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Simple Summary: Aptamers represent an emerging technology that enables researchers to screen
biological matrices such as blood and urine for thousands of different proteins at a rapid pace
with high precision and accuracy. However, the sheer data volume generated by this high-capacity
screening technique also creates a fundamental challenge towards efficiently analyzing these complex
datasets and translating findings for the clinic. We address the new analytical considerations brought
forth by aptamers, explore the necessary statistical analysis needed, and create a baseline to analyze
these large-scale databases more comprehensively. In addition, we explore how aptamers can co-exist
with current proteomic platforms to produce more robust findings in an evolving, multi-faceted
approach towards the field. Unlocking the underlying signals masquerading behind these large
datasets will ultimately empower clinicians and researchers to better understand diseases of interest
and to curate more robust findings for patient care.

Abstract: The development and advancement of aptamer technology has opened a new realm of
possibilities for unlocking the biocomplexity available within proteomics. With ultra-high-throughput
and multiplexing, alongside remarkable specificity and sensitivity, aptamers could represent a pow-
erful tool in disease-specific research, such as supporting the discovery and validation of clinically
relevant biomarkers. One of the fundamental challenges underlying past and current proteomic
technology has been the difficulty of translating proteomic datasets into standards of practice. Ap-
tamers provide the capacity to generate single panels that span over 7000 different proteins from a
singular sample. However, as a recent technology, they also present unique challenges, as the field
of translational aptamer-based proteomics still lacks a standardizing methodology for analyzing
these large datasets and the novel considerations that must be made in response to the differentiation
amongst current proteomic platforms and aptamers. We address these analytical considerations with
respect to surveying initial data, deploying proper statistical methodologies to identify differential
protein expressions, and applying datasets to discover multimarker and pathway-level findings.
Additionally, we present aptamer datasets within the multi-omics landscape by exploring the inter-
sectionality of aptamer-based proteomics amongst genomics, transcriptomics, and metabolomics,
alongside pre-existing proteomic platforms. Understanding the broader applications of aptamer
datasets will substantially enhance current efforts to generate translatable findings for the clinic.

Keywords: aptamers; biomarkers; proteomics; bioinformatics; translational

1. Introduction

Proteomics has continued to establish itself as a field of growing promise both diagnosti-
cally and therapeutically. Historically, the two primary methods in proteomic analysis were the
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enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS). ELISA falls short of
high-throughput capabilities and faces many challenges in widespread clinical integration due to
calibration and quantification, reagent stability/availability/cross-reactivity, biomarker validation,
and a lack of validated algorithms for computational analysis [1]. Mass spectrometry emerged over
a decade ago as a preferred method for proteomic analysis that could produce large datasets for bio-
logical application, predominantly liquid chromatography MS (LC–MS) [2,3]. The ability to analyze
post-translational modifications (PTMs) of proteins [4] unleashed a powerful new tool to decode
the complexity offered up by evolving MS techniques in extraction, fragmentation, analysis, and
database reference. Next-generation high-throughput advances in MS, such as data-independent
acquisition MS (DIA-MS), employ permanent digital proteome maps while offering exceptional
reproducibility and avoiding the inconsistent precursor ion fragmentation present in large-scale
datasets generated via data-dependent MS (DDA-MS) [5]. However, MS suffers from several
fundamental drawbacks, including protein inferences in relation to isobaric amino acids, co-elution
concerns over PTMs, and flaws in algorithmic database searches [6–8]. Established and emerging
high-throughput screening approaches [9–23] (Table 1) offer a much more comprehensive dynamic
range to accommodate the human proteome and produce a higher sensitivity with a much lower
detection limit compared to traditional MS platforms [24,25]. Amongst proteomic-based platforms,
aptamer-based approaches are growing in number and popularity, generating large-scale datasets
(Table 1) [15,26,27]. Aptamers are single strands of oligonucleotides (either ssDNA or ssRNA)
that bind with high affinity and selectivity [28]. Selection of aptamers occurs through an in vitro
evolution process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX),
in which oligonucleotide libraries undergo multiple automated rounds of positive and negative
selection to identify strongly selective aptamers [29–31]. These aptamers offer both diagnostic and
therapeutic utility. Their highly selective and stable nature offers the potential for robust reproducibil-
ity, allowing for the creation of large datasets across multiple experiments. Aptamers have been
integrated through various point-of-care diagnostics, synergistic combinations with antibody-based
assays, and high-throughput screenings [32–34]. However, while sharing the underlying applica-
tion of aptamers, comparative studies must be undertaken with caution, as even panel-to-panel
variance is a commonality. For instance, one of the leading aptamer-based proteomics platforms,
SomaLogic, carries several different protein panels ranging from 1300 to over 7000 [9]. Although
overlap in protein targets may exist between the various panels, such as the 1.3K [35] and 5K [36]
panels, the custom analyte panels may challenge cross-study comparisons. This review addresses
the cross-platform intersectionality challenges between aptamers and proteomic “gold standard”
platforms such as immunoassay. Aptamer data open a new realm of possibilities in proteomics by
overcoming the quantitative volume requirements of LC–MS and exceeding the analyte capacity of
ELISA. In addition, aptamer-based technologies are also valuable for application across a wide range
of mammalian species, which is helpful for regulatory approval of novel pharmaceuticals which fall
under the Food and Drug Administration’s (FDA) Animal Rule. Emerging assays are compatible
with a wide range of mammalian species, facilitating simultaneous analysis of samples from human
clinical sample repositories and research animal models [9]. Unilateral analyses in omics often fail
to capture the complexity of biological biomarkers and struggle with reproducibility. One of the
critical challenges in omics analysis is addressing the high dimensionality and cross-referencing of
datasets required for independent validation. Omics has made considerable strides in aggregating
large-scale databases and repositories for cross-comparisons in genomic and transcriptomic analyses
in the last few decades. The establishment of high-quality proteomic data has already begun in
LC–MS through the ProCan proteomic knowledgebase, where uniformity in study design, sam-
ple preparation, and data analysis is provided [37]. With aptamer-based platforms producing an
even more immense amount of data per sample through high-throughput and high-multiplexing
analysis, there is a growing need to address the computational analysis of large datasets arising
from aptamer technology. Streamlining analysis of aptamer data may expedite the discovery of
blood-based biomarkers to surpass the current FDA-approval rate of fewer than two biomarkers
per year [38]. Here, we provide a comprehensive review of aptamer-generated data processing and
analytical strategies for clinically relevant translation to establish aptamers as a powerful tool in the
multi-omics landscape.
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Table 1. Overview of Common Proteomic Platforms.

