were

combined using PLS-DA. To bias these PLS-DA models on non-placental preeclampsia, they
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were trained on patients with high PlGF, defined as a PlGF concentration higher or equal to

the concentration corresponding to the observed maximum accuracy for the prediction of any

preeclampsia. Again, comparator models using PlGF, MAP and BMI were generated (Table 3

and S7 Table) as well as partitioning models based on combinations of PlGF, DLG and

1-HGP.

All models were evaluated for the clinical use cases defined. For all models, cut-off values

for concentrations and scores were selected based on the rule-in PPV and rule-out NPV crite-

ria. PPV, NPV, sensitivity and specificity, and their respective 95% confidence intervals were

estimated at the given cut-offs using bootstrapping. For each model, the superiority of the

rule-in sensitivity and rule-out superiority as compared to reference models was computed by

estimating a difference in sensitivity or specificity using bootstrapping and paired T test (2,000

replicates, one-tailed test, Bonferroni correction for multiple testing, p<0.05). The reference

models were the single marker PlGF, the linear model PlGF+DLG and the recursive partition-

ing models PlGF||DLG and PlGF||MAP||BMI respectively.

Results

Study population

A nested case-control study (n = 432) was performed within the 2364 women recruited into

the European SCOPE cohort, for whom pregnancy outcomes were known. Twenty-three

women developed preterm preeclampsia (1%) and seventy-four (4%) developed term pre-

eclampsia. Background characteristics and outcomes of pregnancy in women who did and did

not develop preeclampsia are shown in Table 1. Mean age, and gestational age at sampling did

not differ significantly among the groups. Significant differences are observed for BMI and

blood pressure at sampling. Gestational age at delivery was lower in preeclampsia cases com-

pared with controls (no preeclampsia). Likewise, the babies born to preeclamptic women were

significantly lighter than the babies in the control group.

Metabolite selection

Initially, 58 previously identified putative metabolite biomarkers were selected as inputs for

this translational research; metabolites without ready-accessible reference materials available

were excluded, except for sphinganine-1-phosphate for which assay parameters could be

inferred from sphingosine-1-phosphate, leaving fifty-two metabolites for assay development.

An additional set of 20 putative metabolite biomarkers from other sources (S1 Table), deemed

compatible with the analytical workflow and with reference materials available, were chosen

for assay development. Eighteen metabolites were lost as they were found to be “non-assay-

able” with the analytical workflow developed for this translational work.

From the fifty-four (54) metabolites analysed in the case-control study, forty-two com-

plied with the pre-set quality assurance criteria. Two exceptions were allowed, 25-Hydroxy-

vitamin D3 and Eicosapentaenoic acid, which missed the criterion in one of the two types of

QC samples considered. One assay was removed due to being non-specific: the signal consti-

tuted contributions of 2-methylglutaric acid, glutamine and an unknown metabolite. Also,

one opportunistic marker was assessed: there were no detectable levels for 1,2-Dioctanoyl-

sn-glycero-3-phosphocholine, yet the same assay delivered a consistent signal at a slightly

different retention time. Comparison with reference materials confirmed this compound to

be 1-heptadecanoyl-glycero-3-phosphocholine, the latter was therefore analysed. This

resulted in data for forty-three metabolites being progressed to biomarker evaluation

(S6 Table).
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Predictor selection

Biomarkers and biometric variables selected based on their stand-alone prediction perfor-

mance of preterm, term or any preeclampsia are shown in Table 2. Mean Arterial Pressure

(MAP) showed significant discriminative performance for term and all preeclampsia

(AUROC = 0.67 and 0.69 respectively). BMI delivered similar discrimination for preterm,

term and all preeclampsia (AUROC = 0.63 and 0.65 respectively). DLG and PlGF stand-alone

prediction performances were higher for preterm preeclampsia (AUROC = 0.70 and 0.73

respectively). 1-HGP showed similar discriminative performance for both preterm and term

preeclampsia (AUC = 0.61) but this performance was only significantly superior to 0.50 for

term preeclampsia (p<0.05). With high FDR associated with the predictor selections for pre-

term preeclampsia and term preeclampsia, only the predictors as selected for preeclampsia

were considered as variables for modelling.

