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Abstract

Background: Metabolomics is emerging as an important tool for detecting differences between diseased and
non-diseased individuals. However, prospective studies are limited.

Methods: We examined the detectability, reliability, and distribution of metabolites measured in pre-diagnostic plasma
samples in a pilot study of women enrolled in the Northern California site of the Breast Cancer Family Registry. The study
included 45 cases diagnosed with breast cancer at least one year after the blood draw, and 45 controls. Controls were
matched on age (within 5 years), family status, BRCA status, and menopausal status. Duplicate samples were included for
reliability assessment. We used a liquid chromatography/gas chromatography mass spectrometer platform to measure
metabolites. We calculated intraclass correlations (ICCs) among duplicate samples, and coefficients of variation (CVs)
across metabolites.

Results: Of the 661 named metabolites detected, 338 (51%) were found in all samples, and 490 (74%) in more than 80%
of samples. The median ICC between duplicates was 0.96 (25th – 75th percentile: 0.82–0.99). We observed a greater than
20% case-control difference in 24 metabolites (p < 0.05), although these associations were not significant after adjusting
for multiple comparisons.

Conclusions: These data show that assays are reproducible for many metabolites, there is a minimal laboratory variation
for the same sample, and a large between-person variation. Despite small sample size, differences between cases and
controls in some metabolites suggest that a well-powered large-scale study is likely to detect biological meaningful
differences to provide a better understanding of breast cancer etiology.

Background
Metabolomics is the systematic survey of the small
molecules (< 1 k Dalton in size) that are the products of
metabolism in biological systems [1, 2]. A metabolic
phenotype represents the collection of metabolites
within the body which reflects influences from both
genetic and lifestyle/environmental factors. Because me-
tabolites include the intermediate- and end-products of
the cellular processes, metabolomics provides a func-
tional readout of the physiological state of health and

disease. Changes in energy metabolism within cells are
one of the hallmarks of carcinogenesis. Under aerobic
conditions, normal cells metabolize energy by first
converting glucose into pyruvate and then to carbon
dioxide, and under anaerobic conditions, cells
metabolize by glycolysis. However, the converse is true
for cancer cells, where under aerobic conditions, energy
metabolism occurs largely by glycolysis, i.e., “aerobic
glycolysis” [3]. Thus, a characterization of metabolic
processes may provide new insights into carcinogenesis.
In recent years, metabolomics has emerged as an im-
portant tool for the identification of biomarkers in a
growing number of applications, including early
disease detection, monitoring of disease progression,
and investigation of metabolic pathways. The applica-
tion of metabolomics has yielded novel signatures
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predicting the occurrence and progression of complex
diseases, including cancers of the breast [4], prostate,
colon, and kidney [5–8].
Most metabolomics studies of breast cancer to date

have been conducted in tumor tissues or cell lines and
with the goals of distinguishing cancer from normal tis-
sue and cancers with metastasis from those without, as
well as identifying therapeutic targets [9–11]. Data from
these studies have suggested that metabolomic profiles
may differ by pathological and molecular subtype of
breast cancer. In large scale epidemiologic studies, blood
and urine are more readily available than tissue. Because
blood and urine serve as transporters of nutrients and
wastes to and from cells for excretion, and maintain
homeostasis of essential molecules and fluid levels, they
are sensitive indicators of health and perturbations from
diseases. Several studies have measured urinary meta-
bolic profiles and found promising candidate markers
for early detection and monitoring of breast cancer pro-
gression [12–14]. However, studies using pre-diagnostic
blood are limited. To our knowledge, there has been
only one previously published study on metabolomics
and breast cancer risk using pre-diagnostic blood [4],
warranting additional studies to replicate the findings in
other populations. We conducted a pilot study to gener-
ate preliminary data to assess whether circulating meta-
bolomic profiles could be detected in pre-diagnostic
plasma samples of women enrolled in the Breast Cancer
Family Registry (BCFR) cohort, and to evaluate the
reproducibility of metabolomic assays.