Analytical Technique Category
Protein Sample Literature

Values
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50 µL (cell culture) 
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pg/mL 

2–15% **** 

Simoa [14,44,45] Antibody (bead) 25 µL 
Plasma, serum, urine, 
tissue/cell, CSF, saliva 

LOD = 0.005 
pg/mL 

<10% *** 

Aptamer Group 
(Optmer) [15] Aptamer 38 µL 

Plasma (diagnostics and 
therapeutics), urine, tissue/cell, 

liquid matrices 

LOD = 55 
ng/mL 

<5% * 

Base Pair 
Technologies 

[16,26] 
Aptamer 5–100 µL Plasma, serum, tissue/cell 

LOD = 1 
pg/mL 

 ** 

SOMAscan 
[9,27,46–49] Aptamer 55–100 µL 

Plasma, serum, CSF, urine, 
cell/tissue, synovial fluid, 

exosomes 

LOD = 1.6 
pg/mL 

4.6% ****** 

Electrochemilumi
nescence 

Immunoassay 
(Meso Scale and 

Lumit) [17,50] 

ECLIA 50 µL 
Plasma, serum, tissue/cell, CSF, 

urine, blood spots, tears, 
synovial fluid, tissue extracts 

LOD = fg/mL 5–10% ** 

Multiplex ELISA 
[1,18,43,51,52] ELISA 25–50 µL 

Plasma, serum, tissue/cell, 
urine, saliva, CSF 

LOD = 0.61 to 
18.90 pg/mL 

9.5–28.5% 
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Singleplex ELISA 
[53] ELISA 100 µL 
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urine, saliva, CSF 
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MS (labeling in LC–
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<0.53% ***** 
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└ Actual requirements may vary depending on transit conditions, company selected, and number 
of panels desired. └└ Values reflect reported literature values; technical specifications vary based 
upon instrument and sample conditions. Groupings: * = 1–10; ** = 10–100; *** = 100–500; **** = 500–
1000; ***** = 1000–5000; ****** = 10,000+. ‡ Quantification subject to multifactorial variability second-
ary to data origin, methodology, assay type, and analytes tested. 
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analysis. Samples sent off for aptamer-based panels can consist of various biological ma-
trices ranging from plasma to serum to urine. Requiring roughly around 50 µL of sample 
volume and possessing more streamlined sample processing workflow techniques [59], 
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LOD = 1 
pg/mL 

 ** 

SOMAscan 
[9,27,46–49] Aptamer 55–100 µL 

Plasma, serum, CSF, urine, 
cell/tissue, synovial fluid, 

exosomes 

LOD = 1.6 
pg/mL 

4.6% ****** 

Electrochemilumi
nescence 

Immunoassay 
(Meso Scale and 

Lumit) [17,50] 

ECLIA 50 µL 
Plasma, serum, tissue/cell, CSF, 

urine, blood spots, tears, 
synovial fluid, tissue extracts 

LOD = fg/mL 5–10% ** 

Multiplex ELISA 
[1,18,43,51,52] ELISA 25–50 µL 

Plasma, serum, tissue/cell, 
urine, saliva, CSF 

LOD = 0.61 to 
18.90 pg/mL 

9.5–28.5% 
(inter/intra) 

** 

Singleplex ELISA 
[53] ELISA 100 µL 

Plasma, serum, tissue/cell, 
urine, saliva, CSF 

LOD = pg/mL 
1.6–6.4% (intra) 

and 3.8–7.1% (inter) 
* 

2D-PAGE [19] Gel electrophoresis ~100 µg (15–50 µL) 
Plasma, serum, tissue/cell, 

urine 
LOD = 10 ng to 

100 ng 
<20% ****** 

DDA-MS [20] MS 10 µL Plasma, serum, tissue/cell 
LOD = 157 

ng/mL 
5.7% ***** 

SWATH-MS  
[21,54,55] MS (DIA) 5–10 µg 

Plasma, serum tissue/cell, 
platelets, 

monocytes/neutrophils 
LOD = 1 fmol 13.7% ***** 

iTRAQ [22,56] 
MS (labeling in LC–

MS–MS) 
12 µg 

Plasma, serum, tissue/cells, 
saliva 

LOD = 1 fmol 
(50 µg/mL) 

<0.53% ***** 

SRM/MRM 
[23,57,58] MS (LC–MS–MS)  15 µL 

Plasma, tissue/cell, dried blood 
spots 

LOD = µg/mL 
(no 

enrichment) 

6.1% (intra) and 
11% (inter) 

