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A novel somatic mutation achieves partial rescue
in a child with Hutchinson-Gilford progeria
syndrome
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ABSTRACT
Background Hutchinson-Gilford progeria syndrome
(HGPS) is a fatal sporadic autosomal dominant
premature ageing disease caused by single base
mutations that optimise a cryptic splice site within exon
11 of the LMNA gene. The resultant disease-causing
protein, progerin, acts as a dominant negative. Disease
severity relies partly on progerin levels.
Methods and results We report a novel form of
somatic mosaicism, where a child possessed two cell
populations with different HGPS disease-producing
mutations of the same nucleotide—one producing
severe HGPS and one mild HGPS. The proband
possessed an intermediate phenotype. The mosaicism
was initially discovered when Sanger sequencing showed
a c.1968+2T>A mutation in blood DNA and a c.1968
+2T>C in DNA from cultured fibroblasts. Deep
sequencing of DNA from the proband’s blood revealed
4.7% c.1968+2T>C mutation, and 41.3% c.1968
+2T>A mutation.
Conclusions We hypothesise that the germline
mutation was c.1968+2T>A, but a rescue event
occurred during early development, where the somatic
mutation from A to C at 1968+2 provided a selective
advantage. This type of mosaicism where a partial
phenotypic rescue event results from a second but milder
disease-causing mutation in the same nucleotide has not
been previously characterised for any disease.

INTRODUCTION
Hutchinson-Gilford progeria syndrome (HGPS or
Progeria) is an ultra-rare fatal syndrome of segmen-
tal premature ageing, with death due primarily to
heart attacks at an average age of 14.7 years.1

Progressive failure to thrive, sclerodermatous skin,
lipodystrophy, skeletal dysplasia, joint contractures
and premature atherosclerosis with resultant strokes
and heart attacks ensue postnatally. Diagnosis is
based on clinical features plus detection of specific
autosomal dominant mutations in LMNA.2

Approximately 90% of the time, HGPS is caused
by a de novo heterozygous C>T mutation at
nucleotide 1824 within exon 11 (classic HGPS).
This activates a cryptic splice donor site at nucleo-
tides 1819–1825, resulting in an mRNA that
deletes 150 nt (figure 1A) and codes for a protein
(called ‘progerin’) that is missing 50 amino acid
residues near the C-terminus. In a minority of

patients, a progerin-producing mutation occurs in
the splice donor at the beginning of intron 11
(non-classic HGPS); this also activates the cryptic
splice donor in the exon 11 at nucleotides 1819–
1825 (figure 1A). Progerin, the common protein
product in all of these mutations, is a permanently
farnesylated, aberrant lamin A protein that acts as a
dominant negative, accelerating senescence of cells
that express it.3 The severity and rate of disease
progression in HGPS is reflected at least in part by
the abundance of progerin,4 which in turn reflects
the consequence of the specific germline mutation
on spliceosome recognition of the cryptic donor.
Progerin mRNA is transcribed from the classic
HGPS allele around 80% of the time, from intron
11 splice donor mutations at varying rates depend-
ing on how severely the mutation interferes with
the 50 splice site consensus G/GTRAGT sequence,5

and from a normal LMNA gene less than 2% of
the time,6 but this isoform is produced in greater
abundance as normal cells approach senescence.6

Progerin expression drives nuclear morphological
abnormalities, mitochondrial dysfunction, defects
in DNA repair, premature senescence7 and a
variety of epigenetic alterations including global
chromatin changes and misregulated gene expres-
sion.8 There are two documented sibling occur-
rences, both presumably stemming from parental
mosaicism, where one phenotypically normal
parent has germline mosaicism for cells with the
classic HGPS mutation (c. 1824 G>T; p.
G608G).9 10 Here we report the first diagnosed
occurrence of mosaicism in a child with HGPS.
This type of mosaicism is exceptional in that rather
than simple mosaicism for normal and mutant
alleles, the proband is mosaic for cells with two dis-
tinct disease-causing mutations of the same nucleo-
tide. This type of occurrence has not been
previously reported for any disease.

MATERIALS AND METHODS
Patients
This study was approved by the Institutional
Review Boards of Rhode Island Hospital and
Brown University, Providence, RI, as part of the
Progeria Research Foundation (PRF) Cell and
Tissue Bank and PRF Medical and Research
Database programmes. All patients were diagnosed
with HGPS based on phenotypic expression of the
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disease and confirmed LMNA mutational analysis performed by
The Progeria Research Foundation Diagnostics Programme
(http://www.progeriaresearch.org) or confirmed genetic analysis
from medical records. Informed consent was obtained from all
participants’ parents, using translators when appropriate.

