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Thermodesulfobacterium commune is the type species of genus
Thermodesulfobacterium contained within the small class

Thermodesulfobacteria, and first isolated from Ink Pot spring in
Yellowstone National Park, WY, in 1980. It is a sulfate-reducing
obligate anaerobic thermophile with an optimum growth temper-
ature of 70°C and a growth temperature range of 45°C to 80°C.
This Gram-negative bacterium has nonmotile, non-cyst-forming,
nonsporulating, straight, rod-shaped (0.3 � 0.9 �m) cells (1). It
can metabolize lactate and pyruvate as energy sources using sul-
fate and thiosulfate as electron acceptors (1). T. commune contains
cytochrome c3 but lacks desulfoviridin-type bisulfate reductase
(2). It was sequenced as part of the “Assembling the Tree of Life”
project at The Institute of Genomic Research (TIGR). It was cho-
sen as a representative of the phylum Thermodesulfobacteria,
which had no sequenced members during the starting phase of the
project (2002).

The type strain of T. commune (DSM 2178T) was obtained
from the Leibniz Institute DSMZ-German Collection of Microor-
ganisms and Cell Cultures and grown under 95% N2/5% CO2

atmosphere at 70°C using DSMZ medium 206. DNA was obtained
by solubilizing cells with N-lauryl sulfate and sodium dodecyl sul-
fate followed by incubation with proteinase K. The lysate was ex-
tracted with Tris-EDTA-saturated phenol, chloroform/isoamyl
alcohol, and was precipitated from the aqueous phase with 95%
ethanol. It was resolubilized, incubated with DNase-free RNase
and further purified by cesium-chloride gradient centrifugation
and visualized using 365-nm UV light (3). Pulse-field gel electro-
phoresis was used to confirm the size and uniformity of the DNA
preparation. Genome sequencing was performed as for the other
genomes from the Tree of Life project (4). It included insert librar-
ies of three different sizes: small (2 to 3 kb), medium (4 to 5 kb),
and large (8 to 10 kb), which were sequenced with Sanger sequenc-
ing and assembled as previously described (5–7); assemblies were

edited and gaps were closed by clone walking and targeted PCR
and sequencing. Finishing was completed by (i) generating addi-
tional coverage in low coverage regions, (ii) verification of repeats,
and (iii) resolution of ambiguities (8). The final assembly had
~9� coverage for the 1,764,045-bp genome with a GC content of
36.97%.

The origin of replication was identified using GC skew and
colocalization of origin-associated genes (9). All the universal
single-copy bacterial marker genes (10) were found in the se-
quenced genome using Phylosift (11). The genome was annotated
using NCBI Prokaryotic Genome Annotation Pipeline version 2.6
(revision 438450) (12, 13). Of the 1,532 genes identified, 1,453
were protein-coding sequences (CDS), 29 were pseudogenes, and
50 were noncoding RNA genes. The 50 RNA genes comprise 1
noncoding RNA (ncRNA), 3 rRNAs (5S, 16S, and 23S), and 46
tRNAs. Additionally, two clustered regularly interspaced short
palindromic repeat (CRISPR) arrays were identified in the ge-
nome.

Nucleotide sequence accession number. The genome se-
quence has been deposited at GenBank under the accession no.
CP008796.
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