** 

└ Actual requirements may vary depending on transit conditions, company selected, and number 
of panels desired. └└ Values reflect reported literature values; technical specifications vary based 
upon instrument and sample conditions. Groupings: * = 1–10; ** = 10–100; *** = 100–500; **** = 500–
1000; ***** = 1000–5000; ****** = 10,000+. ‡ Quantification subject to multifactorial variability second-
ary to data origin, methodology, assay type, and analytes tested. 
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Values reflect reported literature values; technical specifications
vary based upon instrument and sample conditions. Groupings: * = 1–10; ** = 10–100; *** = 100–500; **** = 500–1000; ***** = 1000–5000; ****** = 10,000+. ‡ Quantification subject to
multifactorial variability secondary to data origin, methodology, assay type, and analytes tested.
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2. Setting Up Aptamer Studies for Clinical Translation

Aptamer technology provides a means of achieving scalable wide-ranging protein
analysis. Samples sent off for aptamer-based panels can consist of various biological ma-
trices ranging from plasma to serum to urine. Requiring roughly around 50 µL of sample
volume and possessing more streamlined sample processing workflow techniques [59],
aptamer technology can generate highly multiplexed analyses from pre-existing bioreposi-
tories that cover more significant concentration gradients than current platforms (Figure 1).
Recent studies in the literature back this idea, as archived plasma samples in longitudinal
cohorts demonstrate a high protein stability of over 90% at the one-year mark [60]. Ac-
cessing existing serum or plasma samples from pre-existing cohorts is another convenient
advantage of aptamer-based platforms that enable larger sample sizes. Customizing clinical
study designs to cater to the advantages of the aptamer platform will play an essential
role in guiding proper statistical analysis for protein effect sizes later. The advantages
of utilizing aptamer-based platforms are also associated with unique challenges. While
relatively small samples from pre-existing cohorts may be employed, this can result in
multifactorial sources of potential sample variability (collection, storage, management of
the patients included in the studies) and can result in the utilization of samples that were
not necessarily carefully experimentally curated or classified for confounders.
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2.1. Power, Power Analysis, and Protein Effect Size

Statistical power takes a requisite position at the forefront of study design consid-
erations. Past studies on proteomic-based biomarker discovery reported less than 1% of
reported biomarkers being incorporated into commercial assays, with a large number
of published studies being underpowered [61]. One of the first National Institutes of
Health-led workshops on proteomic biomarker pipelines emphasized the role of outlining
basic statistical designs prior to study onset in order to maintain adherence to the FDA
guidelines on biomarker translation [62]. A later workshop set forth a quantitative clinical
criterion for proteomic biomarkers and a comprehensive statistical design with a requisite
recommendation of 0.9 for both discovery and verification stage probability to achieve
adequate power [63]. The challenges associated with the broad ranges of abundance in the
proteome [64] and ranges of coefficient of variations (CVs) (including biological CVs) were
all factored into Skates et al.’s statistical model for sample size. However, aptamer-based
platforms may effectively reduce the cohort size requirements of MS-based proteomic
platforms given their much lower values of CVs (~5%) [65] compared to technologies, such
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as multiple reaction monitoring (up to 20%) [66]. Simulations for power analysis factor
in CVs, the expected fold change needed, and desired power levels with a recommended
four samples per group (CV = 20%, power = 0.8) [67]. Sensitivity and specificity are es-
sential considerations during power analysis, and minimum targets vary according to
target clinical use and commonly acceptable risk–benefit analysis [63]. Prospective-based
studies striving for aptamer diagnostics require an intricate consideration for sample size
and sensitivity and specificity targets in study design [68]. While larger sample sizes are
best at increasing statistical power, study-dependent cost and practicality limitations may
impede efforts to solicit more samples. Thus, while prospective power analysis is preferred,
retrospectively applying power analysis is an option. Previous aptamer-based studies
have also leveraged effect sizes (Spearman coefficients and Huber M-Values) to balance
small sample sizes [69]. Pilot aptamer studies with limited cohort numbers have depended
upon previous reports to estimate experimental models’ area under the receiver operating
characteristic curves to achieve requisite minimal power levels of 0.8 [70,71]. However,
high-throughput strategies such as aptamer assays process an incredible multiplex of data
in the discovery stage such that study design must consider the multiple hypothesis testing
problems [72]. Addressing this requires proactive consideration of sample size and sta-
tistical analysis methodology to maintain high specificity and sensitivity. While analyses
employing platforms with protein analysis capacity in the thousands, e.g., 1.3K, 4K, 7K
protein panels [27,61,73], can reveal hundreds of biomarkers for a single disease of interest,
the disconnect with translating these biomarkers further down the proteomic pipeline
emphasizes the critical need for adequately powered study designs [27,74]. The disconnect
is augmented by differential protein expression with respect to the number of samples
affected by a significant signal and the extent of the signal itself across samples. These
aspects will be discussed in the sections that follow.

