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Fungal diseases have been emerging as an important public health problem worldwide

with the increase in host predisposition factors due to immunological dysregulations,

immunosuppressive and/or anticancer therapy. Antifungal therapy for systemic mycosis

is limited, most of times expensive and causes important toxic effects. Nanotechnology

has become an interesting strategy to improve efficacy of traditional antifungal drugs,

which allows lower toxicity, better biodistribution, and drug targeting, with promising

results in vitro and in vivo. In this review, we provide a discussion about conventional

antifungal and nanoantifungal therapies for systemic mycosis.
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INTRODUCTION

Fungal diseases have arisen as an important public health problemworldwide, having a great impact
in human morbidity and mortality, specially among immunocompromised individuals (Denning
and Hope, 2010; Shapiro et al., 2011; Caffrey and Obar, 2016; Prasad et al., 2016). Although
superficial mycosis are the most common among fungal infections, affecting nearly 25% of the
human population worldwide (Havlickova et al., 2008), invasive fungal infections are of greater
concern, since they are life-threatening, difficult to diagnose and account with a limited number of
therapeutic options (Brown et al., 2012a,b). It is estimated that systemic mycosis cause about 1.5
million deaths annually (Brown et al., 2012a; Caffrey and Obar, 2016).

Systemic fungal infections include both opportunistic and endemic mycosis, and are associated
with high rates of mortality if not readily diagnosed and treated (Brown et al., 2012a; Caffrey
and Obar, 2016). Opportunistic infections are caused by environmental or commensal fungi and
affect immunocompromised or genetically predisposed hosts, accounting for about 2 million life-
threatening reported cases each year worldwide (Brown et al., 2012a; Polvi et al., 2015; Caffrey
and Obar, 2016). Species from genera Aspergillus, Candida, Cryptococcus, and Pneumocystis are
responsible for more than 90% of all reported fungal-related deaths, although accurate incidence
data is not officially available and may be underestimated (Brown et al., 2012a,b).

On the other hand, endemic mycoses are caused by thermal-dimorphic fungi and can
affect especially immunocompetent hosts that live in particular geographic areas, although
immunosuppression is a risk factor and contributes to the outcome of infection (Goughenour
and Rappleye, 2017). Dimorphic fungi occur as saprophytic molds in the environment. After
inhalation or trauma inoculation by the mammalian host, they transform into pathogenic
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yeasts or spherules (Bonifaz et al., 2011; Sil and Andrianopoulos,
2015). Among the causative agents of endemic mycosis
are Histoplasma capsulatum, Coccidioides immitis and C.
posadasii, Paracoccidioides brasiliensis, and P. lutzii, Blastomyces
dermatitidis, Talaromyces marneffei, and Sporothrix schenckii.
Despite incidence data of infections by dimorphic fungi
are usually inaccurate due to under-diagnosis and under-
reporting, it is believed that endemic mycosis are responsible for
approximately 65,000 life-threatening cases each year worldwide
(Brown et al., 2012a; Goughenour and Rappleye, 2017).

The fact that fungi and animals are evolutionarily close
makes the search for therapeutic targets a big challenge, since
targets such as biomolecules synthesis have great potential for
toxicity (Groll et al., 1998; Denning and Hope, 2010; Heitman,
2011; Shapiro et al., 2011; Polvi et al., 2015). Today, only
a dozen of antifungal agents (Table 1) are approved for the
treatment of invasive fungal infections (Seyedmousavi et al.,
2017). Antifungal therapy for systemic mycosis is basically
focused in three classes: polyenes, azoles, and echinocandins
(Polvi et al., 2015). Therapies for invasive infection presents
restrictions such as route of administration, toxicity, drug
interactions and sometimes high costs, considering patients
hospitalization (Denning and Hope, 2010; Brown et al., 2012b;
Polvi et al., 2015). In some cases, prolonged treatment times are
needed, together with clinical interventions due to side effects
(Goughenour and Rappleye, 2017). Recently, drug resistance has
also become a worrisome issue (Xie et al., 2014). Unfortunately,
antifungal drug development does not follow the progressive
increase of invasive infections resulted from modern medical
interventions, primary, and acquired immunodeficiencies and
immunosuppressive therapies. Besides, there are no approved
human vaccines for fungal diseases at this moment (Brown et al.,
2012b). To overcome these problems, it is interesting to develop
cheaper and novel therapeutic strategies in the battle against
fungal diseases.

