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Abstract

Brachypodium distachyon is a useful model organism for studying interaction of cereals with

phytopathogenic fungi. The present study tested the possibility of a compatible interaction of

B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots.

There was evaluated the effect of this endophytic fungus on the intensity of the attack by

pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression

of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and

BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS)

involved in defence against pathogens. Using light microscopy and newly developed spe-

cific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi.

B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker

symptoms on leaves from infection by fungus F. culmorum than did plants without the endo-

phyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of

TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bol-

leyi-mediated resistance in B. distachyon was independent of the expression of the most

tested genes. Taken together, the results of the present study show that B. distachyon can

be used as a model host system for endophytic fungus M. bolleyi.

Introduction

Brachypodium distachyon (L.) P. Beauv (Bd) was proposed two decades ago as a model system

for cereals [1], and research since that time has confirmed this to be a proper choice. Like Ara-
bidopsis, Brachypodium has small stature, short generation time, the ability to self-pollinate,

and it is easily grown under simple conditions [1]. In addition, Bd has one of the smallest

genomes found in grasses [2], comprising just 5 chromosomes spanning 272 Mbp and within

which about 25,000 protein-coding sequences are predicted [3]. Host-pathogen interactions

between B. distachyon and plant pathogens have previously been described for a number of

important cereal diseases [4]. Phytopathogenic fungi with compatible interaction have been

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0265357 March 14, 2022 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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described between B. distachyon and Rhizoctonia solani, Claviceps purpurea, Ramularia collo-
cygni, Oculimacula spp., Magnaporthe grisea, Cochliobolus sativus, Gaeumannomyces graminis,
Pyrenophora teres, Fusarium spp., Stagonospora nodorum, and Colletotrichum cereale [5–10].

Multiple studies have confirmed interactions among Bd and such rust pathogens as Puccinia
graminis, Puccinia triticina, Puccinia hordei, and Puccinia striiformis [11–13]. Bd is also suscep-

tible to some oomycota [5], bacteria [4], and viruses [14, 15] previously described as cereal

pathogens.

A study by Peraldi et al. confirmed positive interaction between the species most preva-

lently causing Fusarium head blight (FHB) and Bd [9]. As documented in that study, Fusarium
graminearum and Fusarium culmorum successfully infected tissue of Bd. F. culmorum is a soil-

, air- and seed-borne fungal pathogen of small-grain cereals causing foot and root rot, fusar-

ium seedling blight, and especially FHB, a disease leading to decreased yield and mycotoxin

contamination of grain [16]. Fusarium culmorum is observed in colder regions of Europe,

America, Australia, Asia, and North Africa [17–20] and is regarded globally as one of the main

pathogens of cereals [21, 22]. Because no fully resistant cultivars exist, control of diseases

caused by Fusarium spp. must be achieved by such agricultural management practices as crop

rotation and postharvest debris removal to diminish inoculum pressure [23]. Fungicide treat-

ments at anthesis can reduce disease levels by only 15–30% [24], and, together with rising envi-

ronmental concerns, new disease control alternatives, including biological controls, need to be

developed. Several organisms have been tested both in vitro and in plant assays for their effi-

cacy to control FHB in wheat [25–27]. Endophytic biological control agents may offer such

potential [28].

Microdochium. bolleyi (Sprague) de Hoog and Hermanides-Nijhof, (Ascomycota, Xylar-
iales) (Mb) is a fungus endophytically growing within plant roots, especially in cereals and

other graminaceous species [29]. It has been documented on wheat [30], barley [31, 32], and

other plants, such as Agrostis stolonifera L. [33], Agrostis palustris [34], and Phragmites austra-
lis [35]. Mb is characterized as a dark septate endophyte due to its melanised cell walls and

intra- and intercellular growth within the roots of healthy plants [36]. In culture, Mb produces

one-celled, crescent-shaped conidia and dark brown hyphae, and it may release an orange pig-

ment [37]. Mb has been shown to exhibit suppression of various plant pathogens of cereals,

such as Oculimacula yallundae [30], G. graminis var. tritici [32, 38], Septoria nodorum [39],

and Bipolaris sorokiniana [40]. Mb inhibited the growth of F. culmorum by 24.5–33% in dual

culture in vitro, and symptoms on detached spikelets caused by F. graminearum were lower to

54% in treatment by Mb [41].

The present research aims to investigate the interaction between M. bolleyi and B. distach-
yon and evaluate Bd as a model for examining potential of endophyte-mediated resistance to

F. culmorum (Fc). A second aim was to develop a method for molecular identifying Mb in

plant tissues.

Materials and methods

Biological materials

Seeds of the B. distachyon line Bd21 were obtained from the Joint Genome Institute (https://

jgi.doe.gov). All plants were maintained in a cooled greenhouse (20/18˚C, day/night) within

pots 8 cm in diameter filled with a 50:50 planting substrate–sand (vol/vol) mixture, the sub-

strate being FLORCOM SV (BB Com, Letohrad, Czech Republic). Ten seeds were placed into

each pot. After germination, the number of plants in every pot was reduced to six.

The Mb isolates originated from wheat roots. There were used six isolates (UPOC-FUN-

253–258) from the Collection of Phytopathogenic Microorganisms UPOC (Czech Republic).
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All isolates come from the Czech Republic and were collected during the years 2018 and 2019.

Inocula of Mb isolates were cultivated on millet grains for three weeks at 20˚C in the dark.

Before cultivation, 200 g of millet seeds and 50 ml of distilled water in each plastic bag were

steam sterilized twice at 120˚C for 20 min. Each isolate was cultivated separately, and then,

prior to use, all six isolates were mixed all together from equal parts. The Fc isolate 19FcBd was

obtained from symptomatic leaves of Bd in a greenhouse during 2019. The isolate was checked

for colony morphology, conidial morphology, and sequencing of the internal transcribed

spacer (ITS), large subunit (LSU), and elongation factor (EF-1). Sequences were checked using

the online Basic Local Alignment Search Tool (BLAST). Best hits were examined to attribute

species names (�97% of sequence similarities). Species-specific primers OPT18F/R [42] were

also used to confirm Fc determination. Cultures were maintained in darkness at 18 ± 2 ˚C on

potato dextrose agar (PDA) plates and transferred regularly to fresh medium. The Fc inoculum

was cultured on PDA plates under UV-B light at 18 ˚C for 2 weeks. Macroconidia were

obtained by scraping the agar surface with a sterile spatula and transferring the conidia to ster-

ile distilled water. A final solution of Fc macroconidia was prepared at a concentration of

5 × 105 conidia mL−1.

Isolates of other fungi used for testing of diagnostic primers were obtained from four differ-

ent collections of microorganisms (Table 1).