2.2. Samples and Study Designs: Case–Control and Cohort Studies

Two of the most common choices for designing large-scale proteomic discovery stud-
ies are case–control and cohort studies. Case–control [75] enables researchers to access
pre-existing biorepositories for clinical samples along with groups that match the dis-
ease of interest. However, one of the biggest hurdles facing case–control studies is the
inability to compare the disease groups with healthy population controls matched for con-
founders, such as age, sex, disease-specific factors, and comorbidities. Matched (individual
or frequency) case–control studies represent one route of generating such controls but can
introduce new biases. The proteome is particularly vulnerable to conditions such as organ
trauma, autoimmune disease and age, in particular, as pertaining to the analysis of samples
originating from adults or a pediatric cohort as well as ethnicity and sex differences. While
steps are being taken to employ reference normalization that accounts for some conditions
and demographic aspects using robust reference normalization, this is an area of active evo-
lution in aptamer datasets. Comparisons between matched and unmatched designs report
minimal outcome distinctions aside from a slight decrease in statistical power for matched
samples [76]. Care must be taken to address and reduce the selection bias that commonly
occurs in single-institution case–control studies. For matched studies, conditional logistical
regression is the mainstay analysis tool, but unconditional logistical regression has also
been simulated to mirror these results [77] closely. A less common primary approach
involves cohort studies that struggle with extended time frames, costs, and incomplete
datasets due to patient dropouts. However, cohort studies may play a vital role later in
aptamer-guided biomarker discovery due to their ability to access pre-existing longitudinal
datasets for independent cohort cross-referencing [78]. Assay datasets can be optimized for
analysis, ensuring normalization for inter- and intraplate variance with internal controls.
Hybridization normalization, well-to-well standardization, signal calibration, and standard
operating procedures support reproducibility. Thus, differential expression can then be de-
termined based upon comparisons of relative fluorescence unit (RFU) ratios like multiplex
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bead-based assay data. The following section highlights fundamental tools in transforming
these large datasets into workable biological knowledge and translatable hypotheses.

3. Statistical Strategies for Analyzing Differential Expression

Aptamer-based platforms hold great promise within the field of shotgun proteomics
and carry similar considerations as MS-based platforms in categorizing differential expres-
sion with the added advantage of high-throughput analysis of multiple samples simultane-
ously. Multimarker-based approaches usually tend to overfit, leading to conceptual errors.
Statistical analyses should include an adjustment for multiple testing. Multiple biomarkers
can be combined in a classifier that outperforms a single biomarker, and validation in an
independent sample is imperative, which gives more confidence in the results. Failures
of small studies to detect biomarkers often result from variability that interferes with de-
termining effect sizes. Therefore, an increase in both samples and biomarkers contributes
to developing multimarker classifiers with enhanced accuracy. Prospective-based studies
striving for aptamer diagnostics require an intricate consideration for sample size, sensi-
tivity, and specificity of the targets in study design [33]. A protein may exist in multiple
forms within a cell or cell type. These protein isoforms originate from transcriptional,
post-transcriptional, translational, post-translational, regulatory, and degrading and pre-
serving processes that affect protein structure, localization, function, and turnover. The
field has thus evolved to include a variety of methods for the separation of complex protein
samples followed by identification using proteomics technology. It is inherently a systems
science that considers protein abundances in a cell and the interplay of proteins, protein
complexes, signaling pathways, and networks. In order to address the relevant challenges,
the analytical tools can be categorized into four types: (1) quality control, (2) fundamental
statistical analysis, (3) machine learning (ML) approaches, and (4) assignment of functional
and biological information to describe and understand protein interaction networks [79].

3.1. Quality Control and Basic Statistics

Quality control (Table 2) is employed to observe the data variability, compare means
between groups, and look for any anomaly that could cause a problem in the analysis.
Quality control can identify significant areas of concern and flag samples as well as more
specifically diagnose sources of potentially aberrant data signals; however, detailed capture
and annotation is required at all levels from sample collection to analysis to ensure that
robust data are obtained and analyzed for confounding features. Basic statistics are a critical
first pass to identify the “low-hanging fruit” in the dataset. Methods such as the Student’s
t-test and its nonparametric equivalent, the Wilcoxon test, univariate or analysis of variance
(ANOVA), or the nonparametric Kruskal–Wallis test are applied to identify the significant
proteins. Due to inherent variability, statistics alone are often insufficient to discover the
most biologically relevant information in a proteomic dataset but they are an essential first
step in every analysis. Statistically significant results are helpful as seed data or bait in
machine learning approaches.