Methods
Study population
Pre-diagnostic plasma samples were obtained from the
BCFR, an international prospective cohort of breast can-
cer families established in 1995 [15] [16]. For this pilot
study, samples were selected from the Northern Califor-
nia site (NC-BCFR), which enrolled women with newly
diagnosed breast cancer (probands) identified through
the population-based cancer registry of the San Fran-
cisco Bay area and family members [17]. At baseline,
participants completed a risk factor questionnaire and
provided a blood sample. During follow-up, newly diag-
nosed breast cancer cases were identified among family
members who were unaffected at baseline. This pilot
study included 45 women who were diagnosed with
breast cancer at least one year after the blood draw
(cases) and 45 women who did not develop breast
cancer (controls). Of the 45 cases, 72% of the cases were
confirmed via cancer registry linkage or pathology
reports; the remainder were self-reported. Controls were
matched to cases on family status (a sister was selected
if available; if more than one sister was available, we
selected the sister closest in age), age at blood draw

(±5 years), menopausal status at diagnosis, and number
of affected first degree relatives (1, 2, or ≥3). The age
range for cases was 26–80 years (average 52.4 years),
and that for controls was 36–73 years (average 53 years).

Laboratory assays
Plasma samples obtained from cases and matched con-
trols were aliquoted into 200 μl ethylenediaminetetraacetic
acid (EDTA) plasma vials. Case-control sets were assayed
in the same batch and adjacent to each other in sequence.
Samples were identified by specimen ID only, and
laboratory technicians were masked to the case-control
status of samples. The samples were assayed on the
Discovery HD4 platform, a mass spectrometry-based
metabolomics profiling platform, at Metabolon (Durham,
NC, USA). This method combines automated sample
extraction processing, an ultrahigh performance liquid
chromatography/electrospray ionization tandem mass
spectrometry (UHPLC/MS) with additional gas chroma-
tography mass spectrometry (GC/MS) platform. Peaks
were quantified using area-under-the-curve and metabol-
ite levels were generated. The metabolite data were nor-
malized to a median of 1.00 to correct for variation
resulting from instrument tuning differences. Metabolites
not detected in individual samples were imputed with the
minimum value for that metabolite. The data were then
log-transformed to reduce non-normality. Duplicates from
10 controls were included to assess assay reproducibility.
Data from the duplicates were used to assess intra-class
correlation (ICC) and were averaged for the case-control
analysis.

Statistical analysis
To assess the reliability of our assay results, we calcu-
lated coefficients of variation (CVs) and ICCs across du-
plicate samples. Coefficient of variation is a measure of
dispersion, that describes the amount of variability rela-
tive to the mean. For samples measured using the same
method, a low (~ 10%) variability within subjects and
high variability across subjects is desirable. Intra-class
correlations describe the degree to which duplicate sam-
ples agree: a value between 0.75 and 1 indicates excellent
agreement.
We used the variance component from a one-way ana-

lysis of variance (ANOVA) model to estimate the ICC
for replicate samples, and estimated confidence intervals
for the ICCs using the Smith method [18] in R (ICC-
Package) [19]. We calculated CVs across named metabo-
lites, and used principal component analysis [20] to
identify the important components (groups of metabo-
lites) in each sample (including the duplicates). We used
paired t-tests to examine differences in the normalized
metabolite levels between cases and controls. We used
non-linear modeling to examine whether normalized
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metabolite levels were associated with age at blood draw.
We evaluated quadratic and cubic models and used the
Akaike Information Criterion (AIC) to evaluate the best
model fit. We also evaluated using ANOVA with robust
variance to examine differences in metabolite levels by
the number of affected first-degree relatives (1, 2, or ≥3),
and among cases with available information, by estrogen
receptor (ER) status (positive/negative) and progesterone
receptor (PR) status (positive/negative). Due to the lim-
ited sample size of this pilot study, further analysis of
subgroups by age was not statistically meaningful.

Results
Of the 45 cases selected, 31 had two or more affected
first-degree female relatives, while 14 cases had one af-
fected first-degree female relative. Six cases were BRCA1
mutation carriers, while four were BRCA2 mutation car-
riers. Twenty-one cases were premenopausal at blood
collection, and the remainder were postmenopausal. The
average age at breast cancer diagnosis was 58.8 years.
The average age at blood draw was 52.4 years for cases,
compared to 53.1 years for controls. Approximately 51%
of cases were ER positive, and 22% were ER negative.
About 20% of cases had localized tumors, and 5% had
regional involvement limited to the nodes (Table 1).
We detected a total of 661 known named metabolites