Inoculations

Plants were inoculated with Mb during sowing. Millet containing Mb (2.5 g per pot) was

spread evenly directly on the seed placed on the substrate. Treatments inoculated with Mb are

indicated within this article as Mb1. Only sterile millet without endophyte was added to the

control treatments. Treatments non-inoculated with Mb are indicated within this article as

Mb0. Seed and inoculum were overlaid with a 0.5 cm layer of the substrate.

In the phase of the second offshoot in Bd and the third leaf of wheat was carried out infec-

tion using Fc on the second upper leaf, adapting and modifying the method of Peraldi et al.

[9]. Treatments infected with Fc are indicated within this article as F1. Leaves were wounded

in two positions by gentle compression with a Pasteur pipette on the adaxial surface [9]. A

droplet (5 μL) of conidial suspension (containing 5 × 105 conidia mL−1), amended with 0.05%

Tween 20, was deposited onto each wound site. Mock inoculation was performed similarly

using sterile distilled water with 0.05% Tween 20 (5 μL). Treatments non-infected with Fc are

indicated within this article as F0. All plants were placed under a plastic cover to increase rela-

tive humidity until 2 days post inoculation (dpi), at which time the covers were removed.

Sampling and assessment

Disease symptoms on the leaves were recorded at 8 dpi in Bd and wheat. Leaves for light

microscopy were collected at 8 dpi and fixed in 70% ethanol. The percentage of necrotic tissue

was evaluated on the adaxial surface of infected leaves (S1 Fig). Leaves for RNA extraction

were sampled at 1, 2, and 8 dpi and immediately transferred to liquid nitrogen. Subsequently,

were transferred to a freezer and held at −80 ˚C.

For the purpose of evaluating endophyte colonization by DNA extraction, roots were col-

lected 90 days after sowing, surface sterilized for 3 min in 1% NaOCl and thoroughly rinsed in

sterilized distilled water to remove all superficial hyphae and then dried. Roots for the purpose

of evaluating endophyte colonization by light microscopy were collected 90 days after sowing,

then fixed in 70% ethanol. Leaves and roots fixed in 70% ethanol were subsequently cleared in

2.5% KOH for 3 days, acidified in 1% HCl, then stained with 0.05% aniline blue in lactogly-

cerol [43]. Colonization of roots by the endophytic fungus was assessed by microscopic

PLOS ONE Interaction of B. distachyon and M. bolleyi

PLOS ONE | https://doi.org/10.1371/journal.pone.0265357 March 14, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0265357


examination (200× magnifications). Results were evaluated as positive when visible presence

of Mb chlamydospores was observed.

DNA isolation, primers design, and PCR

Fungal mycelia (approximately 50–100 mg of biomass) of all tested species and strains

(Table 1) were harvested from Petri dishes, ground to a fine powder in a cooled mortar using

liquid nitrogen, then homogenized. Total genomic DNA was extracted using the DNeasy Plant

Table 1. Fungal species used in the analysis with MbPOLIIF/R primers designed in the current study. A positive reaction result distinguished by a visible band on the

gel is indicated by a + sign, a negative response by a–sign. To confirm the presence of DNA, a control polymerase chain reaction (PCR) reaction with universal primers

ITS1/ITS4 was performed on all samples. Reactions were always repeated three times.

Species Source Code Host ITS1/4 MbPOLIIF/R

Microdochium bolleyi UPOC UPOC-FUN-253 Tritium aestivum +/+/+ +/+/+

Microdochium bolleyi UPOC UPOC-FUN-254 Tritium aestivum +/+/+ +/+/+

Microdochium bolleyi UPOC UPOC-FUN-255 Tritium aestivum +/+/+ +/+/+

Microdochium bolleyi UPOC UPOC-FUN-256 Tritium aestivum +/+/+ +/+/+

Microdochium bolleyi UPOC UPOC-FUN-257 Tritium aestivum +/+/+ +/+/+

Microdochium bolleyi UPOC UPOC-FUN-258 Tritium aestivum +/+/+ +/+/+

Microdochium nivale AGT 13M30 Tritium aestivum +/+/+ -/-/-

Microdochium nivale AGT 17M323 Tritium aestivum +/+/+ -/-/-

Microdochium nivale AGT 13M205 Tritium aestivum +/+/+ -/-/-

Microdochium majus AGT 13M195 Tritium aestivum +/+/+ -/-/-

Microdochium majus AGT 14M71 Tritium aestivum +/+/+ -/-/-

Microdochium majus AGT 17M271 Tritium aestivum +/+/+ -/-/-

Cochliobolus sativus AGT 07CS4.3 Hordeum vulgare +/+/+ -/-/-

Ramularia collo-cygni AGT 20CZR19 Hordeum vulgare +/+/+ -/-/-

Oculimacula yallundae AGT 15OY119 Tritium aestivum +/+/+ -/-/-

Oculimacula acuformis AGT 15OA103 Tritium aestivum +/+/+ -/-/-

Rhizoctonia cerealis AGT 20CC88 Tritium aestivum +/+/+ -/-/-

Gaeumannomyces graminis var. tritici CCM F-575 Tritium aestivum +/+/+ -/-/-

Rhynchosporium secalis AGT 18RhS04 Hordeum vulgare +/+/+ -/-/-

Pyrenophora teres AGT 17PTT52 Hordeum vulgare +/+/+ -/-/-

Pyrenophora maculata AGT 14PTM01 Hordeum vulgare +/+/+ -/-/-

Pyrenophora tritici-repentis AGT 19DTR6 Tritium aestivum +/+/+ -/-/-

Tilletia tritici AGT 06TCAR33 Tritium aestivum +/+/+ -/-/-

Tilletia controversa AGT 06TCO02 Tritium aestivum +/+/+ -/-/-

Fusarium graminearum AGT 20FG01 Tritium aestivum +/+/+ -/-/-

Fusarium culmorum AGT 19FcBd B. distachyon +/+/+ -/-/-

Fusarium avenaceum CPPF CPPF-161 Tritium aestivum +/+/+ -/-/-

Fusarium poae CPPF CPPF-51 Tritium aestivum +/+/+ -/-/-

Fusarium langsethiae AGT 12FL4.00 Avena sativa +/+/+ -/-/-

Fusarium sporotrichioides CPPF CPPF-146 Tritium aestivum +/+/+ -/-/-

Fusarium tricinctum CPPF CPPF-254 Tritium aestivum +/+/+ -/-/-

Fusarium oxysporum AGT 19FOX06 Zea mays +/+/+ -/-/-

Zymoseptoria tritici AGT ST-KM_B Tritium aestivum +/+/+ -/-/-

Penicillium sp. AGT 20PEN_sp. Hordeum vulgare +/+/+ -/-/-

UPOC–Collection of Phytopathogenic Microorganisms, Czech Republic; AGT–Agrotest Fyto, Ltd, Czech Republic; CCM–Czech Collection of Microorganisms,

Masaryk University, Faculty of Sciences, Czech Republic; CPPF—Collection of Phytopathogenic Fungi at Crop Research Institute Prague, Czech Republic.

https://doi.org/10.1371/journal.pone.0265357.t001
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Mini Kit (Qiagen, Germany). Plant material (roots of Bd and wheat, approximately 50 mg of

dried biomass per sample) was also ground to powder and extracted as described above. DNA

concentration was measured using Qubit fluorometric quantification (ThermoFisher Scien-

tific, Waltham, MA, USA) and DNA was diluted to concentration 5 ng μL−1.