3.2. Machine Learning Approaches

Classification by ML (Table 2) complements traditional statistics as it allows for con-
sideration of many variables at once and removes much of the technical bias. Dataset
complexity is reduced, as correlations and trends are identified that may not be visible
or may be undetectable using traditional statistics, e.g., clustering using iterative subsam-
pling. Given unbiased data inputs, ML classification has the potential to be unbiased
by revealing patterns within data that may or may not relate to the original hypothesis.
The researcher is then able to examine the clustering or classification results for new bio-
logical features that were not initially predicted. Thus, ML together with network tools
enable hypothesis generation, as they uncover the real biology of the system in question.
Swan et al. [94] discussed the benefit of ML methods for application to proteomic data
and show that machine learning methods give an overall view of data and offer a large
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potential for identifying relevant information among data. While ML approaches have
been more extensively employed to advance aptamer discovery [95], the use of ML, deep
learning (DL), and artificial intelligence (AI) applied to large-scale data originating from
aptamer studies to arrive at clinically meaningful and relevant conclusions is still in its
beginnings. Broadly, artificial intelligence methods can involve classic ML, using tech-
niques such as support vector machines (SVM) and random forests (RF). Alternatively,
DL with convolutional neural networks (CNNs) and hybrid techniques of both classical
ML and DL may be employed [96]. Generally, AI methods may be supervised (where the
model is told the outcome of interest) or unsupervised, where the model does not know
the outcome [97]. Supervised approaches require the data to be divided into categories and
training and testing sets, with the model trained on a portion of the data and tested on the
remainder. As employed in DL, neural network models do not typically require annotation,
but the process by which the model arrives at the results may be difficult to elucidate, i.e.,
a “black box.” ML is currently evolving to analyze aptamer technology-generated data
in conjunction with other data types, including clinical, imaging, pathology, and other
omics data. A plethora of proteomic alterations are identified using aptamer technology
with multiple and many as yet poorly understood signals; hence, aptamer data can lend
itself to AI approaches to connect results to clinical meaning. Discussion is ongoing on
the optimal means of analysis. Although specific examples of AI as applied specifically to
aptamer technology-derived data are scant, the literature originating in MS and RNA se-
quencing offers more in-depth explorations [97], and in non-aptamer technology, proteomic
data [98] parallels exist. Specific known protein alterations may be identified, analyzed, and
then extrapolated to other related proteins using known or evolving signaling pathways.
Alternatively, emphasis can be placed on filtering out pertinent signals using artificial
intelligence approaches and then connecting these to known and unknown proteins and
clinical data. Currently, there is a lack of ground truth in aptamer data, limiting the ability
to validate findings and train DL methods that are traditionally data-hungry. There is
also a lack of standard datasets to provide a reliable comparison for abnormal samples.
Nonetheless, creating clinical connections using aptamer data is undergoing active progress
across medical disciplines [35,99–101]. The goals of aptamer-based data intersecting with
AI currently focus largely on diagnosis [35,99,100] evolving into response assessment [101],
with few publications exploring ML to examine management or prognosis. In a diagnostic
example, using urine samples, Dong et al. employed the SOMAscan platform to identify
culture-positive urine samples in the urine of 16 children with urinary tract infections. ML
with SVM based feature selection was performed in this study to determine the combina-
tion of urine biomarkers that optimized diagnostic accuracy [99]. The authors found that
eight candidate urine protein biomarkers met filtering criteria resulting in area under the
receiver operating characteristic curves (AUCs) ranging from 0.91 to 0.95, with the best
prediction achieved by the SVMs with a radial basis function kernel [99]. In the context
of arthritis, the serum proteome for patients with psoriatic arthritis and patients with
rheumatoid arthritis was analyzed using nano-liquid chromatography–mass spectrometry
(nano-LC–MS–MS), SOMAscan, and Luminex, and multivariate ML was employed on the
data from all three platforms to separate patients with early-onset inflammatory arthritis
to differentiate psoriatic and rheumatoid arthritis [100]. In the context of sleep apnea,
Ambati et al. employed the Obstructive Apnea Hypopnea Index (OAHI), the Central
Apnea Index (CAI), the 2% Oxygen Desaturation Index, and mean and minimum oxygen
saturation indices during sleep to train a machine learning classifier using a SOMAscan
1.3K assay and achieved 76% validation accuracy [35]. Hewitson et al. also used SOMAscan
and machine learning to identify nine proteins that were significantly different in autism
spectrum disorder vs. typically developing boys, although the authors acknowledged
that further verification with independent test sets is warranted [102]. In an example of
aptamer data and AI applied towards response assessment, O’Neil et al. studied clinical
remission in rheumatoid arthritis using 130 patient serum samples on a 1.3K SOMAscan
platform. They employed unsupervised hierarchical clustering and supervised classifi-
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cation to identify proteomic-driven clusters for model biomarkers associated with future
disease flare after 12 months of follow-up and medication withdrawal. Network analysis
was employed to define pathways that were enriched in proteomic datasets. The authors
found that clustering did not predict future risk of flare, while the XGboost machine learn-
ing algorithm classified patients who relapsed with an AUC of 0.80 using only baseline
serum proteomics [101]. Machine learning and AI methods are actively evolving, and
their application to aptamer-based data is currently limited but growing as the technology
is more widely applied. Most methods encountered currently involve classical ML and
significant annotation. In the absence of robust controls and significant annotation, ML has
been more often applied to aptamer technology-derived data in the context of diagnosis, as
discussed above. Therapy-related questions require robust controls, which are difficult to
obtain as patients undergo heterogenous management over time in most settings, which is
expected to modify the proteome.

Table 2. Statistical methods for aptamer analysis.

Quality Control
Student’s t-test or nonparametric Wilcoxon Mean difference between two groups [80]
ANOVA or nonparametric Kruskal–Wallis Variation between two or more groups [81]
Visualization methods Histogram, density plots, box and bar graphs
Classification
Principle Component Analysis (PCA) Dimension reduction, separates groups based upon commonality [82]
Independent Component Analysis (ICA) Dimension reduction, separates groups based upon correlation [83]

Partial Least Squares (PLS) Discriminant analysis that separates groups by maximum covariation
ranks the important features [84]

Random Forest (RF) Separates groups by similarity, ranks important features [85]
Support-Vector Machine (SVM) Classifies the sample by kernel function [86]
Clustering
K-means Clustering of features or samples into user-specified numbers of clusters [87]

Hierarchical Unsupervised classification of features, samples, or any endpoint
by dendrogram [88]

Pathways
Gene Set Enrichment Analysis (GSEA) Pathway analysis and functional annotation [89]
Ingenuity Pathway Analysis (IPA) Pathway and functional annotation from curated databases
Database for Annotation, Visualization, and
Integrated Discovery (DAVID) Pathway and functional annotation using Gene Ontology (GO) [90]

Cytoscape Network analysis visualization [91]
Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathway analysis [92]

Human Annotated and Predicted Protein
Interactions (HAPPI) Protein interactions [93]