In this review, we will discuss current antifungal
therapies available for systemic infections and point out
some of the strategies using nanobiotechnology to improve
conventional therapy. We will give a brief introduction about
nanoformulations, and provide an overview of current studies
proposing nanostructuration as an approach to improve efficacy
and bioavailability of conventional antifungal drugs.

CONVENTIONAL THERAPY FOR INVASIVE
FUNGAL DISEASES

In the late 1950s, polyenes emerged as the first class of antifungal
agents. These molecules are produced by Streptomyces nodosus
presenting high affinity for ergosterol, the major sterol in
fungal cell membrane, which is responsible for membrane
fluidity, asymmetry, and integrity (Odds et al., 2003; Carrillo-
Muñoz et al., 2006; Mesa-Arango et al., 2012). By binding
to ergosterol, polyene molecules complex forming pores that
destabilize cell membrane, allowing leakage of cellular contents
and resulting in fungal cell death (Finkelstein and Holz, 1973;
Georgopapadakou, 1998; Mesa-Arango et al., 2012; Adler-Moore

et al., 2016). Besides, induction of oxidative damage in the fungal
cell also contributes to fungicidal activity (Georgopapadakou,
1998; Mesa-Arango et al., 2012). Unluckily, polyene agents
can also interact with cholesterol, what confers potential
toxicity for mammalian cells (Hsuchen and Feingold, 1973;
Georgopapadakou, 1998; Mesa-Arango et al., 2012). Among
Polyenes, Amphotericin B is the most used for the treatment of
systemic fungal infections. Amphotericin B has fungicidal effects
against a broad-spectrum of fungal pathogens and is approved for
the treatment of numerous invasive mycosis, such as candidiasis,
aspergillosis, cryptococcosis, blastomycosis, histoplasmosis,
mucormycosis, and sporotrichosis (Georgopapadakou, 1998;
Mesa-Arango et al., 2012; Adler-Moore et al., 2016; Nett and
Andes, 2016).

Amphotericin B was first introduced in the market in 1958
as a sodium deoxycholate solution administrated by parenteral
route (Bartner et al., 1958; Groll et al., 1998), and after almost
60 years, it is still considered the gold standard for the treatment
of most life-threatening mycosis (Groll et al., 1998; Carrillo-
Muñoz et al., 2006; Mesa-Arango et al., 2012). However, this
formulation is associated with important acute and chronic side-
effects, particularly nephrotoxicity (Carrillo-Muñoz et al., 2006;
Laniado-Laborín and Cabrales-Vargas, 2009; Mesa-Arango et al.,
2012; Nett and Andes, 2016). Amphotericin B has the ability
to stimulate proinflammatory responses, enhancing antifungal
activity, although this may also be associated with toxicity (Mesa-
Arango et al., 2012). In order to circumvent toxicity problems,
lipid formulations were developed, including liposomes
(Ambisome R©), lipid complexes (Abelcet R©), and colloidal
dispersions (Amphocil R©/Amphotech R©) (Georgopapadakou,
1998; Gulati et al., 1998; Dupont, 2002; Mesa-Arango et al.,
2012; Nett and Andes, 2016). However, these alternatives can
be up to 20-fold more expensive than sodium deoxycholate
Amphotericin B (Georgopapadakou, 1998; Wong-Beringer et al.,
1998; Dismukes, 2000; Falci et al., 2011), limiting its usage in
public health systems with limited resources.

In the late 1960s, flucytosine (5-fluorocytosine), a synthetic
pyrimidine analog originally designed for antitumor therapy,
was first used in the treatment of invasive mycosis (Tassel and
Madoff, 1968). After being imported to the fungal cell by cytosine
permeases, 5-fluorocytosine is converted to fluorouracil, which
gets incorporated into DNA and RNA molecules during their
synthesis, inhibiting protein synthesis and DNA replication, thus
impairing cell function (Groll et al., 1998; Nett and Andes, 2016;
Prasad et al., 2016). These agents have activity against a limited
spectrum of pathogenic yeasts, such as C. albicans, C. glabrata,
C. parapsilosis, C. tropicalis, and Cryptococcus spp., and are poor
effective against dimorphic or filamentous fungi (Nett andAndes,
2016; Prasad et al., 2016). Due to rapid occurrence of resistance
during the therapy with flucytosine, specially among Candida
species, its clinical use is preferable only in combination with
other antifungal drugs, such as Amphotericin B in the treatment
of cryptococcal meningitis and other life-threatening Candida
infections (Tassel and Madoff, 1968; Francis and Walsh, 1992;
Dismukes, 2000; Sanglard et al., 2009; Nett and Andes, 2016;
Prasad et al., 2016). Besides, Flucytosine induces significant side-
effects, like liver dysfunction and bone marrow suppression
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TABLE 1 | Current antifungal agents available for the therapy of systemic mycosis.