Modelling

Model development was targeted to answer two pre-set outcome based clinical use scenarios

(preterm preeclampsia and any preeclampsia), and three associated minimal performance

requirements, expressed as Positive and Negative Predictive Value thresholds (PPV and NPV,

as detailed in Methods–Clinical use cases). The multivariable models developed within this

framework are shown in Table 3; the comparator models based on the classic predictors MAP,

BMI and PlGF are available in S7 Table. For the primary objective, i.e., the detection of women

at increased risk for preterm preeclampsia at a pre-set PPV cut-off of� 0.05, the observed sen-

sitivity using only PlGF was 48% (PPV = 0.05), and up to 61% for the comparator models com-

bining PlGF with MAP and/or BMI. Combining PlGF with DLG by means of recursive

Table 1. Baseline characteristics of the study population.

No Preeclampsia Preeclampsia (n = 97)

SCOPE study (n = 2266) Samples selected (n = 335)

Gestation age at sampling, wks 15.5 (0.733) 15.6 (0.726) 15.6 (0.698)

Maternal age, yrs 30 (27–33) 30 (27–33) 30 (27–34)

White ethnicity 2145 (95%) 315 (94%) 92 (95%)

BMI at 15 weeks, kg/m2 23.9 (21.9–26.8) 23.5 (21.9–26.8) 26.1 (23.1–29.4) �

Waist circumference at 15 wks, cm 80 (74–86) 80 (74–86) 84 (78–91) �

Smoker at 15 wks 234 (10%) 42 (13%) 8 (8.2%)

Smoker during first trimester 617 (27%) 106 (32%) 28 (29%)

DBP at 15 wks, mm Hg 66 (7.4) 64.8 (7.15) 69.2 (7.31) �

SBP at 15 wks, mm Hg 105 (10.3) 104 (10.7) 111 (10.9) �

MAP at 15 wks, mm Hg 79.2 (7.65) 78.6 (7.45) 83.1 (7.84) �

Glucose at 15 wks, mmol/L 5.1 (4.6–5.8) 5.1 (4.6–5.6) 5.2 (4.5–5.7)

Max DBP, mm Hg 80 (74–86) 80 (74–85) 100 (95–107) �

Max SBP, mm Hg 126 (119–136) 125 (118–134) 154 (147–170) �

Proteinuria at delivery 52 (2.3%) 6 (1.8%) 90 (93%) �

Gestation age at delivery, wks 40.3 (39.3–41.1) 40.4 (39.6–41.3) 38.9 (37.1–40.3) �

Preterm delivery 97 (4.3%) 15 (4.5%) 23 (24%) �

Customised birthweight centile 45.2 (22.2–73.1) 44.4 (20.1–72.2) 28.4 (7.9–61.1) �

wks = weeks; yrs = years; DBP = Diastolic blood pressure; MAP = Mean arterial pressure; SBP = Systolic blood pressure. Count, median (interquartile range), mean

(standard deviation)

� = p<0.001; Chi square test, Mann Whitney U test or T test as appropriate.

https://doi.org/10.1371/journal.pone.0244369.t001
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partitioning increased the sensitivity significantly to 74% (PPV = 0.06). The resulting parti-

tioning rule-in model (PlGF || DLG) is shown in Fig 1. Predictor cut-off values in each parti-

tion step were 0.00526 ng/mL and 2.26 relative concentration (RC) for PlGF and DLG

respectively. By combining PlGF with a two-predictor partial least squares discriminant analy-

sis (PLS-DA) model constituting DLG and 1-HGP (PlGF || (DLG+1-HGP)), the sensitivity

could be increased further to 78% (PPV = 0.05; S1 Fig).

With regards to predicting increased risk for any type of preeclampsia at a pre-set PPV cut-

off of� 0.15 (secondary objective), comprehensive analysis of the generated prediction models

revealed that no classifier compliant with the PPV�0.15 requirement could be identified.

