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Cyclin-dependent kinases (CDKs) are the central regulators of the eukaryotic cell cycle,

and are conserved across eukaryotes. Their main and well-studied function lies in the

regulation and the time-keeping of cell cycle entry and progression. Additionally, more

and more non canonical functions of CDKs are being uncovered. One fairly recently

discovered role of CDKs is the coordination of carbon and energy metabolism with

proliferation. Evidence from different model organisms is accumulating that CDKs can

directly and indirectly control fluxes through metabolism, for example by phosphorylating

metabolic enzymes. In this mini-review, we summarize the emerging role of CDKs in

regulating carbon and energy metabolism and discuss examples in different models from

yeast to cancer cells.
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INTRODUCTION

The eukaryotic cell division cycle is a series of tightly coordinated processes that lead to
duplication of DNA and accurate distribution of the genetic material into two daughter cells.
The most important regulators driving and coordinating the cell cycle are the cyclin dependent
kinases (CDKs) (Morgan, 2007, 2008). CDKs are well conserved between eukaryotes. Though
the number of different isoforms varies between species, their structure and function is very
similar (Malumbres, 2014): The cell cycle kinases themselves are usually present in constant
concentrations, while their different regulatory subunits, the cyclins, are expressed only in specific
phases of the cell cycle and thereby drive the cell cycle clock forward.

To drive cell cycle progression, CDKs phosphorylate many other cell cycle executers and
regulators such as the cell cycle inhibitors Whi5 (de Bruin et al., 2004) and pRb (Lees et al.,
1991), the origin recognition complex (Dahmann et al., 1995), or the anaphase-promoting complex
(Rudner and Murray, 2000). However, when researchers started systematic and unbiased CDK
targets screens (Ubersax et al., 2003; Chi et al., 2008; Dephoure et al., 2008; Holt et al., 2009;
Errico et al., 2010), more and more targets not directly associated with the cell cycle were revealed.
Many of these targets are involved in processes generally associated with cellular “house-keeping”
such as translation, trafficking, and metabolism. The targets in metabolism include metabolic
enzymes, metabolic regulators andmolecules involved in organismal energy homeostasis (Figure 1,
Table 1, Supplementary Table 1).

The identification of metabolic targets of CDK highlights the tight links between metabolism,
growth and the cell cycle, which are being increasingly appreciated in basic and clinical research
(Vander Heiden et al., 2009; Galluzzi et al., 2013; Salazar-Roa and Malumbres, 2017; Ewald, 2018).
The cell cycle is a series of macromolecular events, each having specific demands for anabolic
precursors and energy. In this mini-review, we summarize the role of CDKs in meeting these
metabolic demands by regulating carbon and energy metabolism in different organisms (Table 1).

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-Developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2018.00093
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2018.00093&domain=pdf&date_stamp=2018-08-17
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jennifer.ewald@ifiz.uni-tuebingen.de
https://doi.org/10.3389/fcell.2018.00093
https://www.frontiersin.org/articles/10.3389/fcell.2018.00093/full
http://loop.frontiersin.org/people/510219/overview


Solaki and Ewald CDKs Regulating Metabolism

FIGURE 1 | Examples of how CDKs regulate carbon and energy metabolism directly (Left), indirectly (Middle), and on organismal level (Right).

CDKS DIRECTLY REGULATING
METABOLIC ENZYMES

As cells progress through the cell cycle, CDKs phosphorylate
downstream regulators and proteins directly involved in
executing DNA synthesis and cell division (Morgan, 2008). Since
the discovery of CDKs, their target list is continually growing.
The first mid-size screen searching for CDK substrates in the
yeast S. cerevisiae was presented by Ubersax et al. (2003). This
work defined a list of 181 proteins that were phosphorylated
by CDK in extracts; many of these targets were not previously
associated with the cell cycle, including several enzymes in
carbohydrate and lipid metabolism. Two enzymes from lipid
metabolism found in this list were later verified as CDK targets
and were shown to be regulated in their activity by CDK (Santos-
Rosa et al., 2005; Kurat et al., 2009).

The first large-scale untargeted phosphoproteomics
experiments about a decade ago investigated the cell cycle
and massively expanded the list of likely CDK targets. These
studies revealed that neither the change of phosphorylation
during the cell cycle, nor the list of direct CDK targets was
limited to proteins generally considered to participate in the core
cell cycle (Chi et al., 2008; Dephoure et al., 2008; Holt et al., 2009;
Carpy et al., 2014). In fact, the list of CDK targets from Holt et al.
(2009) was later re-analyzed with respect to metabolic targets
(Zhao et al., 2016): Over a third of the 309 CDK targets fall into
the broad category “metabolism”; at least a dozen of these are
enzymes catalyzing reactions in central carbon, energy, or lipid
metabolism.