Antifungal spectrum AMB 5FC FLU ITR VOR POS ISA CAS MIC ANI

Candida albicans ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Candida glabrata ++ ++ + + ++ ++ ++ + + +

Candida parapsilosis ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Candida tropicalis ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

Candida krusei ++ + – + ++ ++ ++ ++ ++ ++

Candida lusitaniae – ++ ++ ++ ++ ++ ++ ++ ++ ++

Aspergillus fumigatus ++ – – + ++ ++ ++ + + +

Cryptococcus neoformans ++ ++ ++ ++ ++ ++ ++ – – –

Mucorales ++ – – – – ++ ++ – – –

Fusarium spp. + – – + ++ ++ ++ – – –

Scedosporium spp. + – – + + + + – – –

Blastomyces dermatitidis ++ – + ++ ++ ++ ++ – – –

Coccidioides immitis ++ – ++ ++ ++ ++ ++ – – –

Histoplasma capsulatum ++ – + ++ ++ ++ ++ – – –

Class Polyene Pyrimidine Azole Echinocandins

Target Ergosterol Nucleic acid Ergosterol Cell wall

Administration Intravenous Oral Oral/Intravenous Intravenous

Side Effects Infusion reactions,

hepatotoxicity,

nephrotoxicity

Bone marrow suppression,

liver toxicity

Gastrointestinal upset, hepatotoxicity, liver

failure

Infusion reactions, gastrointestinal

upset, headache, liver toxicity

5FC, flucytosine; AMB, amphotericin B; ANI, anidulafungin; CAS, caspofungin; FLU, fluconazole; ISA, isavuconazole; ITR, itraconazole; MIC, micafungin; POS, posaconazole; VOR,

voriconazole.

Adapted from Nett and Andes (2016).

(Francis and Walsh, 1992; Groll et al., 1998; Dismukes, 2000;
Nett and Andes, 2016; Prasad et al., 2016). In the United States,
flucytosine is available in oral capsules (Groll et al., 1998; Nett and
Andes, 2016).

Azoles are synthetic cyclic organic molecules introduced
in the early 1970s in addition to antifungal arsenal. They
are composed by a 5-member azole ring, which contains two
(imidazoles) or three (triazoles) nitrogen atoms, attached to a
complex side chain (Georgopapadakou, 1998; Groll et al., 2003).
Azoles target is ergosterol biosynthesis, which is impaired due
to inhibition of fungi cytochrome P-450 14-α sterol demethylase
(Vanden Bossche et al., 1995; Georgopapadakou, 1998; Groll
et al., 1998, 2003; Odds et al., 2003; Carrillo-Muñoz et al., 2006).
As a consequence, cell membrane integrity is impaired, with
sterol precursors accumulation inside fungal cell and depletion
of ergosterol in cell membrane, altering normal permeability
and fluidity (Georgopapadakou, 1998; Groll et al., 1998; Odds
et al., 2003). In general, azoles have a fungistatic action,
affecting cell growth and proliferation, and eventually, due to
accumulation of toxic methylated sterols, fungal cell death may
occur (Groll et al., 2003; Zonios and Bennett, 2008; Sanglard
et al., 2009; Arnold et al., 2010; Shapiro et al., 2011; Prasad
et al., 2016). Currently, azoles are the most diverse class of
antifungal agents and they have been refined during the past
40 years (Odds et al., 2003). Imidazoles emerged first (Groll
et al., 1998; Prasad et al., 2016), and among them, miconazole
and ketoconazole were the only available for systemic use (Groll
et al., 2003), with the last being the first orally absorbable