in our samples. Of these, 338 (51%) were detected in all
the samples, and 490 (74%) were detected in greater
than 80% of the 90 study samples. These metabolites in-
clude amino acids and lipids, and some related to micro-
biome influences and xenobiotics metabolism
(Additional file 1: Table S1). The average CV across all
named metabolites was 0.16 (25th – 75th percentile: 0.
06–0.20) (Table 2). The median ICC between duplicates
was 0.96 (25th – 75th percentile: 0.82–0.99). The aver-
age variance was 60.7% among individuals, and 6.0% for
duplicate samples within individuals.
Principal component analysis identified the top 3 com-

ponents of all samples. The scores of the components
identified were very similar for duplicate samples. (Fig. 1).
We observed a greater than 20% case-control difference

in 24 metabolites that were statistically significant (p < 0.05).
Metabolites including 3-(cystein-S-yl)acetaminophen (xeno-
biotics pathway), 4-acetylphenol sulfate (xenobiotics path-
way), and cysteine s-sulfate (amino acid pathway) were
significantly higher in cases, whereas indoleacetylglutamine,
(amino acid pathway), 2-ethylphenylsulfate (xenobiotics

Table 1 Characteristics of Study Subjects

Cases (n = 45) Controls (n = 45)

Age at blood draw, years 52.4 (26–80) 53 (36–73)

Age at diagnosis, years 58.8 (30–84) N/A

Post-menopausal at blood
draw, %

58 60

Number of affected first-degree
relatives, %

1 29 31

2 29 27

3 42 42

BRCA1 Mutation, %

Positive 7 9

Negative 20 13

Unknown 73 78

BRCA2 Mutation, %

Positive 2 11

Negative 11 9

vUnknown 87 80

Estrogen Receptor Status, %

Positive 51 –

Negative 22 -

Unknown 27

Progesterone Receptor Status, %

Positive 53 –

Negative 20 -

Unknown 27

Human Epidermal Growth Factor
Receptor 2 Status, %

Positive 9 -

Negative 60 –

Unknown 31

Summary Stage, %

Localized 20 –

Regional, nodes only 11 –

Unknown 69

*Values are means (range) or percentages

Table 2 Distribution of observed coefficient of variation for
named and most common1 metabolites among 45 cases and
45 controls

Named Metabolites Most common1 metabolites

N 661 490

Average 0.16 0.132

Median 0.11 0.099

Standard deviation 0.18 0.11

Confidence interval? 0.01 0.01

Lower 95% CI 0.14 0.12

Upper 95% CI 0.17 0.14

1st quartile 0.06 0.06

2nd quartile 0.11 0.10

3rd quartile 0.20 0.16

4th quartile 2.00 0.89
1Present in > 80% of samples
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pathway), and sphingosine (lipid pathway) were significantly
higher in controls (Fig. 2).
Among the metabolites that showed a greater than 20%

case-control difference, we also examined differences
among hypothesized predictors of breast cancer risk, in-
cluding differences by age at blood draw, the number of

affected first-degree relatives (Table 3), ER status, and PR
status (Table 4). Statistically significant (p < 0.05) but mod-
est associations were observed between some metabolites
and age at blood draw; for example, age explained 13% of
the variation in 1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:
0/18:1) (adjusted r2 = 0.13; p < 0.01).

Fig. 1 Top three components identified by Principal Component Analysis

Fig. 2 Differences in metabolites between cases and controls (p < 0.05)
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We examined whether metabolites differed by the
number of affected first-degree relatives. Overall, there
was no clear monotonically increasing or decreasing pat-
tern by the number of affected relatives: mean levels
were similar for women with one or three affected rela-
tives, and lower or higher for those with two affected
relatives. For example, for 2-ethylphenylsulfate, the mean
levels were 0.68, 0.97, and 0.64, for women with one,
two, or three affected relatives, respectively (p < 0.001).
In some metabolites, we found differences by ER status.

For example, cases with ER+ breast cancer had higher
mean laurylcarnitine level than those with ER- breast can-
cer (1.16 vs. 0.83, p = 0.04). Conversely, the mean indolea-
cetyleglutamine level was lower for ER+ breast cancer
cases than ER- cases (0.46 vs. 0.54, p = 0.04).

Finally, we examined whether metabolite levels differed
by PR status. The mean asparagine level for PR+ cases was
1.12, compared to 1.18 for PR- cases (p = 0.02). For adre-
nate (22:4n6), the mean level for PR+ cases was 1.07 com-
pared to 0.69 for PR- cases, and for N-(2-furoyl)glycine, the
mean level for PR+ cases was 2.87 compared to 7.54 for
PR- cases. However, none of the associations remained sig-
nificant after adjusting for multiple comparisons.