PRF cell and tissue bank samples
Blood-derived DNA and all fibroblast lines were obtained from
the PRF Cell and Tissue Bank (http://www.progeriaresearch.
org). Fibroblasts were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) containing 15% fetal bovine serum and 1X

Figure 1 (A) Normal sequence and three Hutchinson-Gilford progeria syndrome (HGPS) mutations in the LMNA gene that affect exon 11 and
intron 11. In the normal version, splicing occurs primarily from the normal splice donor at the beginning of intron 11, which is an excellent match to
the consensus sequence G/GTRAGT, where the GT at the beginning of the intron is most critical, and R=A or G. The classic HGPS mutation activates
a cryptic splice site just upstream of position 1824 in exon 11; the C>T HGPS mutation makes that splice donor a better match to the consensus at
the +6 position. The bottom two lines show the consequences of mutations in the +2 position of intron 11, the topic of this report. When the 1968
+2 position is A instead of T, the normal splice donor is predicted to be completely inactivated. When that position is C, some residual function of
the normal splice is likely, as GC can substitute for GT in certain normal splice donors.16 All three of the mutant versions are predicted to lead to
production of varying amounts of an mRNA that lacks 150 nt of coding region, and thus codes for progerin, a toxic protein that is missing 50 amino
acid residues. Mutations in the intron 11 splice donor have also been reported to produce an additional mRNA that completely deletes exon 11, but
the protein product of that event has not thus far been detectable.5 (B) LMNA deep sequencing demonstrates genomic DNA base frequency at
position1968+2, in white blood cells from patient DB386 (stripes), and cultured fibroblasts from father of DB386 1968+2 (checkers). Numbers of
reads above each bar.
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GlutaMAX (Gibco, Grand Island, New York, USA), 100 U/mL
of penicillin and streptomycin, in 5% CO2 at 37°C. Fibroblast
line identities were as follows, with patient IDs in parentheses:
PSADFN386 (DB386), PSADFN392 (DB392), PSADFN423
(DB423), PSMDFN387 and PSFDFN388 (parents of DB386);
PSMDFN393 and PSFDFN394 (parents of DB392). Population
doubling time (DT) was calculated as follows: DT=T ln2/ln(Xe/
Xb), where T is the incubation time, Xb is the cell number at the
initiation of the incubation time and Xe is the cell number at end
of the incubation time.

Sanger sequencing
Using patient blood and cultured fibroblast genomic DNA
(gDNA), the full coding region of the LMNA exon 11 and the
flanking ∼20 bases of non-coding sequence were sequenced,
and compared with the reference sequence. gDNAwas extracted
from white blood cells (WBCs) or fibroblasts, using the DNeasy
Blood & Tissue Kit (Qiagen). PCR conditions and primers used
for LMNA coding sequence amplification were for exon 11:
forward gcacagaaccacaccttcct, reverse ggtgggctgtctaggactca. PCR
amplifications were performed with 50 ng of gDNA using spe-
cific primers with the following programme: a denaturation step
at 94°C for 3 min, followed by 35 cycles composed of denatur-
ation at 94°C for 45 s, hybridisation at 63°C for 45 s, elongation
at 72°C for 1 min and a final elongation step of 3 min.

Proband and paternity validation
The identity and origin of DNA samples derived from proband
blood and cultured fibroblasts and from cultured parental
fibroblasts was performed using the Sequenom MassARRAY
iPLEX Platform (Agena Bioscience) for analysis of 36 SNP
loci and AmpFLSTR Identifiler Plus PCR Amplification Kit
(ThermoFisher Scientific) for amplification of 16 short tandem
repeat (STR) loci according to the manufacturer’s instructions.