antifungal and the first alternative to Amphotericin B (Groll
et al., 1998; Seyedmousavi et al., 2017). Triazoles came next,
Itraconazole in oral formulations, and Fluconazole, in both
oral and i.v. formulations, both better tolerated and more
effective than Ketoconazole (Dismukes, 2000), with increased
potency, expanded antifungal spectrum and improved resistance
to metabolic degradation (Como and Dismukes, 1994; Groll
et al., 1998). Fluconazole has good activity against Cryptococcus
spp., Coccidioides spp., and Candida spp. except for C. krusei
and C. glabrata (Arnold et al., 2010; Denning and Hope, 2010;
Nett and Andes, 2016; Seyedmousavi et al., 2017). Itraconazole
has broader antifungal spectrum, being effective against Candida
spp., Cryptococcus neoformans, Aspergillus spp., dimorphic fungi,
and dermatophytes (Arnold et al., 2010; Denning and Hope,
2010; Nett and Andes, 2016).

Further modifications in the molecules gave rise to
the second generation of triazoles, in which Voriconazole
(structurally related to Fluconazole) and Posaconazole (related
to Itraconazole) are available for systemic therapy with even
better antifungal potency and specificity. Voriconazole spectrum
of activity is improved in relation to first generation triazoles,
also including C. glabrata, Fusarium spp., Scedosporium spp.
(Arnold et al., 2010; Denning and Hope, 2010; Nett and Andes,
2016). Posaconazole exhibits the widest antifungal spectrum of
the azoles, being active against both yeasts and molds, including
several Mucorales species (Arnold et al., 2010; Denning and
Hope, 2010; Nett and Andes, 2016). Isavuconazole is the newest
triazole introduced in the market in 2015 and recently approved
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for the treatment of invasive aspergillosis and mucormycosis in
the USA and Europe (McCormack, 2015).

Although azole antifungals are generally well-tolerated (Odds
et al., 2003; Carrillo-Muñoz et al., 2006), they are substrates
and inhibitors of several cytochrome P-450 enzymes, what is
the mainly cause of their adverse effects, specially hepatotoxicity
(Carrillo-Muñoz et al., 2006). For this reason, azoles can also
impair metabolism of coadministered drugs, what leads to
decreased plasma concentration and unexpected toxicity (Groll
et al., 1998; Dismukes, 2000; Shapiro et al., 2011; Nett and Andes,
2016; Prasad et al., 2016). Besides, due to teratogenic effects,
azoles are contraindicated during pregnancy (Arnold et al., 2010;
Nett and Andes, 2016). Lastly, the emergence of resistance among
fungal isolates is another limitation and one of the motivations
for the improvement of this class of antifungals (Dismukes, 2000;
Shapiro et al., 2011; Prasad et al., 2016).

Echinocandins are the newest category of antifungals agents,
consisting in fungi derived semisynthetic lipopeptides composed
of a cyclic hexapeptide core and a variable lipid side chain
responsible for their antifungal activity (Groll et al., 2003;
Odds et al., 2003). Although they were discovered in the
1970s, only 30 years later their use was approved by the
US Food and Drug Administration. Echinocandins inhibits
the synthesis of 1,3-β-glucan, a structural fungal cell wall
polysaccharide that is responsible for cell wall’s shape and rigidity,
osmotic integrity and is important in cell division and cell
growth (Georgopapadakou, 2001; Groll et al., 2003; Odds et al.,
2003). Echinocandins includes caspofungin, anidulafungin and
micafungin, all of them only available for i.v. administration
(Groll et al., 2003; Odds et al., 2003). Their effect is species-
dependent, acting as fungicidal against Candida spp. and
fungistatic against Aspergillus spp. (Nett and Andes, 2016),
with variable activity against dematiaceous and endemic mold
(Seyedmousavi et al., 2017). However, echinocandins have
no activity against Scedosporium spp., Fusarium spp., and C.
neoformans (Groll et al., 2003; Odds et al., 2003; Arnold et al.,
2010; Nett and Andes, 2016). Since echinocandins target β-
glucan, which is not present in the mammalian cell, they present
minimal side effects in humans (Groll et al., 2003; Sanglard et al.,
2009; Arnold et al., 2010; Shapiro et al., 2011; Prasad et al.,
2016), which may include gastrointestinal upsets headache and
increased liver aminotransferases. Few drug-drug interactions
were reported since echinocandins are not metabolized through
cytochrome P-450 enzymes (Arnold et al., 2010; Nett and Andes,
2016).