Discussion
These data, despite small numbers, suggest that a large
number of metabolites have detectable levels, with good
reproducibility, as suggested by high ICCs and reasonable
CVs. We also showed that for most metabolites, the
within-person variance is small, while the between-person

Table 3 Differences by key breast cancer risk factors among metabolites that showed a greater than 20% case-control difference

Metabolite Metabolism Pathway Age at blood drawa

(Adjusted R2)
Number of affected first-degree relatives mean levels
(standard deviation)

n = 90 P-valueb 1 (n = 27) 2 (n = 25) 3 (n = 38) P-valueb

1-(1-enyl-palmitoyl)-2-oleoyl-
GPC (P-16:0/18:1)3

Plasmalogen 0.13 < 0.01 1.02 (0.24) 0.98 (0.27) 1.16 (0.38) 0.02

1-linoleoyl-GPA (18:2) c Lysolipid 0.01 0.29 0.97 (0.51) 1.22 (0.64) 1.39 (1.11) 0.06

1-palmitoleoyl-2-linoleoyl-GPC
(16:1/18:2) 3

Phospholipid 0.01 0.23 1.15 (0.56) 1.04 (0.42) 1.01 (0.45) 0.75

1-palmitoyl-GPG (16:0) c Lysolipid < 0.01 0.92 0.78 (0.53) 0.93 (0.98) 1.05 (0.91) 0.23

1-palmitoylglycerol (16:0) Monoacylglycerol 0.07 0.02 1.07 (0.39) 0.93 (0.31) 1.22 (0.59) 0.001

2-ethylphenylsulfate Benzoate < 0.01 0.38 0.68 (0.51) 0.97 (0.92) 0.64 (0.51) 0.001

3-(cystein-S-yl)acetaminophenc Xanthine < 0.01 0.96 0.50 (1.08) 0.22 (0.08) 0.47 (1.38) 0.12

4-acetylphenol sulfate Drug 0.01 0.71 0.82 (0.64) 1.24 (2.78) 1.60 (3.83) 0.35

adrenate (22:4n6) Polyunsaturated fatty acid (n3 and n6) < 0.01 0.78 1.28 (0.61) 0.83 (0.62) 1.13 (0.66) 0.78

asparagine Alanine and aspartate 0.04 0.06 1.01 (0.32) 1.14 (0.39) 1.08 (0.27) 0.15

cysteine s-sulfate Glycogen 0.09 0.01 3.81 (6.30) 4.89 (6.51) 4.28 (7.47) 0.8

cysteinylglycine Glutathione 0.01 0.24 1.05 (0.50) 1.10 (0.68) 1.15 (0.67) 0.2

ergothioneine Food component/plant < 0.01 0.36 1.24 (0.91) 1.04 (0.55) 1.35 (1.46) 0.21

glycerate Glycolysis, Gluconeogenesis, and Pyruvate < 0.01 0.57 1.09 (0.45) 1.35 (0.94) 1.23 (0.56) 0.03

glycolithocholate Secondary bile acid 0.01 0.20 0.94 (1.08) 1.03 (1.78) 0.82 (0.98) 0.66

heptanoate (7:0) Medium chain fatty acid < 0.01 0.64 1.06 (1.15) 0.86 (1.07) 0.72 (0.54) 0.24

indoleacetate Tryptophan 0.01 0.57 1.23 (0.75) 1.43 (0.98) 1.19 (0.89) 0.71

indoleacetylglutamine Tryptophan < 0.01 0.39 1.75 (6.23) 0.77 (0.89) 0.74 (0.56) 0.05

laurylcarnitine Fatty acid (acyl carnitine) 0.03 0.12 1.62 (2.24) 0.92 (0.60) 1.15 (0.66) 0.08

maltotriose Glycogen 0.04 0.10 1.17 (0.51) 1.05 (0.56) 0.93 (0.47) 0.92

N-(2-furoyl)glycine Food component/plant 0.02 0.38 3.87 (7.12) 1.62 (3.61) 4.07 (6.35) 0.03

sphingosine Sphingolipid < 0.01 0.62 1.03 (0.60) 0.91 (0.53) 1.12 (1.29) 0.06

sphingosine 1-phosphate Sphingolipid 0.03 0.12 1.08 (0.49) 0.98 (0.41) 0.98 (0.50) 0.32