In models developed to meet the “rule-out” performance criteria (Table 3), specificity at the

target NPV�0.99 for preeclampsia improved from 0.02 (PlGF only) to 0.37 when combining

PlGF, DLG and 1-HGP predictors using recursive partitioning. The resulting partitioning

rule-out model (PlGF || DLG || 1-HGP) and the estimated predictive performance are shown

in Fig 2. Predictor cut-off values in each partition step were 0.00702 ng/mL, 1.12 RC and 0.458

RC for PlGF, DLG and 1-HGP respectively. This model compares favourably to the compara-

tor models combining PlGF with MAP and/or BMI; the best comparator model, i.e., the recur-

sive partitioning model PlGF || BMI || MAP delivers a rule-out specificity of 0.32.

Discussion

In this study we re-evaluated the relevance of a set of putative metabolite biomarkers to further

inform the development of a test to predict preeclampsia in nulliparous women without appar-

ent risk factors. Upon application of both technical assay-ability and data quality assurance cri-

teria, forty-three metabolites, PlGF and the biometric variables MAP and BMI, well-known to

associate with preeclampsia, were retained as predictors for consideration.

In line with the findings that placental pathology is more common in preterm preeclampsia

[35], we adopted the hypothesis that within the group of women who developed preterm pre-

eclampsia, there would be a greater prevalence of preeclampsia associated with placental

Table 2. Selection of predictors for multivariable modelling.

Selected predictors Preterm Preeclampsia; FDR: 59% Term Preeclampsia; FDR: 7.4% Preeclampsia; FDR: 2.8%

AUROC (95%CI) Effect size (95%CI) AUROC (95%CI) Effect size (95%CI) AUROC (95%CI) Effect size (95%CI)

MAP N/P N/A 0.69 (0.63–0.76) " 5.3 mmHg (3.3–7.7) 0.67 (0.61–0.73) " 4.7 mmHg (2.7–6.7)

BMI 0.65 (0.54–0.75) " 1.9 kg/m2 (0.4–3.5) 0.63 (0.56–0.70) " 2.0 kg/m2 (0.9–3.1) 0.64 (0.57–0.70) " 2.0 kg/m2 (1.0–2.9)

DLG 0.70 (0.59–0.82) " 1.45 (1.18–1.78) N/P N/A 0.61 (0.55–0.67) " 1.23 (1.09–1.37)

Choline 0.61 (0.50–0.72) " 1.09 (0.99–1.20) N/P N/A N/P N/A

Isoleucine N/P N/A 0.61 (0.54–0.68) " 1.12 (1.04–1.20) N/P N/A

1-HGP N/P N/A 0.61 (0.53–0.68) # 0.89 (0.82–0.96) 0.61 (0.54–0.67) # 0.89 (0.83–0.95)

2-Hydroxybutanoic acid 0.62 (0.50–0.73) " 1.16 (0.99–1.37) N/P N/A N/P N/A

NG-monomethyl-L-arginine 0.61 (0.50–0.72) " 1.08 (0.99–1.18) N/P N/A N/P N/A

Decanoylcarnitine N/P N/A 0.60 (0.53–0.67) " 1.32 (1.08–1.63) N/P N/A

PlGF 0.73 (061–0.85) # 0.43 (0.29–0.89) N/P N/A 0.60 (0.53–0.67) # 0.71 (0.57–0.89)

Predictor selection based on predictive performance as a single marker (AUROC>0.60, LCI�0.50) and median effect size� compared to controls.