Deep sequencing
gDNA was extracted using the Puregene Blood Core Kit A
(Qiagen). The relevant genomic section was amplified for four
cycles of PCR with primers containing a genomic binding site,
unique molecular identifiers and Illumina primer recognition
site. Controls running for a higher cycle number showed a single
band at the expected size. PCR product was run on a 2%
agarose gel, and DNA at the expected size was extracted and
amplified further by PCR with primers binding to the Illumina
primer recognition site. All PCR reactions were performed using
Phusion high-fidelity DNA polymerase (New England Biolabs
(NEB)). Sequencing was performed by 250 bp paired-end
sequencing on a MiSeq instrument (Illumina). Only reads
showing an exact match 10 bp before and after the analysed base
were kept. Reads showing only a single strand, low quality or a
mismatch either within a pair or within a unique molecular iden-
tifier (UMI) cluster were excluded from the analysis. After filtra-
tion, over 0.5 M reads per analysed site remained.

RESULTS
The female proband, DB386, was diagnosed with HGPS at age
10 months (figure 2), with typical early-stage features such as
prominent scalp veins, lipodystrophy, short stature and typical
skin signs.5 Compared with classic HGPS, she experienced hair
loss but not the total alopecia pathognomonic of classic
HGPS,11 mandibular recession that is less pronounced than
classic HGPS12 and milder than expected joint contractures.
Proband birth weight and length patterns were similar to classic
HGPS.13 Her birth weight was just below the third centile, and

stayed below the third centile thereafter; her stature for age was
initially normal, and fell below the third centile at age
12 months and thereafter. However, the proband displayed
better growth than expected for classic HGPS as she aged.
Whereas children with classic HGPS display an average rate of
weight and height gain of 0.44 kg/year13 and 3.58 cm/year,14

respectively, after age 2 years, the proband’s growth rates were
0.56 kg/year and 5.8 cm/year after age 2 years. Whereas average
weight and height for classic HGPS at age 5.9 years are
11.3 kg13 and 90 cm,14 respectively, the proband measured
11.7 kg and 97.2 cm at this age.

Regarding cardiovascular disease, in classic HGPS, carotid
artery plaque can be noted at any age, blood pressure is elevated
in about half of patients when adjusting for height age and
hyperinsulinemia or insulin resistance is present in 52% and
36% of patients, respectively.15 ECGs are often normal until
late in life. The proband was first noted to have a left-sided
carotid artery plaque at age 4.2 years. But at age 5.9 years, she
demonstrated normal blood pressure, no insulinemia or insulin
resistance, and no ECG abnormalities. Thus, while this patient
was originally described as having a severe phenotype,5 our lon-
gitudinal clinical evaluations clearly demonstrate a phenotype
that is milder than classic HGPS.

Standard Sanger sequencing of LMNA exon 11 DNA from
blood-derived WBCs and cultured skin fibroblasts sequenced at
passages 1, 3 and 8 detected differing progerin-producing muta-
tions in the same nucleotide of the exon 11 intronic splice
donor site (see online supplementary figure). The blood-derived
DNA displayed c.1968+2T>A, while all three fibroblast-
derived DNA isolates displayed c.1968+2T>C, both heterozy-
gous progerin-producing mutations.

We validated the proband origin of the blood and fibroblast
DNA as well as paternity and maternity, using Sequenom
36-SNP MassARRAY Genotyping and Identifier-plus (Combined
DNA Index System (CODIS)) microsatellite repeat PCR amplifi-
cation (see online supplementary tables). Sequencing of parental
LMNA exon 11 blood-derived WBC DNA revealed no muta-
tions (see online supplementary figure).

To test for mosaicism, deep sequencing of the exon/intron 11
boundary in blood DNAwas subsequently performed (figure 1B).
The DNA sequence reads revealed roughly 50% normal LMNA
sequence, but 4.7% c.1968+2T>C mutation and 41.3% c.1968
+2T>A mutation. Paternal cultured fibroblast DNA contained
only the normal sequence, 1968+2T. An internal control
proband comparator site at position 1968+6T also contained
only the normal sequence (537 902 reads, 99.8% of total).