Based upon sequences ITS (KP859018), LSU (large subunit of ribosomal gene; KP858954),

Tub2 (β-tubulin gene; KP859081), and RPB2 gene (RNA 40 polymerase II second-largest sub-

unit (KP859127)) [44] selected from the GenBank database, four primer pairs (MbITSF/R,

MbLSUF/R, MbBETF/R, and MbPOLIIF/R) were designed using Primer3Plus software [45].

PCR reactions were carried out in 20 μL volumes containing 10 ng of DNA from fungal and/

or plant material. The reaction mixture consisted of 0.2 mM of dNTP, 0.2 μM each of forward

and reverse oligonucleotide primer (the best final primers MbPOLIIF/R were selected from a

preliminary screen of the designed primers (see S1 Table)) and 1 U of Taq polymerase. Reac-

tion buffer consisted of 75 mM Tris-HCl, 20 mM (NH4)2SO4, and 2.5 mM MgCl2.

DNA extracted from fungal cultures and from infected and non-infected plant material was

amplified using PCR with initial denaturation 94 ˚C (5 min). The temperature cycle (35×) con-

sisted of denaturation (95 ˚C) for 30 s, annealing 66.7 ˚C (20 s), and extension at 72 ˚C (45 s).

A final extension step at 72 ˚C for 5 minutes was followed by cooling to 10 ˚C until removing

samples. PCR products (10 μL) were analysed using agarose gel electrophoresis.

Test of primers sensitivity, specificity, and diagnostic potential in plant

tissues

The primers were tested on the six Mb isolates as described above. The sensitivity was tested

using different amounts of Mb DNA (1.0, 0.1, 0.01, 0.001, and 0.0001 ng.). The designed

primer pairs were also tested for their specificity towards the DNA of fungi associated with dis-

eases of wheat and other cereals. Fungal cultures were obtained from four microorganism col-

lections (Table 1) and cultured on PDA. The quality of fungal DNA was checked by ITS1/ITS4

primers [46]. Furthermore, the potential for detection was tested in Bd and wheat roots inocu-

lated with the Mb compared with non-inoculated roots (inoculation and sampling as described

above). All reactions were repeated at least three times.

RNA isolation and quantitative PCR

Leaves were homogenized in a TissueLyser II (Qiagen, Hilden, Germany) for 2 minutes at 27

Hz. Caution was taken during homogenization to avoid sample melting. The homogenized

samples were immediately placed into liquid nitrogen. The RNA was isolated using RNeasy

Plant Mini Kit (Qiagen) while following the manufacturer’s instructions. DNA was removed

during the RNA purification using the RNase-Free DNase Set (Qiagen). The isolated RNA was

stored at −80 ˚C. cDNA was synthesized using the Transcriptor High Fidelity cDNA Synthesis

Kit (Roche Diagnostics, Mannheim, Germany) according to the manufacturer’s instructions

with 1 μg of total RNA and anchored-oligo (dT) primers. The concentration of cDNA was

measured using Qubit (ThermoFisher Scientific) and cDNA was diluted to concentration 5

ng μL−1. Expression analysis of the chosen plant defence genes (BdChitinase1, BdPR1-5,

BdLOX3, BdPAL, BdEIN3, BdAOS, TaB2H2 (chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2,

and TaAOS) was performed using the CFX96TM Real-Time PCR Detection System (Bio-Rad,

Hercules, CA, USA). The quantitative PCR mix consisted of 1× SYBR Green (Top-Bio, Vestec,

Czech Republic), 0.2 μM forward and reverse primers (S1 Table), 10 ng cDNA (2 μL), and

water to final volume 15 μL. The reference gene for the wheat was glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) according to Travella et al. [47] and Sun et al. [48], and for Bd, it

was S-adenosylmethionine decarboxylase gene BdSamDC [49]. The control sample consisted
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of equal amounts of cDNA from all three replications of Bd and wheat plants not inoculated

with fungi (with neither Mb nor Fc present). The primers’ specificity and presence of primer

dimers were verified by melting analysis. The data were analysed using the 2–ΔΔCq method

with CFX Manager 3.0 software (Bio-Rad). Three biological as well as three technical replicates

were run.

Statistical analysis

Percentage of necrotic tissue after infection with Fc in the treatments pre-inoculated with the

endophyte and non-inoculated were statistically analysed by ANOVA in conjunction with

Tukey’s post hoc test (P< 0.05) using Statistica 12 software. Differences in expression levels of

the analysed genes were evaluated by Tukey’s test (P< 0.05; Maestro software, BioRad).

Results

Demonstrated root colonization by Mb of Bd and wheat

Using microscopic and molecular methods, presence of Mb was detected in both Bd and

wheat root samples. Using light microscopy and aniline blue staining, chlamydospores were

observed in the roots of Bd (Fig 1) and wheat (S2 Fig). No presence of chlamydospores was

confirmed in plants without inoculation.

Of the four designed primer pairs, a set MbPOLIIF/R best met the requirements. The prim-

ers amplified one sharp band (600 bp) in all six tested isolates of Mb. In sensitivity testing, the

Fig 1. Chlamydospores of M. bolleyi in root of B. distachyon. Scale bar = 10 µm.

https://doi.org/10.1371/journal.pone.0265357.g001
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method showed a positive response even at 0.001 ng (1 picogram) of Mb DNA (S3 Fig). In the

specificity test, the primers amplified DNA only from Mb and not from any of the other fungal

pathogens screened (Table 1). The primer set was therefore used to examine Mb-inoculated

and non-inoculated plant material (Bd and wheat). Inoculated plants (Mb1) with chlamydo-

spores present in roots of both Bd and wheat showed positive results after PCR with primers

MbPOLIIF/R and, on the contrary, non-inoculated plants (Mb0) without chlamydospores in

roots showed negative PCR results (S2 Table). Analysis confirmed the primers to be specific

and powerful in detecting Mb within plant tissues. No false positive results and no artefacts

were detected after visualization on the electrophoresis. Other primer pairs tested (MbITSF/R,

MbLSUF/R, and MbBETF/R) failed in the specificity test and were excluded from other parts

of this study.