threonine Glycine, serine, and threonine 0.05 0.05 0.97 (0.22) 1.03 (0.32) 1.05 (0.22) 0.07
aThe age models for all metabolites were fitted with a linear and a quadratic term, with the exception of maltitriose, which also included a cubic
term for age, as the model fit was improved for this metabolite over the liner and quadratic model
bNot adjusted for multiple comparisons
cIndicates compounds that have not been officially confirmed based on a standard, although identity is certain
Significant data are in bold
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variance is much larger. We found that some metabolites
have a greater than 20% case-control difference. Finally,
we showed that some metabolites (including N-(2-furoyl)
glycine in the xenobiotics pathway) differed by key breast
cancer risk factors such as the number of affected
family members, although these associations were not
significant after adjusting for multiple comparisons,
likely due to the small sample size. Taken together,
these results suggest that a large-scale study (~ 1000)
would be well-powered to detect meaningful bio-
logical and statistically significant differences between
cases and controls to provide a better understanding
of breast cancer etiology across a wide spectrum of
risks, and among high-risk women in particular.
Metabolomics profiles are becoming increasingly uti-

lized in epidemiological studies to predict the risk of

chronic diseases, including breast cancer; however, data
from prospective studies are limited. In the first prospect-
ive study of metabolomics and breast cancer risk, Kuhn et
al. [4] found that phosphatidylcholines were associated
with breast cancer risk. That study included 362 sporadic
breast cancer cases, and measured only 120 metabolites.
To date, there are no metabolomics data on women at in-
creased risk of breast cancer due to their family history of
breast cancer. Clearly additional data from prospective
studies are needed to further examine the role of metabo-
lomics in breast carcinogenesis.
The assay performance on our samples, measured by

ICCs and CVs, is consistent with earlier studies that
have examined the utility of metabolomics in epidemio-
logical research among participants of the Shanghai
Physical Activity Study [21]. In that study, the variability

Table 4 Differences by key breast cancer variables among metabolites that showed a greater than 20% case-control difference

Metabolite Metabolism Pathway ER Status mean levels (standard deviation) PR Status mean levels (standard deviation)

ER + (n = 23) ER - (n = 10) P-value1 PR + (n = 24) PR - (n = 9) P-valuea

1-(1-enyl-palmitoyl)-2-oleoyl-
GPC (P-16:0/18:1) b

Plasmalogen 1.16 (0.26) 1.26 (0.35) 0.14 1.15 (0.27) 1.29 (0.32) 0.75

1-linoleoyl-GPA (18:2) b Lysolipid 1.50 (1.03) 1.21 (0.62) 0.25 1.54 (0.99) 1.08 (0.63) 0.3

1-palmitoleoyl-2-linoleoyl-GPC
(16:1/18:2) b

Phospholipid 1.19 (0.60) 1.26 (0.40) 0.52 1.22 (0.60) 1.21 (0.41) 0.59

1-palmitoyl-GPG (16:0) 2 Lysolipid 1.08 (0.89) 0.76 (0.41) 0.11 1.06 (0.88) 0.80 (0.40) 0.1

1-palmitoylglycerol (16:0) Monoacylglycerol 1.19 (0.45) 1.07 (0.35) 0.62 1.17 (0.47) 1.13 (0.29) 0.11

2-ethylphenylsulfate Benzoate 0.63 (0.63) 0.59 (0.52) 0.53 0.65 (0.62) 0.55 (0.53) 0.51

3-(cystein-S-yl)acetaminophen2 Xanthine 0.92 (2.06) 0.36 (0.34) 0.07 0.89 (2.02) 0.38 (0.35) 0.1

4-acetylphenol sulfate Drug 1.23 (1.96) 1.31 (1.00) 0.39 1.98 (4.78) 0.98 (0.40) 0.29

adrenate (22:4n6) Polyunsaturated fatty acid
(n3 and n6)