As stated above, although antifungal arsenal currently
available for systemic mycoses is effective against the majority of
fungal pathogens, they present limitations such as toxicity, drug-
drug interactions, and emergence of clinical resistance. In order
to overcome these problems, strategies like combination therapy
(Mukherjee et al., 2005) and even repurposing of established
medications (Butts and Krysan, 2012) are being exploited. The
search for new compounds and new targets, together with the
improvement of existing formulations are extremely needed.
Nanostructuration of conventional antifungal agents may be an
interesting alternative to achieve a better antifungal efficacy and
safety (Figure 1).

FIGURE 1 | Benefits of nanobiotechnology approaches for delivery of

antifungal drugs.

NANOBIOTECHNOLOGICAL
APPROACHES FOR ANTIFUNGAL
DELIVERY

Drug delivery systems containing nanoparticles have been
object of intense investigation for the past decades, becoming
an efficient strategy to increase drug bioavailability, reduce
toxicity and enhance antifungal potency (Vyas and Gupta,
2006; Amaral and Felipe, 2013; de Sá et al., 2015; Stiufiuc
et al., 2015). Among the advantages of this approach is the
possibility to build formulations for a smart delivery, for example,
targeting specific tissues and organs, such as the lungs, which
are frequently the initial infection site during systemic fungal
diseases (Amaral et al., 2009; Malathi and Balasubramanian,
2011; Moritz and Geszke-Moritz, 2015). In some cases, during
intracellular infections, nanoparticles can penetrate the cells,
leading the drug to act directly against the pathogen (Borborema
et al., 2011; Dube et al., 2014). On the other hand, when coated
with substances such as polyethylene glycol (PEG), they can
evade recognition by the phagocytic system, preventing the
attachment of opsonines, and promoting a longer circulation
time (Stiufiuc et al., 2015). Studies have shown that nanoparticles
also have desirable characteristics to be used as adjuvants in
vaccines (Van Slooten et al., 2001; Agger et al., 2008; Bhowmick
et al., 2008; Ribeiro et al., 2013). Currently, many types of
nanostructures are under investigation for drug delivery of
antifungal drugs, such as polymeric nanoparticles, solid lipid
nanoparticles, liposomes, and magnetic nanoparticles (Figure 2).

Polymeric nanoparticles are prepared from various natural or
synthetic polymers, both hydrophilic and hydrophobic (Pagels
and Prud’homme, 2015). These polymers may be of natural
origin, such as chitosan and alginate, or synthetics, such as
poly (lactic acid, PLA) and poly (glycolic acid, PGA) or a
combination of both forming the poly (lactide-co-glycolide acid,
PLGA) (Bolhassani et al., 2014). When applied in vivo, polymeric
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FIGURE 2 | Schematic representation of different types of

nanoparticles used for the delivery of antifungal agents.

nanoparticles suffer biodegradation to be metabolized and
excreted by the organism, what confers better biocompatibility
(Amaral and Felipe, 2013). As the polymer is degraded, the drug
incorporated within is released to the medium and can efficiently
reach the site of action.

Liposomes are particles made by natural or synthetic
phospholipids. Because of the nature of these molecules, when
in contact with an aqueous medium, they form spherical
structures containing an aqueous nucleus surrounded by a lipid
bilayer (Bozzuto and Molinari, 2015), which can be suitable
for delivery of both hydrophilic and hydrophobic substances
(Stiufiuc et al., 2015). Because of their sensitivity to pH variations,
liposomes permeability can be adjusted, releasing the drug
into specific sites, such as macrophage compartments with
altered pH during an infection (Wang et al., 2014; Jiang et al.,
2015). A successful example of this class of nanoparticles is
the commercially available liposomal Amphotericin B, brand
name Ambisome R© (Reis, 2015). In addition, solid lipid
nanoparticles have been intensively investigated, specially for
topical drug delivery (Kumar and Sinha, 2016; Trombino
et al., 2016). They are spherical nanoparticles constituted of
physiological and biodegradable lipids, such as stearic acid. Due
to chemical composition, solid lipid nanoparticles allow the
nanostructuration of insoluble drugs, and have low toxicity.