Demonstration of successful Fusarium culmorum infection

Infection with Fc on leaves of Bd and wheat was successful. This was verified by light micros-

copy after staining in aniline blue. Germinating macroconidia and hyphae were observed pen-

etrating pipette-damaged tissues (S4 and S5 Figs). Darkening of tissues and incipient

necrotization were observed around the penetration of hyphae into the tissues. The intensity

of necrotization was assessed visually according to the scheme presented in S1 Fig, and per-

centage damage was recorded. On plants without Fc infection, darkening of tissues did not

occur and areas damaged by pipette remained light coloured. Upon evaluating the data, it was

found that plants without endophyte Mb were significantly more severely infected than were

plants with Mb (Table 2; S3 and S4 Tables).

Expression levels of genes involved in plant–pathogen interaction in Bd

and wheat

Expression levels of the selected essential plant defence genes (BdChitinase1, BdPR1-5,

BdLOX3, BdPAL, BdEIN3, BdAOS, TaB2H2 (chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2,

and TaAOS) were measured in plants inoculated with endophyte Mb and pathogen Fc. The

fold differences (FDs) in their expression levels were first compared among the mock (plants

inoculated with neither Mb nor Fc) and other experimental treatments with combinations of

single (only Mb or only Fc) and double (both Mb and Fc) inoculations (Fig 2). Significant

changes were detected only in some genes (BdPR1-5, BdChitinase1, BdLOX3, TaPR1.1, and

TaB2H2) for treatments infected with pathogenic fungus Fc. Other genes (BdPAL, BdAOS,

BdEIN3, TaLOX, TaEIN2, and TaAOS) were not influenced by Fc infection. BdPR1-5 expres-

sion was upregulated by infection of plants with pathogen Fc at 1 dpi and 2 dpi (Fig 2). The

average FD across all treatments was 30.94 in the F1 group compared to F0 (Table 3). In the

last term, 8 dpi, no significant differences were detected between treatments F0 and F1. In the

case of BdChitinase1, the expression increase after infection with the Fc pathogen was

Table 2. Tukey’s post hoc test for each species and treatment examining damage to leaves of B. distachyon and wheat by pathogen F. culmorum. The main experi-

mental factor is previous inoculation with the endophytic fungus M. bolleyi. CI– 95% confidence intervals. α = 0.05, statistically significant difference marked with asterisk

(�).

Species Endophyte n Mean leaf damage (%) Standard error CI −95% CI +95%

Bd Mb1 (yes) 30 14.33 4.2259 5.6904 22.9762

Mb0 (no) 30 51.83� 5.6603 40.2566 63.4100

Wheat Mb1 (yes) 30 16.16 4.8345 6.2789 26.0543

Mb0 (no) 30 46.50� 5.9458 34.3393 58.6606

https://doi.org/10.1371/journal.pone.0265357.t002
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FD = 4.12. Other increases were FD = 14.26 for TaPR1.1 and FD = 39.66 for TaB2H2. In these

genes, the changes were clear at 1 dpi and 2 dpi, but there were no conclusive differences at the

last sampling date of 8 dpi. In the case of BdLOX3, the difference due to pathogen infection

was also apparent at 1 dpi and 2 dpi (FD = 8.8), and no difference was noted later. Neverthe-

less, a statistically significant difference was observed only at 2 dpi (Fig 2).

Inoculation of plants with the endophytic fungus Mb did not affect the expression of tested

marker genes (Table 3). There were no differences in the expression of the genes studied when

Fig 2. Expression profiles of genes BdPR1-5 (A), BdChitinase1 (B) and BdLOX3 (C) in Brachypodium distachyon (Bd) and TaPR1.1 (D) and

TaB2H2 (E) in wheat inoculated with Microdochium bolleyi (Mb1) or not so inoculated (Mb0) and with leaves infected with Fusarium culmorum
(F1) or not so infected (F0) at three time periods 1, 2, and 8 days post inoculation (dpi). Expression levels are relative to M. bolleyi non-inoculated

and Fc non-infected leaves of plants at 1 dpi and were normalized with the reference genes BdSamDC and TaGADPH. Expression levels shown are

mean values and standard deviations (whiskers) for three replications. Statistically significant differences are indicated by letters above columns (post

hoc Tukey’s test, P< 0.05).

https://doi.org/10.1371/journal.pone.0265357.g002
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Mb and Fc treatments were compared with treatment with a single pathogen infection

(Table 4), except in two cases. Mb affected the expression of BdChitinase1 and TaPR1.1 genes

at 1 dpi (Fig 2B and 2D). While BdChitinase1 was upregulated in Mb1 treatment (with endo-

phyte) at 1dpi, TaPR1.1 expression was downregulated at the same term. The expression of the

other genes tested was not affected by Mb inoculation.

Discussion

Root endophytes can confer resistance against plant pathogens by direct antagonism through

mycoparasitism, antibiosis, and/or competition for nutrients and niches, or indirectly by trig-

gering induced resistance in the host [50, 51]. Indirect antagonism takes into account an effect

of the endophyte on the pathogen mediated via the host plant by triggering induced systemic

resistance (ISR). Endophytes trigger ISR by two phytohormones, jasmonic acid (JA) and ethyl-

ene (ET), thereby resulting in a faster and stronger immune response following pathogen

attack. Some endophytes are able to trigger a systemic acquired resistance response (SAR) that

is salicylic acid (SA) dependent and also results in primed host defences [50, 52, 53].

Table 3. Expression-level differences for chosen genes in leaves of Brachypodium distachyon (Bd) and wheat plants. Gene expression was detected as fold difference

(FD) between inoculated (by pathogen or endophyte) and non-inoculated plants (mock).

Gene Pathogen Endophyte

Mean FD F-stat P-value Mean FD F-stat P-value

BdPR1-5 30.944 16.664 0.00129 −13.795 0.823 0.38090

BdChitinase1 4.120 9.365 0.00847 −0.260 0.018 0.89457

BdLOX3 8.807 10.507 0.00590 5.493 0.085 0.77299

TaPR1.1 14.267 18.859 0.00067 −3.431 0.490 0.49554

TaB2H2 39.661 32.744 0.00005 4.041 0.094 0.76409

Mean 19.559 −1.590

Total 97.799 −7.952

The table shows means calculated from 1 dpi and 2 dpi data. Data from 8 dpi was excluded because there were no statistically significant differences among treatments.

Non-significant differences were found in FD for the genes BdPAL, BdEIN3, BdAOS, TaPAL, TaLOX, TaEIN2, TaAOS and so these are not displayed in the table. A

statistically significant difference is expressed by a P-value lower than 0.05.

https://doi.org/10.1371/journal.pone.0265357.t003

Table 4. Expression-level differences for chosen genes in leaves of Brachypodium distachyon (Bd) and wheat

plants. Gene expression was detected as fold difference (FD) between plants inoculated only by pathogen and plants

inoculated both by endophyte and pathogen to evaluate the effect potentially caused by endophyte on subsequent path-

ogen infection.