1.03 (0.65) 0.80 (0.48) 0.21 1.07 (0.66) 0.69 (0.32) 0.04

asparagine Alanine and aspartate 1.11 (0.24) 1.19 (0.43) 0.1 1.12 (0.24) 1.19 (0.46) 0.02

cysteine s-sulfate Glycogen 6.17 (8.69) 4.92 (7.29) 0.44 6.34 (8.80) 4.33 (6.56) 0.25

cysteinylglycine Glutathione 1.23 (0.67) 1.28 (0.62) 0.56 1.27 (0.65) 1.19 (0.69) 0.9

ergothioneine Food component/plant 1.55 (1.41) 1.27 (0.85) 0.45 1.57 (1.39) 1.18 (0.82) 0.36

glycerate Glycolysis, Gluconeogenesis,
and Pyruvate

1.23 (0.40) 1.26 (0.61) 0.2 1.23 (0.40) 1.24 (0.63) 0.25

glycolithocholate Secondary bile acid 2.01 (4.89) 1.01 (0.42) 0.24 1.31 (1.92) 1.13 (1.03) 0.44

heptanoate (7:0) Medium chain fatty acid 0.88 (1.22) 0.75 (0.51) 0.41 0.65 (0.68) 1.33 (1.64) 0.08

indoleacetate Tryptophan 1.02 (0.53) 1.24 (0.92) 0.64 1.11 (0.74) 1.03 (0.41) 0.03

indoleacetylglutamine Tryptophan 0.46 (0.06) 0.54 (0.31) 0.01 0.50 (0.21) 0.44 (0) 0.12

laurylcarnitine Fatty acid (acyl carnitine) 1.15 (0.86) 0.82 (0.45) 0.04 0.20 (0.82) 0.69 (0.46) 0.05

maltotriose Glycogen 0.94 (0.49) 0.97 (0.44) 0.8 0.88 (0.42) 1.13 (0.55) 0.44

N-(2-furoyl)glycine Food component/plant 3.46 (5.33) 5.71 (6.53) 0.72 2.87 (4.18) 7.55 (7.90) 0.04

sphingosine Sphingolipid 0.83 (0.52) 0.83 (0.68) 0.11 0.84 (0.55) 0.80 (0.63) 0.69

sphingosine 1-phosphate Sphingolipid 0.94 (0.46) 0.94 (0.39) 0.37 0.92 (0.46) 0.99 (0.39) 0.42

threonine Glycine, serine, and threonine 1.08 (0.22) 1.10 (0.30) 0.31 1.09 (0.26) 1.08 (0.19) 0.46
aNot adjusted for multiple comparisons
bIndicates compounds that have not been officially confirmed based on a standard, although identity is certain
Significant data are in bold
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in a large subset of metabolites was assessed and the
intraclass correlation was high (median 0.8). Similar
assay performance was also observed in a nested case-
control study of metabolomics and colorectal cancer risk
[22] that included 254 cases and 254 matched controls
from the Prostate, Lung, Colorectal and Ovarian Cancer
study. In that study, which used a metabolomics
platform similar to the one used in our pilot study, the
median intraclass correlation was 0.86 (25th–75th
percentile: 0.64–0.92).
Consistent with our observation that age at blood

collection was associated with metabolite levels, Saito et al.
[23] also reported that certain metabolites were associated
with age at blood draw in a Japanese population. Because
the populations in the two studies are quite different, a dir-
ect comparison is not possible. Similarly, Tang et al. [24] re-
ported that metabolites in tumor tissues were associated
with ER status, and also with BRCA1-associated tumors.
However, studies utilizing human plasma are limited.
One notable limitation of our study is that we did not

match on the duration of storage time between cases and
controls. Post-hoc analysis revealed that among case-
control pairs, 35 pairs (78%) had a difference of less than
3 years of storage duration, while 1 pair had a difference
of more than 10 years. Further analyses showed that while
there were no appreciable differences in the analyses by
age, there were differences in 5 metabolites when evaluat-
ing levels by the number of affected relatives. Future stud-
ies should match on calendar year of blood draw (hence
storage duration) within case-control matched sets.
Our study is among the first to examine the association

between metabolomics and breast cancer risk using pre-
diagnostic plasma samples. Despite the limited sample
size, we were able to find a larger than 20% case-control
difference in several metabolites, although we cannot rule
out the possibility that the presence of asymptomatic pre-
clinical breast cancer may have affected metabolite levels
in cases. Such bias is possible but should be minimal as
we excluded cases diagnosed with breast cancer within
12 months after the blood draw in order to limit the po-
tential for preclinical disease to influence metabolite
levels. Finally, our study is also among the first to examine
reliability across more than 600 metabolites.

Conclusions
In conclusion, findings from this study suggest that
metabolomics can be used reliably in large-scale epide-
miologic studies of breast cancer to detect meaningful
differences in risk.

Additional file

Additional file 1: TableS1. Number of metabolites measured in plasma
of BCFR participants (DOCX 17 kb)
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