3.3. Pathway Analysis

Pathway analysis (Table 2) following statistical analysis, classification, and clustering
can help organize a long list of proteins onto a short list of pathway knowledge maps, eas-
ing interpretation of the molecular interplay. The machine learning and clustering tools of
omics data can be categorized into a supervised and unsupervised classification for seven
popular types of machine learning: principal component analysis (PCA), independent
component analysis (ICA), K-means, hierarchical clustering, partial least squares (PLS),
random forests (RF), and SVMs. These methods are also summarized and compared in
Table 2, which provides an overview of different classifications and clustering tools and
how to select a method most likely to be effective for a specific dataset. The intersection
of high-throughput, high-multiplex proteomic datasets, existing omics databases, and
clinical features results in a rich systems biology analysis to better understand biologi-
cal pathways and functional gene networks. Seated within systems biology is pathway
analysis. Pathway analysis facilitates future hypothesis generation from high-throughput
microarray data, localizing gene networks, and framing protein differential expression into
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meaningful nodes and modules. Understanding how aptamer-identified proteins operate
interconnectedly can support biomarker identification and further the identification of
aberrant biological pathways in disease [103]. The underlying premise of pathway anal-
ysis involves preparing and standardizing protein differential expression from aptamer
data (typically evaluated via fold-changes) [104], performing statistical analysis of rele-
vant proteins, and applying a pathway database. There are three generations of pathway
analysis: over-representation analysis (ORA), functional class scoring (FCS), and pathway
topology (PT) [105]. ORA was the first and most simplistic form of pathway analysis. After
initial statistical analysis, aptamer datasets reveal a list of statistically significant proteins
that are either over- or under-expressed. Accompanying these proteins is a list of genes
inputted into ORA to measure the most over-expressed genes via hypergeometric analysis,
producing over- or under-represented pathways based upon a previously selected FDR.
ORA was one of the first widely used pathway analysis strategies and has even been
utilized in aptamer-based studies of the SARS-CoV-2 virus [46]. However, this inherent
independent-based assumption of genes has generated high false-positive rates due to
the correlations between genes that are ignored in ORA [106]. Furthermore, the arbitrary
cutoff threshold can significantly impact the conclusions drawn [107]. Thus, while ORA
presents a simple, cost-effective option for analyzing aptamer datasets, the fundamental
limitations of single-set gene analysis restrict the technique’s robustness. Functional class
scoring, a second-generation approach, utilizes a three-step process of computing gene-
level statistics, compiling them into pathway-level statistics, and assessing for statistical
significance [105]. FCS overcomes the arbitrary thresholds utilized in ORA and further
takes into consideration subtler changes and impacts of coordinated networks. However,
recent studies have faulted FCS for its lack of specificity [108]. Gene set enrichment anal-
ysis (GSEA) is one of the most popular gene set analysis techniques under FCS and it
has seen widespread use in aptamer studies, including discoveries in Duchene muscular
dystrophy [109], myocardial infarction [47], and myeloid leukemia [110]. GSEA leveraged
past research and was one of the first methodologies to focus analysis on deriving an
understanding of gene sets [89]. GSEA has also given rise to parametric analysis of gene set
enrichment (PAGE), which potentially offers a more sensitive analysis while avoiding the
rigorous computational effort required in GSEA [111]. A third method known as generally
applicable gene set enrichment (GAGE) has also emerged to tackle datasets of different
sample sizes, which may be more applicable towards cross-validating aptamer studies
of different experimental designs or methodologies [112]. Cross-comparisons of analysis
techniques suggested that GAGE had the highest reproducibility and predicted the most
relevant gene sets [113]. Finally, the third-generation approach known as pathway topology
(PT) mimics the three-step process of FCS but applies pathway topology in computing
gene-level statistics [105]. PT can consider the interactions between genes and avoid the
independency assumptions about genes in FCS. A recent characterization of all pathway
analysis methods gives PT-based approaches a slight edge over non-PT-based approaches
in relation to real-world data [114]. Since the onset of pathway analysis, dedicated pathway
analysis databases have emerged that support the distinct subcategorizations of pathway
analysis described above. Popular databases are highlighted in Table 2, including Gene Set
Enrichment Analysis (GSEA) [89], Ingenuity Pathway Analysis (IPA), the Database for An-
notation, Visualization, and Integrated Discovery (DAVID) [90], Cytoscape [91], the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [92], and Human Annotated and Predicted
Protein Interactions (HAPPI) [93]. A full comparison of current databases was recently
conducted by Chowdhury and Sarkar [115]. One of the most comprehensive platforms
currently available is QIAGEN’s IPA program that features support for protein interac-
tions, metabolic data, gene regulation, and sequencing [116]. IPA has facilitated extensive
pathway analysis in aptamer datasets in atrial fibrillation [117], surgical procedures [48],
and aging [118]. While pathway analysis is a fundamental step in deriving meaning from
the differentially expressed proteins derived from aptamer technology, it is incumbent on
researchers to understand this area’s current challenges and limitations. First, pathway
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analysis and databases rely on a body of published literature that continuously evolves and
adapts. Second, meta-analyses of the published literature suggest that poor concordances
exist based upon the type of pathway analysis selected and the database utilized [119,120].
As a result, care must be taken in selecting the best suitable methodology and database
based upon the study design. The ability to create and validate pathway-specific reference
panels for different clinical contexts while employing aptamer-based data will improve the
ability to design studies as proteomic “controls” become more prevalent.