Gene Mean FD F-stat P-value

BdPR1-5 −1.307 1.084 0.33803

BdChitinase1 0.398 0.176 0.68937

BdLOX3 2.247 3.692 0.10305

TaPR1.1 −0.678 0.446 0.52917

TaB2H2 0.717 0.415 0.54309

Mean 0.275

Total 1.376

Table shows means calculated from 1 dpi and 2 dpi. A statistically significant difference is expressed by a P-value

lower than 0.05.

https://doi.org/10.1371/journal.pone.0265357.t004
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Most previous research with monocotyledonous plants has been focused on agronomically

important grasses, such as tall fescue (Festuca arundinacea), perennial ryegrass (Lolium per-
enne), and meadow fescue (Festuca pratensis), and their interactions with herbivores and path-

ogens [54, 55]. Endophytic fungi of the genus Epichloë and their asexual Neotyphodium forms

are thought to interact mutualistically with their host grasses, providing protection for the host

against herbivores and pathogens mediated by fungal alkaloids [56]. There are many other

examples of endophytes that decrease disease susceptibility of their host upon pathogen infec-

tion [50, 57, 58], thus making endophytes useful agents for disease control [50]. Endophytic

fungus Harpophora oryzae in rice roots protected rice from Magnoporte oryzea root invasion

by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced sys-

temic resistance against rice blast by upregulation expression of transcription factor

OsWRKY45 [59]. Inoculation of Theobroma cacao leaves with endophytic fungus Colletotri-
chum tropicale leads to higher resistance to damage by the pathogen Phytophthora palmivora
[60], lower incidence of black pod disease caused by Phytophthora spp. [61] moreover, it

induces changes in the expression of host genes with defense responses functions. Inoculations

of T. cacao by endophyte C. tropicale produced changes in the expression of genes associated

with the synthesis, modification, and degradation of the cell wall; peroxidases and components

of the jasmonic acid defense pathway; pathogenesis-related proteins; redox state proteins;

genes coding beta glucanases, heat shock proteins, transcription factors, proteins involved in

secondary metabolism and proteolysis; and other genes relevant to plant-microbe interactions

such as NPR3, nodulin, and endochitinases [62].

In our work, plants colonized by Mb showed significantly lower levels of Fc infection. Fc

infection induced expression of BdPR1-5, BdChitinase1, BdLOX3, TaB2H2, and TaPR1.1, but

this expression was not affected by previous inoculation with the Mb endophyte. In cases of

indirect endophyte-mediated resistance, a typical SAR/ISR response is based upon initial expo-

sure to an endophyte that primes plant defence and subsequent infection with the pathogen

[50]. The phenotypic resistance observed in this study, together with the gene expression find-

ings in Bd and wheat, suggests that other genes are involved in the putative endophyte-medi-

ated resistance. However, further research is needed to demonstrate which genes are

responsible for this endophyte-mediated resistance. Since Mb is a root endophyte, mecha-

nisms such as direct antimicrobial activity or competition for niches or resources cannot be

assumed to be involved in the increased host resistance observed on leaves. Similarly, a study

by Constantin et al. on tomato demonstrated that fungal endophyte Fusarium oxysporum
strain Fo47 can confer endophyte-mediated resistance independently of SA, ET, or JA [50].

Their findings imply that endophyte-mediated resistance is mechanistically distinct from ISR

and SAR.

Expression of marker genes

Striving to elucidate the possible factors involved in endophyte-mediated resistance in Bd, the

activity of genes known to be involved in the activation of defence-related pathways in

response to pathogen attack were measured. In model plants, genes considered to be involved

in phytohormone biosynthesis or signalling are also used as markers of plant responses to

pathogen attack [63]. Many defence genes are involved in SA, JA, and ET signalling pathways

and are known to be associated with plant defence generally and with such model plants as

Arabidopsis [64] and Bd [65]. JA- and ET-mediated signalling pathways are mainly linked to

plant responses to necrotrophic pathogens and herbivores, while the SA-dependent pathway is

mainly involved in responses to biotrophic pathogens, and these pathways can act antagonisti-

cally [66]. Hormone-responsive genes are thus used to evaluate disease resistance responses
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during pathogen infection. Defence-related phytohormone marker genes expressed at time

points suitable for defence-response monitoring were studied for Bd by Kouzai et al. [65] and

by Sandoya et al. (1). Some of the recommended marker genes from the two studies just cited

were used in the current study to evaluate response of Bd to endophyte fungus Mb and also

pathogenic Fc infection. To confirm the hypothesis, the influence of the endophyte Mb on

wheat was investigated in parallel.

Pathogenesis-related (PR) genes generally encode small antimicrobial proteins, their

expression levels increase quickly when stimulated by biotic or abiotic stress, and therefore

they serve as markers for plant immune signalling. PR proteins’ biochemical activity and mode

of action have nevertheless remained elusive [67]. PR-1 proteins constitute a large family of 23

proteins in wheat that are upregulated early in the defence response [68]. Findings from a

recent study provided genetic and biochemical evidence indicating that PR1 binds to sterols

and inhibits pathogen growth [69]. Increased expression of the PR1, PR2, and PR5 genes repre-

sents activation of the SA signalling pathway [70], but, in rice, for example, the expression level

of OsPR1 is increased by both SA and JA [71]. Although expression of PR1.1 and PR1.2 genes

of wheat has been induced upon infection with either compatible or incompatible isolates of

the fungal pathogen Blumeria graminis, these genes did not respond to such activators of sys-

temic acquired resistance (SAR) as SA, benzothiadiazole, or isonicotinic acid [72]. Similarly in

the present study, PR1 was induced by Fc but not by endophyte-mediated resistance provided

by pre-inoculation of Bd and wheat with Mb. In a study by Zhang et al., two PR protein-encod-

ing genes (PR1–17 and PR10) showed progressive increase in expression over time that peaked

after the appearance of symptoms in G. graminis var. tritici-infected roots of wheat [73]. In our

study, the gene PR1.1 in wheat was highly expressed at 1 dpi and 2 dpi after Fc infection. In ret-

rospect, in our study, it would have been better to measure the expression of genes earlier,

within a matter of hours (1, 2, 3 h, etc.), after infection. After 24 h, the expression of some

genes may already have passed its peak. There were no longer any statistically significant dif-

ferences in the level of PR1 gene expression between the Fc infected and non-infected treat-

ments in either Bd or wheat hosts at 8 dpi.

Jasmonic acid is an oxylipin hormone derived from linolenic acid that is crucial for plants

to regulate growth and development, as well as to respond to biotic and abiotic stresses [74].