To understand the relationship of the patient’s phenotype to
this apparent mosaicism, we assessed two additional patients,
each with one of the mutations found in DB386 (see online
supplementary figure). The female patient DB423 was heterozy-
gous for the c.1968+2T>A mutation and had a severe disease
phenotype (figure 2). Progeria was suspected at birth clinically,
and diagnosed at age 9 months by genetic testing.
Sclerodermatous skin, nail dystrophy, lipodystrophy and failure
to thrive were present at birth. Hair loss began at age 3 months.
Mandibular recession and joint contractures were severe. She
died of atherosclerotic cardiovascular disease with aggravating
pneumonia at age 3.5 years. The male patient DB392 was het-
erozygous for the c.1968+2T>C mutation and had a consider-
ably milder progeria disease phenotype. His initial misdiagnosis
at age 2.9 years was ectodermal dysplasia due to thick skin and
brittle nails. Progeria was first suspected at age 7.0 years clinic-
ally, and diagnosed at age 7.1 years by genetic testing. His clin-
ical history includes decreased weight initially appearing at age
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1.3 years with an overall weight at the third centile, nail dys-
trophy, skin signs and sparse thin hair without total alopecia ini-
tially developing at age 2.9 years. Stature for age was initially
normal, and fell below the third centile at age 4 years and there-
after. He displayed no mandibular recession, normal dentition
and normal cardiovascular function as of age 11 years.

Patient and parental fibroblast culture population doubling
times were assessed through passage 8. Doubling times were
between 2 and 6 days for all cultures until passage 6. The more
severe patient’s fibroblasts (DB423) then increased to 11.1 and
28.8 days with successive passages, whereas cultures from the
milder phenotype patient (DB392) and the patient with mosai-
cism (DB386) maintained doubling times below 6 days through-
out. Parental fibroblast culture population doubling times were
between 2 and 6 days for all cultures throughout.

DISCUSSION
Based on these phenotype/genotype comparisons, we hypothe-
sise that a partial rescue event occurred during fetal develop-
ment in patient DB386, where the germline c.1968+2T>A
mutation was secondarily mutated to c.1968+2T>C.
Approximately 0.7% of normal splice donors have GC instead
of GT.16 Although such GC donors have a mismatch with the
U1 snRNA that catalyses the splice event, they still can function
when the rest of the splice consensus is a close match to the G/
GTRAGT consensus, as is true in this situation. Thus, the pres-
ence of C in the +2 position has provided some residual func-
tion to the intron 11 splice donor (figure 1A), so that the
cryptic donor in exon 11 is less activated. Hence, while progerin
is still produced, the disease phenotype in the proband DB386
is significantly milder than the patient with the c.1968+2T>A
mutation, slightly milder than the classic HGPS phenotype14

and significantly more severe than the patient with the c.1968
+2T>C mutation.

Fibroblasts culture doubling times support a growth advan-
tage for the milder phenotype mutation. Cultured fibroblasts

from the severely affected c.1968+2T>A patient were
extremely difficult to grow, reaching a population DT of
28.8 days by passage 8, while those of the patients with the
milder c.1968+2T>C mutation and the patient with mosaicism
grew significantly better. Thus, it is likely that in vivo or in vitro
clonal selection during fibroblast growth from the patient with
mosaicism resulted in a selective growth advantage for the cells
containing the milder mutation, causing Sanger sequencing of
the fibroblasts from the patient with mosaicism to detect only
the milder mutation in these cells. This elimination of the more
severe c.1968+2T>A mutation did not occur in WBCs, pre-
sumably because they express very low levels of lamin A and are
therefore not subject to selection.

The possibility that the mutations occurred in the opposite
order could also be considered, but fits the data much less well.
Theoretically, a somatic mutation from c.1968+2T>C to
c.1968+2T>A in a haematopoietic progenitor cell, where the
absence of LMNA expression would prevent negative selection,
might be possible—but in that instance, one would expect the
phenotype of DB386 to match the milder phenotype of DB392.

Close inspection of the data from DB386 WBCs in figure 1B
shows that the summed proportion of C and A reads (46%) is
slightly less than the T reads (54%), whereas one would have
predicted this should be 50-50. The most likely explanation is a
subtle bias in PCR amplification efficiency between the three
alleles being tested. We cannot exclude, however, that a second
somatic event might have occurred in the precursor of WBCs:
either a back mutation to the T allele or a complete deletion of
the mutant LMNA locus.

The serendipitous discovery of mosaicism in patient DB386
suggests that similar occurrences may go undetected, as there is
no routine testing for identification of such rare events. As an
embryo develops from a single cell to a human being, a large
number of cell divisions occur, providing both the means and
the selective pressure for adaptive mutations. In addition, it is
possible that this is a particularly unstable nucleotide position in

Figure 2 Proband DB386 at ages (A) 1 day (B) 1 year (C) 19 months (D) and 5.4 years demonstrating progressive mandibular recession, severe but
subtotal alopecia, and lipodystrophy. (E) DB423 at age 1.2 years demonstrating severe mandibular recession, early alopecia and severe lipodystrophy
(F) female with classic Hutchinson-Gilford progeria syndrome at age 5.4 years demonstrating total alopecia severe lipodystrophy and moderate
mandibular recession. (G) DB392 at age 11.5 years demonstrating no mandibular recession, moderate alopecia and moderate lipodystrophy.
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somatic tissue when mutated. Future larger systematic studies
should be undertaken to identify mosaicism frequency in HGPS
and other single gene disorders.