�Effect size: median difference for BMI and MAP and median fold change for analyte concentration (95% confidence interval); AUROC = area under the receiver

operating curve (95% confidence interval); LCI = lower confident interval; CI = confident interval; N/P = No predictive performance; N/A = Not applicable;

MAP = Mean Arterial Pressure; BMI = Body mass index; DLG = Dilinoleoyl-glycerol; 1-HGP = 1-Heptadecanoyl-2-hydroxy-sn-glycero-3 phosphocholine

" = up-regulated compared to controls

# = down-regulated compared to controls; FDR = false discovery rate.

https://doi.org/10.1371/journal.pone.0244369.t002
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insufficiency, whereas the group of women developing term preeclampsia would be more

reflective of preeclampsia of maternal origin [36]. Hence, in addition to the outcome pre-

eclampsia, we considered the outcomes preterm and term preeclampsia as two disease sub-

types in the process of pre-selecting variables.

This led to an initial selection of twelve predictors, comprising the clinical risk factors rele-

vant in the low-risk population studied (e.g., MAP and BMI), PlGF and nine metabolites from

the original set of forty-three quantified metabolites. For all predictors but BMI, the single var-

iables showed discriminative performance which aligned with the prediction of either preterm

preeclampsia or term preeclampsia. This observation supports the assumption that in this

study population the two disease subtypes considered do indeed align well with distinct under-

lying physiological pathways. Interestingly, we note that in this study population, MAP is only

a stand-alone predictor for term preeclampsia and not for preterm preeclampsia, whereas typi-

cally MAP is reported to be a strong stand-alone predictor for preterm preeclampsia [37].

With high FDR associated with the predictors selected for preterm and term preeclampsia, we

restricted the final predictor selection for modelling to these predictors which showed perfor-

mances when assessed for all preeclampsia prediction, i.e., the biometric predictors MAP and

BMI and the biomarkers PlGF, DLG and 1-HGP.

Consultation with a panel of clinicians (IMPROvED Consortium meeting, London 2018;

see also Acknowledgements) established two relevant clinical use scenarios for stratifying

Table 3. Prediction models for the pre-set clinical use scenarios.

Primary Objective: Prediction of increased risk of preterm preeclampsia at PPV > = 0.05

Model Method AUROC PPV Sensitivity Specificity
PlGF (ref) N/A 0.73 (0.61–0.85) 0.059 (0.033–0.096) 0.48 (0.26–0.70) 0.89 (0.86–0.93)

DLG N/A 0.70 (0.59–0.82) 0.054 (0.027–0.091) 0.39 (0.22–0.61) 0.90 (0.87–0.93)

PlGF + DLG (ref) PLS-DA 0.79 (0.69–0.89) 0.056 (0.034–0.082) 0.57� (0.39–0.74) 0.86 (0.82–0.90)

PlGF + DLG + 1-HGP PLS-DA 0.78 (0.69–0.88) 0.052 (0.035–0.075) 0.65�˚ (0.43–0.83) 0.83 (0.79–0.87)

PlGF || MAP || BMI (ref) RP N/A 0.054 (0.036–0.078) 0.61�˚ (0.43–0.78) 0.85 (0.81–0.89)

PlGF || DLG (ref) RP N/A 0.061 (0.044–0.085) 0.74�˚§ (0.57–0.91) 0.84 (0.80–0.88)

PlGF || (DLG + 1-HGP) RP & PLS-DA N/A 0.052 (0.039−0.069) 0.78�˚†§ (0.61−0.96) 0.80 (0.75−0.84)

PlGF || DLG || 1-HGP RP N/A 0.060 (0.043–0.084) 0.74 �˚†§ (0.57–0.91) 0.84 (0.79–0.87)

Secondary Objective: Prediction of decreased risk of any preeclampsia at NPV> = 0.99

Model Method AUROC NPV Specificity Sensitivity
PlGF (ref) N/A 0.60 (0.53–0.67) 1.00 (1.00–1.00) 0.02 (0.01–0.03) 1.00 (1.00–1.00)

DLG N/A 0.61 (0.55–0.67) 1.00 (0.95–1.00) 0.01 (0.00–1.00) 1.00 (0.00–1.00)

PlGF + DLG (ref) PLS-DA 0.64 (0.57–0.70) 0.99 (0.97–1.00) 0.06� (0.04–0.09) 0.99 (0.97–1.00)