Based on this initial evidence, two labs recently independently
showed that yeast carbohydrate metabolism is regulated by
CDK1 (the only cell cycle CDK in yeast) in a cell cycle
dependent manner (Ewald et al., 2016; Zhao et al., 2016; Figure 1,
Table 1). The enzymes Nth1 and Gph1 are activated by CDK
to liquidate the carbohydrate storage molecules trehalose and
glycogen, thereby generating glucose. This regulation is especially
important in nutrient-limited environments, when cells are faced
with sudden nutrient depletion (Ewald et al., 2016) or are
approaching stationary phase (Zhao et al., 2016). Thus, CDK
directly controls the increase of glycolytic flux at the G1/S
transition to ensure sufficient carbon and energy supply during
the yeast cell cycle.

A recent study in human cells also shows how CDK can

control glycolytic flux (Wang et al., 2017), albeit in a different
context. Wang et al. showed an interaction of CDK6-Cyclin

D3 (G1/Interphase CDK in mammals) with nine out of eleven

glycolytic enzymes in human cancer cells (Wang et al., 2017).
The authors functionally characterized two of these enzymes,

PFKP and PKM2. These enzymes catalyze the reaction of
glucose-6-phosphate to fructose-bis-phosphate and the reaction

from phospho-enol-pyruvate to pyruvate, respectively. PFKP and

PKM are not only rate-controlling enzymes of glycolysis, but
are also well known in the context of cancer (Al Hasawi et al.,
2014; Lunt et al., 2015; Webb et al., 2016; Hsu and Hung, 2018).
Both phosphorylations described in this study inhibit catalytic
activity of the respective enzymes, presumably to re-direct flux
from glycolysis into the pentose-phosphate-pathway and serine
pathways to promote anabolism and antioxidant metabolism
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TABLE 1 | Examples of cell cycle CDKs regulating carbon and energy metabolism.

Publication Organism Cyclin-CDK Metabolic Target Cell cycle

dependent?

Metabolic Effect

DIRECT PHOSPHORYLATION OF METABOLIC ENZYMES

Wang et al., 2014 Homo sapiens/MCF-10A

cells

cyclin B1-CDK1 CI subunits of the

respiratory chain

Yes Increase of mitochondrial respiration

Ewald et al., 2016 Saccharomyces

cerevisiae

CDK1 Nth1 Yes Liquidation of trehalose/increase of internal

glucose supply

Zhao et al., 2016 Saccharomyces

cerevisiae

CDK1 Nth1, Gph1 Yes Liquidation of storage carbohydrates/increase

of internal glucose supply

Harashima et al.,

2016

Arabidopsis thaliana CDKA;1 mMDH1, ALDH7B4,

pfkB-like kinase, IMD1

Unclear Not determined

Wang et al., 2017 Homo sapiens/T-ALL cell

lines

cyclin D3-CDK6 PFK1, PKM2 Unclear Reprogramming metabolism toward PPP and

serine pathway/detox ROS

INDIRECT REGULATION OF METABOLISM

Wang et al., 2006 Mus musculus cyclin D-CDK NRF1 Unclear Inhibition of mitobiogenesis

Icreverzi et al., 2012 Drosophila melanogaster cyclin D-CDK4 NRF-1 targets Unclear Regulation of mitobiogenesis

Harbauer et al.,

2014

Saccharomyces

cerevisiae

Clb3- CDK1 Tom6 Yes Increase in mitochondrial respiration

Lopez-Mejia et al.,

2017

Mus musculus/MEFs

Mus musculus/C57BL6

CDK4 AMPKα2 Unclear Upregulation of glycolysis, inhibition of fatty

acid oxidation

REGULATION OF ORGANISMAL ENERGY METABOLISM

Annicotte et al.,

2009

Mus musculus /Min6

cells

CDK4 (-pRb-E2F) Kir6.2 Unclear Insulin secretion

Lee et al., 2014 Homo sapiens/U-2OS

cells

Mus musculus /C57BL6

cyclin D1-CDK4 GCN5 No Suppression of hepatic gluconeogenesis

Lagarrigue et al.,

2016

Mus musculus/ C57BL6 cyclin D3-CDK4 IRS2 Unclear Maintenance of insulin signaling in adipocytes

Kim et al., 2017 Mus musculus CDK2 FOXO1 Unclear Regulation of β-cell mass and β-cell function

(Wang et al., 2017). Preventing flux into the pentose-phosphate-
pathway in these cells led to depletion of antioxidants and a
reactive oxygen induced apoptosis.