Allene oxide synthase (AOS) and lipoxygenase (LOX) are required for JA biosynthesis [75],

and they are used as JA markers in various plant species [65]. In a study by Zhang et al. [73],

G. graminis var. tritici-infected roots showed changes in genes expression profile after patho-

gen infection. LOX2 had a unique expression pattern in that it progressively declined after

infection. Similarly, in our study LOX3 expression in Bd after Fc infection was significantly ele-

vated at 1 and 2 dpi. AOS usually reacts to wounding of plant organs, as described, for example,

in Arabidopsis or flax [76, 77] or to feeding damage by herbivores in rice [78]. Plants also react

through a change in AOS expression to the effect of attack by pathogenic fungi. Various wheat

cultivars infected with the fungal pathogen Zymoseptoria tritici have shown significant changes

in AOS and LOX expression levels in comparison with non-infected controls [79]. In our

study, neither inoculation with the endophyte nor with Fc demonstrated any effect on AOS
expression either in Bd or in wheat. In a study by Gottwald et al., defence-related genes of

wheat encoding jasmonate-regulated proteins were upregulated in response to FHB [80]. The

transcription levels of the LOX3 gene in the JA pathway of Bd studied by Sandoya et al. (1)

were upregulated in the resistant genotype at 24 h post infection, with a decrease observed at

48 h following infection with fungal pathogen Sclerotinia homoeocarpa isolate.

Phenylalanine ammonia lyase (PAL) is a key enzyme in the phenylpropanoid pathway of

higher plants, and transcriptional upregulation of PAL after pathogen infection has been

reported in Arabidopsis, wheat, rice, and Brachypodium [5, 81]. From a plant defence
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viewpoint, PAL is responsible for synthesizing such compounds as flavonoids and chlorogenic

acid [82]. A study by Cass et al. [83] showed that PAL in Bd plays an important role in lignin

biosynthesis, with more than 40% reduction in cell wall lignin content associated with PAL
knockdown. Reduced-lignin plants exhibited significantly increased susceptibility to the hemi-

biotrophic fungal pathogens Fc and Magnaporthe oryzae [83]. There were no changes in

expression of the PAL gene after Fc and Mb inoculation in either Bd or wheat in the current

study.

Ethylene regulates many diverse metabolic and developmental processes in plants, rang-

ing from seed germination to senescence, and it is considered to play an important role as a

signal molecule during abiotic and biotic stress [84, 85]. There was measured gene expres-

sion of EIN2 (ethylene-insensitive 2) in wheat and EIN3 (ethylene-insensitive 3) in Bd,

which encode EIN, a small nuclear-localized protein that is considered a transcription factor

acting as a positive regulator in the ethylene response pathway. It is required for ethylene

responsiveness in adult plant tissues and binds a primary ethylene response element present

in the ethylene-response-factor 1 (ERF1) promoter with the consequence of activating tran-

scription of this gene [86, 87]. EIN3 is also involved in a regulatory cascade for the modula-

tion of PR genes expression [88]. In the interaction of Arabidopsis thaliana and bacterial

pathogen Erwinia amylovora, the elicitor HrpNEa activates ethylene-mediated expression of

the Arabidopsis transcription factor MYB44, which in turn enhances the expression of ethyl-
ene-insensitive 2 (EIN2) [89]. No changes in EIN gene expression after Fc and Mb inocula-

tion were observed in either Bd or wheat in the current study. JA and ET are two major plant

hormones that synergistically regulate plant development and tolerance to necrotrophic

fungi. EIN3 and EIL1 are positive regulators of a subset of JA responses, including PR gene

expression, plant resistance to necrotrophic fungi, and root development [90]. The endo-

phyte must use enzymes to overcome obstacles while growing through the plant tissues and

the plant duly responds to these signals by its defence mechanisms, much as it would react to

a pathogen and its virulence factors. How this delicate balance is regulated remains a ques-

tion, however.

Endophyte diagnosis by PCR

Endophyte presence is usually determined by methods other than PCR, especially microscopic

[43] and by culture [91, 92]. In recent years, molecular methods have also been introduced

[93]. Ernst et al. [94] used nested PCR to distinguish two endophytic species of Mb and Micro-
dochium phragmitis in Phragmites australis. In the present study, primers for end-point PCR

to determine the Mb endophytic fungus in plant tissues were developed. Although endophytes

had previously been determined by PCR in grass tissues, such as in cases of Epichloë [95], Neo-
typhodium [96], and Acremonium [97], no method has been available heretofore for standard

end-point PCR determination of Mb. The method was tested in wheat and Bd. In both host

species, the presence of Mb could be unequivocally demonstrated in the inoculated plants by

the presence of a band on the electrophoretic gel. In plants without previous Mb inoculation,

the results of PCR test using the MbPOLII primer were negative. Therefore, the molecular

method is a suitable complement to, or might completely replace, other tests for detecting Mb

in plant tissues. The results from studies of endophytic fungi to date are in many aspects still

fragmentary, and nobody has yet managed, for instance, to cover the entire spectrum within

different parts of a plant simultaneously, let alone across several seasons. This is mainly due to

methodological limitations of the endophyte studies. This PCR-based method of endophyte

determination facilitates such research in many respects.
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Conclusion

Bd is a suitable model for studying interactions with the endophytic fungus Mb, and it is possi-

ble to study the influence of endophyte-mediated resistance at the phenotypic level as well as

in terms of gene expression. Bd and Mb showed positive interaction. In plants colonized by

Mb, less severe symptoms of damage created by the fungus Fc were detected. Chitinase, PR1,

and LOX in Bd as well as B2H2 and PR1.1 in wheat, reacted to Fc by their upregulation. In

terms of endophyte-mediated resistance, these genes were in most cases independent of Mb’s
presence. There were developed primers for the end-point PCR to diagnose the endophyte Mb

in plant tissues and tested it in Bd and wheat. The method is suitable for confirming presence

of the endophyte in plants.
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43. Bleša D, Matušinský P, Sedmı́ková R, Baláž M. The potential of Rhizoctonia-like fungi for the biological

protection of cereals against fungal pathogens. Plants-Basel. 2021; 10(2):349. https://doi.org/10.3390/

plants10020349 PMID: 33673058

44. Hernández-Restrepo M, Groenewald JZ, Crous PW. Taxonomic and phylogenetic re-evaluation of

Microdochium, Monographella and Idriella. Persoonia. 2016; 36:57–82. https://doi.org/10.3767/

003158516X688676 PMID: 27616788

45. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3Plus, an enhanced web

interface to Primer3. Nucleic Acids Res. 2007; 35:71–74. https://doi.org/10.1093/nar/gkm306 PMID:

17485472

PLOS ONE Interaction of B. distachyon and M. bolleyi

PLOS ONE | https://doi.org/10.1371/journal.pone.0265357 March 14, 2022 16 / 19

https://doi.org/10.1111/ppa.12483
https://doi.org/10.1094/PHYTO-04-18-0123-R
http://www.ncbi.nlm.nih.gov/pubmed/30775950
https://doi.org/10.1016/j.micres.2017.04.014
http://www.ncbi.nlm.nih.gov/pubmed/28647118
https://doi.org/10.3852/09-212
https://doi.org/10.3852/09-212
http://www.ncbi.nlm.nih.gov/pubmed/20648749
https://doi.org/10.1016/s0007-1536(81)80036-8
https://doi.org/10.1016/S0007-1536(81)80065-4
https://doi.org/10.1016/S0007-1536(81)80065-4
https://doi.org/10.22043/mi.2019.118205
https://doi.org/10.22043/mi.2019.118205
https://doi.org/10.4489/MYCO.2008.36.2.077
https://doi.org/10.4489/MYCO.2008.36.2.077
http://www.ncbi.nlm.nih.gov/pubmed/23990737
https://doi.org/10.1111/j.1439-0434.1996.tb01527.x
https://doi.org/10.1016/S0168-6496%2803%2900161-2
http://www.ncbi.nlm.nih.gov/pubmed/19719598
https://doi.org/10.1046/j.1469-8137.1998.00265.x
http://www.ncbi.nlm.nih.gov/pubmed/33862835
https://doi.org/10.1007/BF02374826
https://doi.org/10.1111/j.1439-0434.1988.tb01021.x
https://doi.org/10.1080/07060669709501067
https://doi.org/10.1016/j.micres.2017.04.014
http://www.ncbi.nlm.nih.gov/pubmed/28647118
https://doi.org/10.1094/Phyto-86-515
https://doi.org/10.3390/plants10020349
https://doi.org/10.3390/plants10020349
http://www.ncbi.nlm.nih.gov/pubmed/33673058
https://doi.org/10.3767/003158516X688676
https://doi.org/10.3767/003158516X688676
http://www.ncbi.nlm.nih.gov/pubmed/27616788
https://doi.org/10.1093/nar/gkm306
http://www.ncbi.nlm.nih.gov/pubmed/17485472
https://doi.org/10.1371/journal.pone.0265357


46. White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, et al. Amplification and direct sequenc-

ing of fungal ribosomal RNA genes for phylogenetics. In: PCR—protocols and applications—a labora-

tory manual. Cambridge: Academic Press; 1990. p. 315–322. https://doi.org/10.1016/B978-0-12-

372180-8.50042-1

47. Travella S, Klimm TE, Keller B. RNA interference-based gene silencing as an efficient tool for functional

genomics in hexaploid bread wheat. Plant Physiol. 2006; 142:6–20. https://doi.org/10.1104/pp.106.

084517 PMID: 16861570

48. Sun H, Guo Z, Gao L, Zhao G, Zhang W, Zhou R, et al. DNA methylation pattern of Photoperiod-B1 is

associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytol. 2014; 204(3):682–

692. https://doi.org/10.1111/nph.12948 PMID: 25078249

49. Hong SY, Seo PJ, Yang MS, Xiang F, Park CM. Exploring valid reference genes for gene expression

studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol. 2008; 8:112. https://doi.org/10.

1186/1471-2229-8-112 PMID: 18992143

50. Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW. Endophyte-mediated resistance in

tomato to Fusarium oxysporum is independent of ET, JA, and SA. Front Plant Sci. 2019; 10:979.

https://doi.org/10.3389/fpls.2019.00979 PMID: 31417594

51. Fravel D, Olivain C, Alabouvette C. Fusarium oxysporum and its biocontrol. New Phytol. 2003;

157:493–502. https://doi.org/10.1046/j.1469-8137.2003.00700.x PMID: 33873407

52. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PA. Induced systemic

resistance by beneficial microbes. Annu Rev Phytopathol. 2014; 52:347–375. https://doi.org/10.1146/

annurev-phyto-082712-102340 PMID: 24906124

53. Sequeira L. Mechanisms of induced resistance in plants. Annu Rev Microbiol. 1983; 37:51–79. https://

doi.org/10.1146/annurev.mi.37.100183.000411 PMID: 6357059

54. Siegel MR, Latch GCM, Johnson MC. Acremonium fungal endophytes of tall fescue and perennial rye-

grass: significance and control. Plant Dis. 1985; 69(2):179–183. https://doi.org/10.1094/PD-69-179.

55. Tian P, Nan Z, Li C, Spangenberg G. Effect of the endophyte Neotyphodium lolii on susceptibility and

host physiological response of perennial ryegrass to fungal pathogens. Eur J Plant Pathol. 2008;

122:593–602. https://doi.org/10.1007/s10658-008-9329-7

56. Siegel MR, Latch JC, Bush LP, Fannin FF, Rowan DD, Tapper BA, et al. Fungal endophyte-infected

grasses: alkaloid accumulation and aphid response. J Chem Ecol. 1990; 16:301–315. https://doi.org/

10.1007/BF00982100 PMID: 24263491

57. Clay K. Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res. 1989;

92:1–12. https://doi.org/10.1016/S0953-7562(89)80088-7

58. Bae H, Roberts DP, Lim H-S, Strem MD, Park S-C, Ryu C-M, et al. Endophytic Trichoderma isolates

from tropical environments delay disease and induce resistance against Phytophthora capsici in hot

pepper using multiple mechanisms. Mol Plant Microbe Interact. 2011; 24(3):336–351. https://doi.org/

10.1094/MPMI-09-10-0221 PMID: 21091159

59. Su Z-Z, Mao L-J, Li N, Feng X-X, Yuan Z-L, et al. Evidence for Biotrophic Lifestyle and Biocontrol Poten-

tial of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease. PLoS ONE. 2013; 8(4):

e61332. https://doi.org/10.1371/journal.pone.0061332 PMID: 23637814

60. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, et al. Fungal endophytes limit pathogen

damage in a tropical tree. Proc.Natl.Acad.Sci.U.S.A. 2003; 100:15649–15654. https://doi.org/10.1073/

pnas.2533483100 PMID: 14671327

61. Mejia LC, Rojas EI, Maynard Z, VanBael SA, Arnold EA, Hebbar P, et al. Endophytic fungi as biocontrol

agents of Theobroma cacao pathogens. Biol. Control. 2008; 46: 4–14. https://doi.org/10.1016/j.

biocontrol.2008.01.012.

62. Mejı́a LC, Herre EA, Sparks JP, Winter K, Garcı́a MN, Van Bael SA, Stitt J, Shi Z, Zhang Y, Guiltinan

MJ, Maximova SN. Pervasive effects of a dominant foliar endophytic fungus on host genetic and pheno-

typic expression in a tropical tree. Front Microbiol. 2014; 5:479. https://doi.org/10.3389/fmicb.2014.