PlGF + DLG + 1-HGP PLS-DA 0.66 (0.60–0.72) 1.00 (1.00–1.00) 0.03 (0.01–0.04) 1.00 (1.00–1.00)

PlGF || MAP || BMI (ref) RP N/A 0.99 (0.98–1.00) 0.32�˚† (0.27–0.37) 0.94 (0.89–0.98)

PlGF || DLG (ref) RP N/A 0.99 (0.98–1.00) 0.13�˚ (0.10–0.17) 0.98 (0.95–1.00)

PlGF || (DLG + 1-HGP) RP & PLS-DA N/A 0.99 (0.98−1.00) 0.22�˚† (0.18−0.26) 0.96 (0.92−0.99)

PlGF || DLG || 1-HGP RP N/A 0.99 (0.98–1.00) 0.37�˚†§ (0.32–0.42) 0.93 (0.88–0.98)

(ref) reference models for superiority testing

� significantly higher compared to PlGF

˚ significantly higher compared to PlGF+DLG
† significantly higher compared to PlGF||DLG
§ significantly higher compared to PlGF||MAP||BMI (T test, p<0.05, Bonferroni multiple testing correction). CI Confidence interval; DLG = Dilinoleoyl-glycerol;

1-HGP = 1-heptadecanoyl-2-hydroxy-sn-glycero-3 phosphocholine; RP = recursive partitioning; PLS-DA = partial least squares discriminant analysis. N/A = not

applicable.

https://doi.org/10.1371/journal.pone.0244369.t003
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nulliparous pregnant women without overt risk factors to their preeclampsia risk. The primary

clinical use scenario was a rule-in classification to identify women at high risk of developing

preterm preeclampsia. The secondary clinical use scenario was delivering the same preeclamp-

sia risk information to nulliparous pregnant women without overt risk factors, as the risk

information available to parous women based on their obstetrics history [38].

In risk stratification, the clinical usefulness of a test is best expressed in terms of positive

and negative predictive values [38]. Hence, to establish robust performance targets for the

Fig 1. Partitioning rule-in model (PlGF || DLG). (A) Partition 1: PlGF concentration (ng/mL) versus clinical outcome PlGF cut-off value = 0.00526 (dotted

line). (B) Partition 2: DLG relative concentration versus clinical outcome for patients ruled-out in partition 1. DLG cut-off value = 2.26 (dotted line). (C)

Partitions 1 and 2: DLG relative concentration versus PlGF concentration (red stars: preterm preeclampsia, orange triangles: term preeclampsia, blue circles: no

preeclampsia). Dotted line: DLG and PlGF cut-off values. (D) Estimated predictive performance of the model for 10,000 patients.

https://doi.org/10.1371/journal.pone.0244369.g001
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prognostic test(s) for the identified clinical use scenarios, we derived these risk probabilities

from published large clinical studies reporting risk probabilities for well-powered population

studies. The ASPRE study, involving a cohort of 25,797 pregnancies with mixed prior risk pro-

files and parity who were screened for preterm preeclampsia, provided a rule-in classification

threshold of PPV� 0.05 [39]. The population-based study of Hernandez-Diaz included data

from 504,849 parous pregnancies. These authors reported a preeclampsia risk of 14.7% in the

second pregnancy for women with a history of preeclampsia, whereas the risk of preeclampsia

for parous women without a history of preeclampsia was 1.1% [40].

Fig 2. Partitioning rule-out model (PlGF || DLG || 1-HGP). (A) Partition 1: PlGF (ng/mL) versus clinical outcome. PlGF cut-off value = 0.00702 (dotted line).