This type of mosaicism, where a rescue event causes a second
but milder disease-causing mutation instead of a reversion muta-
tion to the normal genotype, has not been previously charac-
terised for any disease. We predict that next-generation
sequencing, targeted deep sequencing or digital droplet PCR of
patients with genetic disorders may uncover other examples of
this form of genetic adaptation. In some cases, such as gene
therapy or RNA therapeutics, therapy may be altered by aware-
ness of an event such as this. In addition, therapeutic efficacy
might differ for patients with these types of mosaicisms.

Acknowledgements The authors are extremely grateful to the children and
families for participation in this study. They thank the University of Michigan
Sequencing Core for assistance. They also thank Drs. Thorsten Marquardt and Janine
Reunert for additional assistance.

Contributors Each author listed on the manuscript has participated in editing the
manuscript, has seen and approved the submission of this version of the manuscript
and takes full responsibility for the manuscript. In addition, DZB and MFA
conducted, analysed and interpreted the deep sequencing experiments; JFB and SEC
acquired and analysed phenotypic data; WEN acquired and processed all patient
samples, and analysed data. PC and TWG performed and interpreted Sanger
sequencing and paternity validation studies; SPJ and DL commissioned the
sequencing studies that led to the initial identification of genetic mosaicism in the
patient. FSC and TWG contributed to study design and data analysis. LBG was
responsible for primary study oversight and design, data acquisition, data analysis
and interpretation, and primary writing of the manuscript.

Funding Progeria experiments were funded by The Progeria Research Foundation
grants PRF-2002-CB and PRF-2002-MRD ( JFB, WEN, SEC, LBG), and by the
Medical Research Council UK grant MR/L019116/1 (DL). Core and general
laboratory grants are as follows: Kilguss Research Core of Women & Infants Hospital
of Rhode Island through an Institutional Development Award from the NIGMS of the
NIH (P30GM114750), intramural funds to the NHGRI (ZIA-HG200305), Cancer
Research UK programme grant C6/A18796 and Wellcome Trust (WT092096).

Competing interests None.

Patient consent Obtained.

Ethics approval Rhode Island Hospital.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the
terms of the Creative Commons Attribution (CC BY 4.0) license, which permits
others to distribute, remix, adapt and build upon this work, for commercial use,
provided the original work is properly cited. See: http://creativecommons.org/licenses/
by/4.0/

REFERENCES
1 Gordon LB, Massaro J, D’Agostino RB Sr, Campbell SE, Brazier J, Brown WT,

Kleinman ME, Kieran MW, Progeria Clinical Trials Collaborative. Impact of
farnesylation inhibitors on survival in hutchinson-gilford progeria syndrome.
Circulation 2014;130:27–34.

2 Gordon LB, Brown WT, Collins FS. Hutchinson-gilford progeria syndrome. In: Pagon
RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K,
eds. Seattle, WA: Genereviews(r), 2015. https://www.ncbi.nlm.nih.gov/books/
NBK1121/ (accessed online Nov 2016).

3 Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by
depleting cenp-f from metaphase kinetochores in hutchinson-gilford progeria
fibroblasts. Oncotarget 2016;7:24700–18.

4 Hisama FM, Lessel D, Leistritz D, Friedrich K, McBride KL, Pastore MT, Gottesman
GS, Saha B, Martin GM, Kubisch C, Oshima J. Coronary artery disease in a werner
syndrome-like form of progeria characterized by low levels of progerin, a splice
variant of lamin a. Am J Med Genet A 2011;155A:3002–6.

5 Harhouri K, Navarro C, Baquerre C, Da Silva N, Bartoli C, Casey F, Mawuse G,
Doubaj Y, Lévy N, De Sandre-Giovannoli A. Antisense-based progerin
downregulation in hgps-like patients’ cells. Cells 2016;5:31.

6 Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, Nabel EG, Collins
FS. Progerin and telomere dysfunction collaborate to trigger cellular senescence in
normal human fibroblasts. J Clin Invest 2011;121:2833–44.