00479 PMID: 25309519

63. Lyons R, Manners JM, Kazan K. Jasmonate biosynthesis and signaling in monocots: a comparative

overview. Plant Cell Rep. 2013; 32(6):815–827. https://doi.org/10.1007/s00299-013-1400-y PMID:

23455708

64. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, et al. Coordinate gene

activity in response to agents that induce systemic acquired resistance. Plant Cell. 1991; 3(10):1085–

1094. https://doi.org/10.1105/tpc.3.10.1085 PMID: 12324583

65. Kouzai Y, Kimura M, Yamanaka Y, Watanabe M, Matsui H, Yamamoto M, et al. Expression profiling of

marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and

PLOS ONE Interaction of B. distachyon and M. bolleyi

PLOS ONE | https://doi.org/10.1371/journal.pone.0265357 March 14, 2022 17 / 19

https://doi.org/10.1016/B978-0-12-372180-8.50042-1
https://doi.org/10.1016/B978-0-12-372180-8.50042-1
https://doi.org/10.1104/pp.106.084517
https://doi.org/10.1104/pp.106.084517
http://www.ncbi.nlm.nih.gov/pubmed/16861570
https://doi.org/10.1111/nph.12948
http://www.ncbi.nlm.nih.gov/pubmed/25078249
https://doi.org/10.1186/1471-2229-8-112
https://doi.org/10.1186/1471-2229-8-112
http://www.ncbi.nlm.nih.gov/pubmed/18992143
https://doi.org/10.3389/fpls.2019.00979
http://www.ncbi.nlm.nih.gov/pubmed/31417594
https://doi.org/10.1046/j.1469-8137.2003.00700.x
http://www.ncbi.nlm.nih.gov/pubmed/33873407
https://doi.org/10.1146/annurev-phyto-082712-102340
https://doi.org/10.1146/annurev-phyto-082712-102340
http://www.ncbi.nlm.nih.gov/pubmed/24906124
https://doi.org/10.1146/annurev.mi.37.100183.000411
https://doi.org/10.1146/annurev.mi.37.100183.000411
http://www.ncbi.nlm.nih.gov/pubmed/6357059
https://doi.org/10.1094/PD-69-179
https://doi.org/10.1007/s10658-008-9329-7
https://doi.org/10.1007/BF00982100
https://doi.org/10.1007/BF00982100
http://www.ncbi.nlm.nih.gov/pubmed/24263491
https://doi.org/10.1016/S0953-7562(89)80088-7
https://doi.org/10.1094/MPMI-09-10-0221
https://doi.org/10.1094/MPMI-09-10-0221
http://www.ncbi.nlm.nih.gov/pubmed/21091159
https://doi.org/10.1371/journal.pone.0061332
http://www.ncbi.nlm.nih.gov/pubmed/23637814
https://doi.org/10.1073/pnas.2533483100
https://doi.org/10.1073/pnas.2533483100
http://www.ncbi.nlm.nih.gov/pubmed/14671327
https://doi.org/10.1016/j.biocontrol.2008.01.012
https://doi.org/10.1016/j.biocontrol.2008.01.012
https://doi.org/10.3389/fmicb.2014.00479
https://doi.org/10.3389/fmicb.2014.00479
http://www.ncbi.nlm.nih.gov/pubmed/25309519
https://doi.org/10.1007/s00299-013-1400-y
http://www.ncbi.nlm.nih.gov/pubmed/23455708
https://doi.org/10.1105/tpc.3.10.1085
http://www.ncbi.nlm.nih.gov/pubmed/12324583
https://doi.org/10.1371/journal.pone.0265357


ethylene in Brachypodium distachyon. BMC Plant Biol. 2016; 16(59):1–11. https://doi.org/10.1186/

s12870-016-0749-9

66. De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. What lies beneath: belowground

defense strategies in plants. Trends Plant Sci. 2015; 20:91–101. https://doi.org/10.1016/j.tplants.2014.

09.007 PMID: 25307784

67. Wang F, Yuan S, Wu W, Yang Y, Cui Z, Wang H, et al. TaTLP1 interacts with TaPR1 to contribute to

wheat defense responses to leaf rust fungus. PLoS Genet. 2020; 16(7):e1008713. https://doi.org/10.

1371/journal.pgen.1008713 PMID: 32658889

68. Breen S, Williams SJ, Winterberg B, Kobe B, Solomon PS. Wheat PR-1 proteins are targeted by necro-

trophic pathogen effector proteins. Plant J. 2016; 88:13–25. https://doi.org/10.1111/tpj.13228 PMID:

27258471

69. Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M, Schneiter R, et al. The sterol-binding activ-

ity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein.

Plant J. 2017; 89:502–509. https://doi.org/10.1111/tpj.13398 PMID: 27747953

70. Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, et al. Pathogenesis-related proteins and peptides

as promising tools for engineering plants with multiple stress tolerance. Microbiol Res. 2018; 212–

213:29–37. https://doi.org/10.1016/j.micres.2018.04.008 PMID: 29853166

71. Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, et al. Characteristic expression of

twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal

compounds. Mol Gen Genomics. 2008; 279(4):415–427. https://doi.org/10.1007/s00438-008-0322-9

72. Molina A, Görlach J, Volrath S, Ryals J. Wheat genes encoding two types of PR-1 proteins are patho-

gen inducible, but do not respond to activators of systemic acquired resistance. Mol Plant Microbe Inter-

act. 1999; 12(1):53–58. https://doi.org/10.1094/MPMI.1999.12.1.53 PMID: 9885193

73. Zhang J, Yan H, Xia M, Han X, Xie L, Goodwin PH, et al. Wheat root transcriptional responses against

Gaeumannomyces graminis var. tritici. Phytopathol Res. 2020; 2(23):1–14. https://doi.org/10.1186/

s42483-020-00066-7

74. Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol. 1997;

48:355–381. https://doi.org/10.1146/annurev.arplant.48.1.355 PMID: 15012267

75. Mueller MJ. Enzymes involved in jasmonic acid biosynthesis. Physiol Plant. 1997; 100:653–663.

https://doi.org/10.1111/j.1399-3054.1997.tb03072.x

76. Harms K, Ramirez II, Peña-Cortés H. Inhibition of wound-induced accumulation of allene oxide

synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol. 1998; 118(3):1057–1065.

https://doi.org/10.1104/pp.118.3.1057 PMID: 9808751

77. Laudert D, Weiler EW. Allene oxide synthase: a major control point in Arabidopsis thaliana octadeca-

noid signalling. Plant J. 1998; 15(5):675–684. https://doi.org/10.1046/j.1365-313x.1998.00245.x PMID:

9778849

78. Zeng J, Zhang T, Huangfu J, Li R, Lou Y. Both allene oxide synthases genes are involved in the biosyn-

thesis of herbivore-induced jasmonic acid and herbivore resistance in rice. Plants (Basel). 2021; 10

(3):442. https://doi.org/10.3390/plants10030442 PMID: 33652695

79. Ors ME, Randoux B, Selim S, Siah A, Couleaud G, Maumené C, et al. Cultivar-dependent partial resis-
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