(B) Partition 2: DLG relative concentration vs clinical outcome for patients ruled-out in partition 1. DLG cut-off value = 1.12 (dotted line). (C) Partition 3:

1-HGP relative concentration versus clinical outcome for patients ruled-out in partitions 1 and 2. 1-HGP cut-off value = 0.458 (dotted line). (D) Estimated

predictive performance of the model for 10,000 patients.

https://doi.org/10.1371/journal.pone.0244369.g002
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Considering these “target” inputs led to the establishment of a set of hierarchical goals for

the development of predictive models for preeclampsia in nulliparous women without appar-

ent risk factors. The primary goal was defined as the identification of pregnant women at

increased risk for preterm preeclampsia with a post-test risk� 0.05 (or PPV� 0.05). Second-

ary to this, the establishment of generic risk for developing preeclampsia at any stage of preg-

nancy. For the latter, both the identification of women at high risk, defined as a post-test

risk� 15% (PPV� 0.15), and the identification of women at low risk, defined as a post-test

risk� 1% (NPV� 0.99), were considered of interest to clinical practice.

Among all preeclampsia biomarkers studied, PlGF is the best understood. Low PlGF levels

throughout pregnancy are associated with a disease phenotype which has placental insuffi-

ciency as a key characteristic [16, 41–44]. Indeed, it has been shown that low PlGF levels early

in pregnancy has some preeclampsia risk prediction merits, especially for preterm preeclamp-

sia wherein placental compromise is more common [16].

Given the multi-factorial nature of preeclampsia, a Bayesian modelling approach may

deliver more accurate predictive models than PLS-DA [12, 45]. However, the available number

of patients prevented calibration and therefore the use of probabilistic methods. For this rea-

son, recursive partitioning was considered as an alternative as it does not necessitate calibra-

tion. In the absence of calibration, generalisability of the models developed cannot be gauged

in this study; this will be assessed in a readily available independent cohort [24].

We indeed found that recursive partitioning delivered better prediction than PLS-DA mod-

els. By establishing PlGF as the first independent predictor, the recursive partitioning model-

ling allowed us to align the model development with the pre-defined classification objectives.

We found that complementing PlGF with a single metabolite biomarker (DLG) increased the

sensitivity of the test from 48% (at PPV = 0.05) to 74% (at PPV = 0.06) for predicting preterm

preeclampsia risk in nulliparous women without overt risk factors. Preliminary results show

combining 1-HGP with DLG in the second partition may further improve the prediction of

preterm preeclampsia, increasing the sensitivity to 78%.

Developing recursive partitioning models with three splits suggested that 1-HGP may also

be a third independent predictor. Adding 1-HGP enabled identification of significant fraction

of women at low risk of developing preeclampsia (specificity = 36%) in accordance with the

pre-set rule-out target of NPV = 0.99.

In this data set we were unable to establish a prediction model which also complied with

the other secondary goal: the identification of a sizeable group of women with a post-test

risk� 15% of developing any type of preeclampsia in their pregnancy. This may be explained

in the context of the competing risk model concept as established for preeclampsia by Wright

et al. In this model, pregnant women at risk of developing preeclampsia may experience an

uncomplicated pregnancy, as their pregnancy (naturally) concluded prior to their preeclamp-

sia risk coming to expression [46].

It is however noted that the list of putative biomarkers considered here was primarily

informed by our earlier work [23] and from findings other groups around the same time (S1

Table). Additional putative metabolite biomarkers are still being identified in de-novo metabo-

lomics biomarker studies within other pregnancy demographics [47–50]. Evaluation of these

metabolites within the technical and clinical use framework established here, may lead to fur-

ther prediction improvements and achieving the secondary goal in full.

A review of the literature reveals that DLG and 1-HGP may map onto different but comple-

mentary pathways relative to PlGF. Genetic studies have provided new insights into the mech-

anisms that link intracellular diacylglycerol concentrations to insulin resistance [51, 52], which

associates with preeclampsia risk [53]. Erion & Shulman reported that increases in intracellular

diacylglycerol content could lead to activation of new protein kinase C which in turn, inhibits
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insulin action in liver and skeletal muscle [54]. Diacylglycerols in plasma were reported as the

basis of a biomarker profile of metabolic syndrome onset in rhesus monkeys; diacylglycerol-

derived linoleate levels were markedly upregulated in insulin-resistant metabolic syndrome

animals [55]. The physiological metabolic alterations occurring in normal pregnancy: transient