4. Multi-Omics Approaches and Verification
4.1. Proteomic Quantitative Trait Loci (pQTL)

While pathway analysis provides an excellent canonical interpretation of protein
groups, the next step in verifying aptamer microarrays’ proteomic data is to establish
genetic anchorage for identified proteins. One of the emerging methods to accomplish
this is through proteomic quantitative trait loci (pQTL), which evaluates the variance in
proteins attributable to specific loci. pQTL has recently supplanted expression quanti-
tative trait loci (eQTL) due to the latter’s dependency on the poor relationship between
mRNA expression and protein levels, as well as a reported disconnect of roughly 50%
between pQTL and eQTL [121,122]. The incredible scalability of aptamer microarrays
enables studies to connect large-scale proteomics data with pQTLs. Recent applications of
aptamer microarrays have already been made in studying the proteome of patients infected
with the recent SARS-CoV-2 virus [123]. In turn, pQTLs can substantiate cross-platform
findings between aptamer platforms and others which can impact future translational
capabilities of studies. Pietzner et al. reported several factors leading to aptamer-specific
pQTL findings, such as lower observational correlations, lower binding affinities of ap-
tamers, and extreme datapoints that merit consideration in the verification process [33].
pQTL takes on a fundamental role in verifying proteomic relationships hypothesized from
discovery-stage analysis. After multi-fold reductions take place to isolate a small number
of differentially expressed proteins, these proteins must be properly validated before being
passed on as potentially viable biomarkers. One of the primary benefits of applying pQTL
analysis is to establish an integrative understanding of causal networks and pathways by
combining large-scale databases of both aptamers and genome-wide association studies
data (GWAS) [124]. Ferkingstad et al.’s 4.9K SOMAscan protein assay identified nearly
18,000 associations of sequence variants and pQTLs and applied a multi-omics method of
proteomics, transcriptomics, and genomics towards a large-scale aptamer database [125].
Furthermore, the authors emphasized associations of variants with high LD or cis (near the
gene of interest) pQTLs in pursuit of developing drug targets [125]. A separate large-scale
SOMAscan-based study (INTERVAL) also previously established the role of Mendelian
randomization analysis for applying aptamer-based proteomic datasets towards discov-
ering causal protein biomarkers [126]. Studies have also applied aptamer datasets and
pQTLs with GWAS, mRNA, and eQTL datasets to link proteomic variability with genetic
components in a cohort of irritable bowel syndrome patients [127]. Population samples
have also been utilized in combining aptamer datasets with pQTLs to demonstrate utility
and verification [128]. Aptamer platforms have also supported large-scale curated datasets
which have been employed in “virtual proteomics” for clinical prediction and biomarker
discovery [129].

4.2. GWAS and PWAS

Protein-wide association studies (PWAS) represent a newly emerging analysis tool in
the multi-omics landscape that attempts to establish an understanding of combining GWAS
with protein functions and phenotypes. Simulation testing suggests that PWAS is better
for causal relationship analysis, has a reduced computational burden, is complementary to
SKAT (GWAS), and can find PWAS-exclusive genes [130]. Applied to large-scale databases
for Alzheimer’s disease, PWAS uncovered additional AD genes of interest not found
through traditional GWAS [131]. Summary data with GWAS can be performed using sum-
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mary data-based Mendelian randomization and heterogeneity in dependent instruments
(HEIDI) [132]. This growing integration between aptamer datasets, genomics, transcrip-
tomics, and proteomics will continue to evolve as aptamer technology matures and scales
in magnitude. Significant effort is directed at identifying translatable protein biomarkers
while establishing a robust genetic anchorage for differentially expressed proteins, with the
understanding that doing so is vital for clinical impact with eventual prospects for FDA
approval [133].

5. Translational Challenges of Aptamer Proteomics

While the technical capabilities of aptamers with their flexibility, high multiplexing,
and strong affinities open a wealth of opportunities both diagnostically [134] and ther-
apeutically, only a minimal number of studies have seen success clinically. This review
centers around examining data arising from aptamer-based assays used in biomarker and
clinical diagnostics. Although SOMAscan remains one of the most popular platforms
for high-throughput proteomic analysis of biological matrices, other proteomic aptamer
platforms continue to be developed, such as ProtSeq [10], protein precipitation assays [135],
and disease-specific panels [136,137]. However, aptamer-based proteomics has yet to be
promoted to mainstream prominence as in the case of mass spectrometry platforms. We
predict that the growing capabilities of aptamers will lead to a continual acceleration of
aptamer platforms that have only recently been developed. As evidenced by mass spec-
trometry proteomics, aptamer-based proteomics will likely face similar challenges. Here,
we cover challenges in proteomic biomarker translation and cross-platform consistency.

5.1. FDA Approval and Clinical Translation

Aptamer-based platforms embody the beginning stages of the traditional biomarker
discovery pipeline (discovery, verification, and validation), sharing a position with mass
spectrometry [138] (Figure 2). One of the common challenges in proteomic biomarker
discovery is the poor translation into the clinic, with an extensive track record of biomarkers
fizzling out during FDA approval [139]. While the high multiplexing capability of aptamers
broadens the survey of the human proteome, the sheer number of proteins and their
varying abundances make detecting disease-specific variations a challenging feat. As
aptamer assays continue to broaden over time, a more encompassing picture may be
drawn at the cost of higher false discovery rates. With the arduous task of achieving FDA
approval [140], false discovery rates of inaccurate biomarkers come at a high cost. While
adequately designed statistical analysis and sufficiently powered studies may address
this, single protein-based biomarkers will merit a considerable effort to achieve approval.
Multi-marker panels serve as a more robust substitute [141,142]. Two significant advances
in proteomic biomarker discovery in the last decade have been the FDA approval of
the OVA1 [143] and CKD273 [144] panels. The CKD273 panel was based upon capillary
electrophoresis coupled to mass spectrometry (CE–MS) technology, which supports the
throughput of thousands of peptides that strongly supported earlier stages of research [145].
Building large, comparative datasets that feature large sample sizes can greatly support
discovery-stage proteomics. The high precision, throughput, and multiplex aspects of
aptamers facilitate this goal. It is paramount for studies to consider analytical factors for
effective translational hypothesis generation to follow. Current ambitions for blood-based
diagnostics and liquid biopsies in cancer [146] will continue to fuel a strong interest in
aptamer-identified biomarkers. Clinical translation, however, will depend on the ability
to transfer findings between the clinic and bench research, which will require that subsets
of large-scale aptamer-based data panels be transferrable between species to allow for
findings to be replicated in laboratory animals and human samples to advance outcomes
predicated on alteration in management.
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5.2. Cross-Platform Consistency