It remains to be shown whether this regulation is also
physiologically relevant in healthy proliferating cells, and
whether the CDK6 dependent catalytic activity of PFKP and
PKM oscillates with the cell cycle. This is especially interesting
since both the fructose-bis-phosphate and the pyruvate node
are known to be regulated by multiple mechanisms, including
other cell cycle regulators. For example, the ubiquitin ligases
APC and SCF, both important cell cycle regulators, control the
concentration of PFKFB3, which in turn produces fructose-
2,6-bisphosphate, an activator of PFKP (Almeida et al., 2010;
Tudzarova et al., 2011).

While the regulation of glycolysis and pentose-phosphate
fluxes seems to be especially important for passing the
restriction point and progressing through S-phase, mitochondrial
metabolism takes center stage during mitosis (Bao et al.,
2013; Harbauer et al., 2014). Consistent with the idea that
mitochondrial ATP production is important for mitosis,
CDK regulates mitochondrial metabolism both indirectly (see
below) and directly in late cell cycle stages. Wang et al.
showed in human cell lines that CDK1-Cyclin B1, which
is important for entering and executing mitosis, partially
localizes to the mitochondrial matrix (Wang et al., 2014).

There, it phosphorylates several proteins of complex I of the
respiratory chain. This leads to an activation of respiration
and increased mitochondrial ATP production, which seems
to be required for timely completing mitosis (Wang et al.,
2014).

The three abovementioned mechanisms—regulation of
glycolytic flux by the APC, diversion of intermediates into
the pentose-phosphate-pathway through CDK regulation,
and activation of mitochondrial respiration by CDK—may
lead to cycling of carbon metabolism during the cell cycle to
balance anabolic and energy fluxes: glycolytic flux is increasing
throughout G1, nucleotide precursors for RNA and DNA
metabolism are provided during late G1 and S phase, and
mitochondrial ATP production is enhanced during mitosis.
However, other studies have reported maximal respiration
during late G1 phase (Schieke et al., 2008; Mitra et al., 2009),
indicating there may be cell type or tissue specific regulatory
mechanisms.

In plants, CDK also seems to target central carbon
metabolism. A study in Arabidopsis thaliana recently identified
several enzymes of glycolysis and mitochondrial metabolism
as direct CDK-A (the CDK that drives G1/S/G2 in plants)
substrates (Harashima et al., 2016). The function of these sites
and their role in the cell cycle has yet to be determined, but
this finding suggests that the direct regulation of central carbon
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metabolism by CDKs is conserved from yeast to mammals to
plants.

CDKS TARGETING METABOLIC
REGULATORS

In addition to the direct phosphorylation of metabolic enzymes,
CDK also targets metabolic pathways indirectly (Figure 1),
by phosphorylating regulators of central carbon metabolism,
regulators of mitochondria, and transporters.

Both human cells and yeast cells have been observed to
increase respiration and mitochondrial ATP production during
mitosis (Bao et al., 2013; Harbauer et al., 2014; Wang et al.,
2014). However, in budding yeast a direct phosphorylation of
respiratory chain components has not been shown as in human
cells (see above). In this organism, CDK targets mitochondrial
import. Specifically, the phosphorylation of the mitochondrial
outer membrane transporter Tom6 enhances its import into
the mitochondria, which further supports the assembly of other
transporter components (Harbauer et al., 2014). This leads to
more import of membrane proteins, including the fusion protein
Mgm1. This in turn, like in human cells, leads to an increase in
respiration and mitochondrial ATP production during the late
phases of the cell cycle (Harbauer et al., 2014).

Not only protein import, but also other aspects of
mitochondrial biogenesis (Sakamaki et al., 2006; Wang
et al., 2006; Baltzer et al., 2009; Icreverzi et al., 2012) and
mitochondrial morphology (Taguchi et al., 2007) have been
shown to be regulated by CDK1 (active in G2/M) and CDK4
(active in G1) in flies and mammals. For example, the nuclear
respiration factor (NRF1/2), responsible for the transcription
of many nuclear-encoded mitochondrial genes, is regulated by
CDK4-Cyclin D in both flies (Icreverzi et al., 2012) and mice
(Wang et al., 2006). However, the effect of this regulation and
the impact on mitochondrial metabolism remains unclear and
may be different in each organism. The many additional layers
of cross-talk between mitochondrial biogenesis and the cell cycle
are extensively discussed in two recent reviews (Lopez-Mejia and
Fajas, 2015; Horbay and Bilyy, 2016).