excursion into insulin resistance, hyperlipidemia, and increased coagulation are essentially the

hallmarks of metabolic syndrome, and are exacerbated in preeclampsia [56, 57]. With the met-

abolic syndrome manifesting in women with preeclampsia typically associated with insulin

resistance and endothelial dysfunction [58], it is therefore plausible that DLG levels reflect risk

pathway for the development of preeclampsia that is associated with a pregnancy-specific dis-

position for metabolic syndrome [56]. With reference to 1-HGP, previous studies have shown

that lysophosphatidic acid (LPA), the hydrolysed form of 1-HGP, is a potent mediator of the

immune response and could contribute to improper immune activation upregulating the pro-

duction of inflammatory cytokines [59, 60]. Studies in humans and animal models have indi-

cated that the development of hypertension in preeclampsia has a strong pro-inflammatory

component and that placental ischemia is the stimulus for this immune activation [61–64]. In

this context, 1-HGP may be related to vascular inflammation and dysfunction. Recently, Fujii

et al. reported that LPA signalling may be directly involved in placental homeostasis. They

found that dysregulation of LPA signalling as mediated by LPA specific G-protein-coupled

receptors (LPAR), and more specifically LPAR3, may be associated with placental dysfunction

in preeclampsia [65]. Circulating 1-HGP levels may therefore be indicate LPA signalling issues

which in turn could be directly or indirectly be associated with the risk of developing

preeclampsia.

Based on the data generated in this study, DLG and 1-HGP are selected as the key markers

for the development of a dedicated, rapid, quantitative LC-MS/MS assay prototype.

Conclusions

In this study, we adopted an end-user focused translational research methodology for the pri-

oritization of putative metabolite biomarkers for further development into a clinical test for

preeclampsia risk prediction. Three key determinants were considered in the selection process:

compatibility with LC-MS/MS technology already available in clinical laboratories, ability to

improve the prediction of the established preeclampsia biomarker PlGF, and ability to meet

patient stratification requirements as identified by clinical practitioners.

Using this translational research framework to re-evaluate fifty-eight metabolite biomarker

candidates, we were able to prioritise two metabolite biomarkers from an initial pre-selection

of nine metabolites, for development of a clinical assay. We found that the metabolites DLG

and 1-HGP effectively complemented PlGF in a prediction model for (preterm) preeclampsia

in nulliparous women without over risk factors. A review of the literature supports that PlGF,

DLG and 1-HGP may represent separate pathways for preeclampsia risk in the population

studied.

A strength of this study lies in the well-defined pregnancy risk profile within the SCOPE

study, allowing us to focus this translation biomarker research to the pregnancy population

most in need for biomarker-assisted risk prediction. In addition, a rational approach consider-

ing both technical usability and clinical utility criteria for refining the selection of previously

identified putative biomarkers of interest for further test development, was adopted to increase

the chance of successfully porting novel biomarkers into clinical practice.

A limitation of this work lies within the ethnic make-up of the SCOPE-Europe study; most

of the women were of white ethnicity. In line with the hypothesis that different pregnancy pop-

ulations may constitute different patient risk profiles, there may be a need for additional
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biomarkers, representing additional preeclampsia risk pathways, to improve prediction for

other ethnicities. Another limitation of this study is the gestational age considered; risk predic-

tion involved samples taken early in the second trimester of pregnancy (15 +/- 1 week of gesta-

tion), whereas there is trend to consolidate prenatal risk screening at the end of the first

trimester. However, we note that none of the verified metabolite biomarkers show any depen-

dency on gestational age of sampling (S2 Fig).

The next steps in our test development work will involve developing a multiplex clinical

assay for the selected markers, as well as further assessment of their generalisability to comple-

ment PlGF for the prediction in preeclampsia in other pregnancy populations. In a first

instance, the markers will be assessed in IMPROvED; a pan-European multi-centre phase 2A

clinical study which recruited ca 4000 low risk primiparous women for the purposes of assess-

ing and refining innovative biomarker-assisted prototype predictive tests [24].
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