Magnetic nanoparticles have received special attention for
biological applications, mainly because of their ability to be
manipulated by a magnetic field, so that it can be directed
and delivered to, theoretically, a specific site of the organism
(Hussein et al., 2014). This type of nanoparticles can be
prepared by different chemical and physical methodologies using
ferrous compounds such as cobalt, manganese and zinc ferrites,
magnetite, and maghemite. In the medical field, these magnetic
nanoparticles are mainly used for clinical diagnosis through
magnetic resonance imaging (MRI). This type of nanoparticle
can also be associated with other nanostructures, such as
polymeric nanoparticles or liposomes, to combine characteristics

for both MRI and drug delivery (Jain et al., 2008). The
superparamagnetic iron oxide nanoparticles, a specific kind of
magnetic nanoparticle, respond more efficiently to an external
magnetic field (Kumar et al., 2010) presenting a great potential
to be used as drug carriers.

There are over a 100 publications proposing new
nanoformulations for antifungal drugs (Table 2). In this
review, we will summarize the major findings for nanoparticles
that had proven in vivo and/ or in vitro antifungal activity.

NANOPREPARATIONS FOR POLYENES

Among antifungal drugs, the investigation surrounding
nanostructured delivery systems for polyenes are the most
reported, the majority of them concerning Amphotericin B
delivery. This is not surprising, since Amphotericin B is still
the gold standard for antifungal therapy of severe systemic
mycosis and the drug with the most potent antifungal capacity
(Arnold et al., 2010). Amphotericin B nanoparticles have
been investigated since 1980s, providing the opportunity to
circumvent infusion-related side effects and nephrotoxicity,
which are the main limiting factors concerning therapy with this
drug. Further, because of the Amphotericin B poor solubility and
oral bioavailability (Kang et al., 2010), such formulations are also
intended to improve these characteristics, making it suitable for
oral delivery.

Currently, lipid formulations for Amphotericin B are
commercially available (Walsh et al., 1999; Kleinberg, 2006).
The most successful is Ambisome R©, which is considered a truly
liposomal formulation, where Amphotericin B is embedded in
the unilamellar liposome bilayer of about 45–80 nm (Adler-
Moore, 1994). One of the advantages brought by this formulation
is that it causes less toxicity and remains at high peaks in
the circulation, presenting in a high biodistribution. A study
using the murine model of pulmonary aspergillosis showed
that Ambisome R© was able to increase the survival of animals
without toxicity, allowing the administration of a 10-fold higher
dose than in animals receiving the conventional formulation in
sodium deoxycholate (Takemoto, 2006). Liposomal formulations
for topical applications have also been explored (Kang et al.,
2010; Perez et al., 2016). Some of these preparations aim to
increase the permanency of the formulation at the site of action,
releasing the drug for longer time. Unfortunately, together with
the higher biosafety, it was reported that antifungal effectiveness
of Amphotericin B lipid formulations may be reduced in
comparison to that of free drug (Andes et al., 2006; Burgess
et al., 2013). In addition to that, the high costs are among the
limitations to their widespread use (Dismukes, 2000; Falci et al.,
2011; Italia et al., 2011; Van de Ven et al., 2012), encouraging the
search for new options for Amphotericin B delivery.

In order to diminish costs of manufacturing, Nanosomal
Amphotericin B was developed using phosphatidylcholine and
sodium cholesteryl sulfate as excipients avoiding the use of
organic solvents or detergents in the preparation (Sheikh et al.,
2010). Nanosomal Amphotericin B induced less lysis of red
blood cells than Amphotericin B sodium deoxycholate and
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TABLE 2 | Examples of studies reporting antifungal nanoparticles with in vivo and/or in vitro activity.