To globally target metabolic fluxes besides the mitochondria,
cell cycle regulators might regulate metabolic master regulators
such as TOR (target of rapamycin), PKA (protein-kinase A), or
AMPK (adenylate-monophosphate activated kinase). Consistent
with this idea, the PKA regulatory subunit Bcy1 was shown to
be a likely CDK target in two screens in yeast (Ubersax et al.,
2003; Holt et al., 2009). However, functional evidence that PKA
or other metabolic master regulators are directly controlled by
CDK in yeast is (to the best of our knowledge) still lacking. Such
evidence was recently found in mouse embryonic fibroblasts:
CDK4 directly phosphorylates and thereby inhibits the metabolic
master regulator AMPK (specifically only the alpha2 subunit)
(Lopez-Mejia et al., 2017). AMPK is the cell’s energy barometer.
Upon activation this kinase inhibits energy consuming processes
and activates catabolism (Lin and Hardie, 2018). Lopez-Meija
et al. showed that CDK inhibits AMPK to promote glycolysis
and inhibit fatty acid oxidation. This seems to be yet another

interesting mechanism by which rapidly proliferating cells can
establish a “Warburg-metabolism” (Warburg, 1956) involving
aerobic glycolysis, active anabolism and repressed catabolic
fluxes (Vander Heiden et al., 2009). It will be interesting to
investigate whether this specific inhibition of AMPK is also
relevant in CDK4 hyper-activated cancer cells (Qie and Diehl,
2016).

In the same study, the inhibition of AMPK by CDK was
further investigated in vivo at the organismal level. CDK4
knockout mice increase their oxidative metabolism and exercise
capacity in an AMPK dependent manner (Lopez-Mejia et al.,
2017), though it remains unclear if and how this effect is linked
to growth or the cell cycle. The regulation of AMPK by CDK4
is thus one of the many mechanisms by which CDKs contribute
to organismal energy homeostasis, as further detailed in the next
section.

ORGANISMAL ENERGY
HOMEOSTASIS—CDKS AND INSULIN
SIGNALING

The role of CDKs—both canonical cell cycle, and non-cell
cycle CDKs—in regulating organismal energy homeostasis was
recognized even before their role in cellular metabolism was
uncovered. CDKs act both as targets and as modulators of insulin
and growth factor signaling (Figure 1), in proliferating and also
in non-proliferating cells. This rather complex topic deserves
its own review (see for example Lopez-Mejia et al., 2018); we
here thus only provide a brief overview of some examples and
emerging patterns.

The G1 kinase CDK4 plays a dual role in insulin signaling,
functioning both in insulin-generating cells and in target cells.
In mice, CDK4 was observed to regulate insulin secretion in
insulin-producing pancreatic β-cells through the CDK4-pRb-
E2F1 pathway (Annicotte et al., 2009). In response to high
glucose, CDK4 kinase activity is increased through the insulin
pathway resulting in pRb phosphorylation. Phosphorylated
pRb releases the E2F1-DP complex which, in turn, activates
the transcription of the Kir6.2 gene. Kir6.2 codes for a
key component of the KATP channel involved in insulin
secretion. CDK4, pRb and E2F1 expression was observed
in nearly all insulin-producing β-cells, even though they
were predominantly not proliferating (Annicotte et al., 2009).
However, it remains unclear whether this pathway functions
fully independently of the cell cycle in regulating insulin
secretion.

Besides its role in insulin-generating β-cells, CDK4 was
also described to act in insulin target cells such as hepatocytes
and adipocytes (Lee et al., 2014; Lagarrigue et al., 2016). In
these cells CDK is both a target and modulator of insulin
signaling. For example, insulin activates hepatic cyclin D1-CDK4
which, in turn, phosphorylates the acetyltransferase GCN5.
GCN5 subsequently acetylates PGC-1α thereby inhibiting the
expression of gluconeogenic genes. This pathway involving
cyclin D1-CDK4 is responsible for controlling glucose
metabolism by suppressing hepatic glucose production in
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mice. Despite the activation of cyclin D1-CDK4 by insulin,
the hepatocytes were not proliferating, indicating that the
regulation of hepatic gluconeogenesis by cyclin D1-CDK4
is not cell cycle dependent (Lee et al., 2014). Other target
cells of insulin, in which CDK4 was shown to play an
important role, are adipocytes. In this cell type, insulin
activates the cyclin D3-CDK4 complex which subsequently
phosphorylates IRS2. This generates a positive feedback loop
promoting insulin signaling (Lagarrigue et al., 2016). In the
same study, Lagarrigue et al. showed that CDK4-deficient
mice display decreased lipogenesis and increased lipolysis in
white adipose tissue, indicating that CDK4 is essential for
promoting anabolic metabolism in adipocytes (Lagarrigue et al.,
2016).