7 Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-gilford progeria syndrome: a
premature aging disease caused by lmna gene mutations. Ageing Res Rev
Published Online First 29 Jun 2016. doi: 10.1016/j.arr.2016.06.007

8 Arancio W, Pizzolanti G, Genovese SI, Pitrone M, Giordano C. Epigenetic
involvement in hutchinson-gilford progeria syndrome: a mini-review. Gerontology
2014;60:197–203.

9 The progeria research diagnostic testing program. http://progeriaresearch.org/
diagnostic_testing.html (accessed 1 Aug 2016).

10 Wuyts W, Biervliet M, Reyniers E, D’Apice MR, Novelli G, Storm K. Somatic and gonadal
mosaicism in hutchinson-gilford progeria. Am J Med Genet A 2005;135:66–8.

11 Rork JF, Huang JT, Gordon LB, Kleinman M, Kieran MW, Liang MG. Initial
cutaneous manifestations of hutchinson-gilford progeria syndrome. Pediatr Dermatol
2014;31:196–202.

12 Ullrich NJ, Silvera VM, Campbell SE, Gordon LB. Craniofacial abnormalities in
hutchinson-gilford progeria syndrome. AJNR Am J Neuroradiol 2012;33:1512–18.

13 Gordon LB, McCarten KM, Giobbie-Hurder A, Machan JT, Campbell SE, Berns SD,
Kieran MW. Disease progression in hutchinson-gilford progeria syndrome: Impact on
growth and development. Pediatrics 2007;120:824–33.

14 Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith A, Perry M, Brewer C,
Zalewski C, Kim H, Solomon B, Brooks B, Gerber L, Turner M, Domingo DL, Hart
TC, Graf J, Reynolds J, Gropman A, Yanovski J, Gerhard-Herman M, Collins FS,
Nabel EG, Cannon R, Gahl WA, Introne WJ. Phenotype and course of
hutchinson-gilford progeria syndrome. N Engl J Med 2008;358:592–604.

15 Gerhard-Herman M, Smoot LB, Wake N, Kieran MW, Kleinman ME, Miller DT,
Schwartzman A, Giobbie-Hurder A, Neuberg D, Gordon LB. Mechanisms of
premature vascular aging in children with hutchinson-gilford progeria syndrome.
Hypertension 2012;59:92–7.

16 Burset M, Seledtsov IA, Solovyev VV. Analysis of canonical and non-canonical splice
sites in mammalian genomes. Nucleic Acids Res 2000;28:4364–75.

Somatic mosaicism

216 Bar DZ, et al. J Med Genet 2017;54:212–216. doi:10.1136/jmedgenet-2016-104295

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.008285
https://www.ncbi.nlm.nih.gov/books/NBK1121/
https://www.ncbi.nlm.nih.gov/books/NBK1121/
http://dx.doi.org/10.18632/oncotarget.8267
http://dx.doi.org/10.1002/ajmg.a.34336
http://dx.doi.org/10.3390/cells5030031
http://dx.doi.org/10.1172/JCI43578
http://dx.doi.org/10.1016/j.arr.2016.06.007
http://dx.doi.org/10.1159/000357206
http://progeriaresearch.org/diagnostic_testing.html
http://progeriaresearch.org/diagnostic_testing.html
http://progeriaresearch.org/diagnostic_testing.html
http://dx.doi.org/10.1002/ajmg.a.30663
http://dx.doi.org/10.1111/pde.12284
http://dx.doi.org/10.3174/ajnr.A3088
http://dx.doi.org/10.1542/peds.2007-1357
http://dx.doi.org/10.1056/NEJMoa0706898
http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.180919
http://dx.doi.org/10.1093/nar/28.21.4364
imac
Sticky Note
None set by imac

imac
Sticky Note
MigrationNone set by imac

imac
Sticky Note
Unmarked set by imac

imac
Sticky Note
None set by imac

imac
Sticky Note
MigrationNone set by imac

imac
Sticky Note
Unmarked set by imac


	A novel somatic mutation achieves partial rescue in a child with Hutchinson-Gilford progeria syndrome
	Abstract
	Introduction
	Materials and methods
	Patients
	PRF cell and tissue bank samples
	Sanger sequencing
	Proband and paternity validation
	Deep sequencing

	Results
	Discussion
	References