While aptamers can generate a large dataset based upon only a few clinical samples,
these data may not substitute for a multi-omics approach. Single-omics analysis is an
inherent limitation of aptamer assays, as protein expression levels may not be an accurate
indicator with transcript levels and other omics data [147]. Previous studies have suggested
a poor correlation between aptamer- and antibody-based platforms, which may limit the
biomarker discovery potential of aptamer-based technology [148]. Cross-platform com-
parisons across the same cohorts have found wide-ranging correlations [149]. However,
poor concordance may not suggest inefficacy. While inter- and intra-platform variations
exist, a recent study in cardiac patients reported that all statistically significant proteins
identified via aptamers were similarly identified in immunoassays [150]. Part of this
variation may be attributable to aptamer technology’s intrinsic ability to measure more
extensive dynamic ranges not accounted for in techniques such as mass spectrometry [151].
Additionally, reproducibility studies with aptamers and ELISA have suggested a relatively
high concordance rate between the two technologies [49]. Reports in the literature suggest
that, despite some differences occurring between platforms, aptamers and immunoassays
essentially point towards similar biomarker–disease associations, with higher biomarker
concentrations leading to more robust findings [150]. While these studies are encouraging,
cross-platform concordance remains a limitation of aptamer-based data. Thus, while care
should be taken in drawing cross-platform comparisons and interpreting meta-analyses, ap-
tamer technology should not be interpreted in isolation but rather seen as a complementary
tool to current proteomic technology.

5.3. Intra-Platform Consistency

Intra-platform consistency should also be considered, for instance, as earlier versions
of the SOMAscan assay specific for approximately 1300 or 4100 [73] protein targets may not
be compared directly with the latest assay version specific for approximately 7000 protein
targets. Though expression trends may be comparable, the raw numerical values for
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each specific aptamer may change across assay versions due to technical variables, and
each specific assay does not necessarily include the same cohort of aptamers, which has
implications for efforts to leverage for comparison the findings from previous clinical
studies which have utilized different versions of the assay. This phenomenon is also not
limited to the SOMAscan technology, as other multiplexed proteomics platforms of all
denominations (1.3K, 4K, 7K) [48,51,61,73] face the same challenges of compatibility across
datasets as assay specifications change over time. Of note, a major Human Protein Atlas
study tested over 9000 internally generated antibodies using immunoassays, finding that
half failed to match literature results and only 7% demonstrated strong concordance with
the literature [152]; similar challenges are anticipated in the context of aptamer-based data.

6. Conclusions

Aptamer technology generates extremely large datasets that are growing in number
and popularity. The ability to harness a small amount of biospecimen and the potential for
clinical applicability and aggregation with existing and evolving pathway analysis options
make large scale aptamer-based datasets particularly attractive to researchers in all areas of
medicine. Ongoing emphasis is being placed on study design and statistical considerations
for analysis. However, unravelling the complexity of the human proteome will continue
to pose a substantial challenge to translating large datasets into clinical utility. Practical
guidance for planning aptamer-based studies includes:

(1) Study design The study design for aptamer-derived data is understandably contingent
on the disease and clinical context. Maximal benefit is elicited if the study benefits
from maximal data capture and annotation to ensure that potential confounders in
the proteomic data signals can be addressed down the line. Controls are crucial for
meaningful comparison. Controls may not necessarily represent a normal population
but rather a population whose proteome in comparison to that of the intervention
will allow the researcher to derive conclusions that will address the hypothesis being
tested. Cohort studies may be employed with a “before” and “after” sample being
obtained from the same patient, thus using the patient as their own control. Provided
robust large-scale data are available and, following a thorough review, are sufficiently
comparable to the study population, this is a reasonable option, with the study design
in this context benefitting greatly from collaboration amongst researchers.

(2) Statistical analysis Statistical analysis for aptamer-derived data is actively evolving.
Traditional approaches described here may be employed. ML approaches may be
used with semi-supervised approaches likely to be the most successful and contingent
on annotation of the data.

(3) An established team that combines researchers, statisticians, and clinicians will need
to maintain a close relationship in the planned acquisition, curation, annotation and
analysis of data to allow for meaningful translation into the clinic and advancement
in relation to patient outcomes.
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Abbreviations

ANOVA Analysis of Variance
AI Artificial Intelligence
CV Coefficient of Variations
CNN Convolutional Neural Networks
DDA-MS Data-Dependent Mass Spectrometry
DL Deep Learning
DIA-MS Data-Independent Acquisition Mass Spectrometry
ELISA Enzyme-Linked Immunosorbent Assays
eQTL Expression Quantitative Trait Loci
FDA U.S. Food and Drug Administration
FDR False Discovery Rate
FCS Functional Class Scoring
GAGE Generally Applicable Gene set Enrichment
GSEA Gene Set Enrichment Analysis
GWAS Genome-Wide Association Studies
HEIDI Heterogeneity in Dependent Instruments
ICA Independent Component Analysis
IPA QIAGEN’s Ingenuity Pathway Analysis
LC–MS Liquid Chromatography–MS
ML Machine Learning
MS Mass Spectrometry
ORA Over-Representation Analysis
PCA Principal Component Analysis
PLS Partial Least Squares
pQTL Proteomic Quantitative Trait Loci
PT Pathway Topology
PTM Post-Translational Modification
PWAS Protein-Wide Association Studies
RF Random Forest
RFU Relative Fluorescence Unit
SELEX Systematic Evolution of Ligands by Exponential Enrichment
SVM Support Vector Machine
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