Another cell cycle kinase shown to play an important role
in insulin-generating pancreatic β-cells is CDK2 (the CDK
responsible for S-phase entry and progression in mammals).
In mice, pancreas-specific loss of CDK2 is associated with
impaired glucose tolerance and defects in glucose-stimulated
insulin secretion (Kim et al., 2017). Moreover, CDK2-deficient
mice exhibit a reduced β-cell proliferation when faced with
overnutrition or advancing age, indicating that CDK2
both regulates β-cell mass and β-cell function (Kim et al.,
2017).

In addition to the cell cycle kinases CDK2 and CDK4,
also non-cell cycle CDKs have been described to regulate
organismal energy homeostasis in both insulin secreting cells
and target cells. For example, CDK5 controls insulin secretion in
pancreatic β-cells by phosphorylating and decreasing the activity
of the L-type voltage-dependent Ca2+ channel (L-VDCC).
Knockdown of CDK5 resulted in an enhanced insulin secretion
under high glucose conditions suggesting that CDK5 exhibits
a negative effect on insulin secretion in β-cells (Wei et al.,
2005). In adipocytes, CDK5 regulates glucose uptake by the
glucose transporter GLUT4 by several mechanisms (Okada
et al., 2008; Lalioti et al., 2009). Silencing of CDK5 decreased
glucose uptake by adipocytes indicating that CDK5 positively
influences glucose uptake in this cell type (Lalioti et al., 2009).
Another non-cell cycle CDK shown to be involved in insulin
signaling of adipocytes is CDK8. In the absence of insulin,
CDK8-CycC inhibits lipogenesis by phosphorylating SREBP-1c,
promoting its degradation. This pathway is conserved from flies
to mammals and seems to function completely independently of
cell proliferation (Zhao et al., 2012).

SUMMARY AND OUTLOOK

The tight coordination between metabolism, growth and
proliferation is becoming increasingly clear not only in cancer
cells, but across different proliferating cell types in eukaryotic
organisms. CDKs play an important role in coordinating
metabolism with the cell cycle and ensuring that the carbon and
energy demands of proliferating cells are met. Additionally, the
G1 CDKs and non-cell cycle CDKs are important for the control
of metabolism and energy homeostasis on organismal level, even
in non-proliferating cells.

While it is clear that CDKs are involved in the regulation of
carbon and energy metabolism across different cell types and
species, data is not sufficiently dense yet to judge whether there
are general patterns of metabolic regulation that are conserved.
Likewise, it is still very much unclear which metabolic fluxes
are actually needed to drive each cell cycle phase, and in which
phase energy consumption is the highest. This may also be
species and tissue dependent, i.e., different cell types may have
different strategies to supply the appropriate amount of energy
and anabolic precursors in a timely manner.

To address these challenging questions and to solve the roles
of different CDKs in regulating metabolism in health and disease
in vivo, carefully designed studies linking biochemical analysis
to cellular and whole animal studies are needed. For obvious
practical reasons, many CDK targets screens and investigations
have been completed in vitro in nutrient environments that do
not resemble the in vivo situation very well. However, as shown
for carbohydrate storage in yeast, the coordination of carbon
and energy metabolism with proliferation can be most important
when resources are scarce or subject to strong fluctuations (Ewald
et al., 2016; Zhao et al., 2016). Nutrient limitation is a constant
threat to unicellular organisms (Smets et al., 2010), but can also
occur in poorly vascularized solid tumors (Vander Heiden and
DeBerardinis, 2017), or in tissues with strongly fluctuating energy
requirement such as muscles.

In summary, among the many roles of the cyclin-dependent
kinases, regulating carbon and energy metabolism is becoming
more and more prominent. Further uncovering this interesting
role of CDKs is not only essential for basic cell cycle biology, but
may open new avenues for treatment of cancers with overactive
CDKs.
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