Antifungal

agent

Type Of

nanoparticle

Administration In vivo In vitro References

Amphotericin B Lipid

nanoparticles

Inhalation N/A Candida albicans, Cryptococcus

neoformans

Gangadhar et al., 2014

Intravenous Aspergillus fumigatus Candida albicans, Aspergillus

fumigatus

Jung et al., 2009

Intravenous Aspergillus fumigatus N/A Sheikh et al., 2010

Intravenous Candida albicans N/A Burgess et al., 2013

Liposomes N/A N/A Candida albicans, Candida

tropicalis

Albasarah et al., 2010

Magnetic

nanoparticles

Nasal instilation Paracoccidioides brasiliensis N/A Saldanha et al., 2016

Nanoemulsion Topical N/A Aspergillus fumigatus, Aspergilus

niger, Candida albicans

Hussain et al., 2016

Nanosuspension Ocular N/A Fusarium solani Das and Suresh, 2011

Polymeric

nanoparticles

Inhalation Aspergillus fumigatus N/A Shirkhani et al., 2015

Intraperitoneal Aspergillus fumigatus N/A Van de Ven et al., 2012

Intraperitoneal Paracoccidioides brasiliensis N/A Amaral et al., 2009; Souza

et al., 2015

Intravenous Candida albicans N/A Tang et al., 2014, 2015a

Intravenous Candida glabrata N/A Tang et al., 2015b

Intravenous Cryptococcus neoformans N/A Xu et al., 2011

Intravenous N/A Candida albicans Han et al., 2007

Intravenous Candida albicans Zia et al., 2015

N/A Candida glabrata N/A Tang et al., 2015c

N/A N/A Candida albicans Tiyaboonchai et al., 2001;

Tang et al., 2014

N/A N/A Candida albicans, Candida

tropicalis

Casa et al., 2015

Ocular N/A Candida albicans Zhou et al., 2013

Ocular N/A Candida albicans, Aspergillus

fumigatus

Zhou et al., 2013

Oral Candida albicans, Aspergillus

fumigatus

N/A Serrano et al., 2015

Polymeric

nanoparticles

Oral/intravenous Aspergillus fumigatus N/A Italia et al., 2011

Topical Candida albicans, Candida

glabrata, Candida parapsilosis

N/A Sanchez et al., 2014

Solid Lipid

Nanoparticles

N/A N/A Candida albicans Vieira and

Carmona-Ribeiro, 2008

Oral N/A Candida albicans Chaudhari et al., 2016

Amphotericin B

and Nystatin

Magnetic

nanoparticles

N/A N/A Candida albicans Niemirowicz et al., 2016

Fluconazole Polymeric

nanoparticles

Ocular Candida albicans N/A Rençber et al., 2016

Solid Lipid

Nanoparticles

N/A N/A Candida albicans, Candida

glabrata, Candida parapsilosis

Moazeni et al., 2016

Topical Candida albicans N/A Gupta and Vyas, 2012

Itraconazole Lipid

nanoparticles

Inhalation Aspergillus fumigatus N/A Pardeike et al., 2016

Polymeric

nanoparticles

N/A Candida albicans N/A Qiu et al., 2015

(Continued)
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TABLE 2 | Continued

Antifungal

agent

Type Of

nanoparticle

Administration In vivo In vitro Reference

N/A N/A Aspergillus flavus Patel et al., 2011

N/A N/A Candida albicans, Aspergillus

fumigatus

Essa et al., 2012

N/A N/A Paracoccidioides brasiliensis Cunha-Azevedo et al.,

2011

N/A N/A Aspergillus flavus Patel et al., 2010

Solid Lipid

Nanoparticles

Ocular N/A Aspergillus flavus Mohanty et al., 2015

Miconazole Liposomes Topical Candida albicans N/A Pandit et al., 2014

Solid Lipid

Nanoparticles

Topical Candida albicans N/A Jain et al., 2010

Nystatin Polymeric

nanoparticles

N/A N/A Candida albicans Mohammadi et al., 2017

Voriconazole Polymeric

nanoparticles

Oral Candida albicans N/A Peng et al., 2008

was comparable to Ambisome R©. No symptoms of toxicity,
mortality or significant body weight reduction were observed
in rabbits daily treated with this formulation for 28 days,
with no hematological and gross pathological abnormalities.
Besides, inmice disseminatedA. fumigatus infection, intravenous
administration of Nanosomal Amphotericin B resulted in 90%
survival while only 30% survival with Ambisome R©.

Anionic and PEG lipid nanoparticles were developed by
Jung et al. (2009) for intravenous delivery of Amphotericin B
(Jung et al., 2009). This formulation presented lower cytotoxicity
against human kidney cells than Fungizone R© and Ambisome R©,
and much lower hematotoxicity than that of Fungizone R©.
Antifungal activity in vitro of Amphotericin B lipid nanoparticles
against C. albicans and A. fumigatus was better than the
commercialized formulations and in vivo administration for the
treatment of murine systemic aspergilloma was more effective
than that of Ambisome R©.

Burgess et al. (2013) developed a formulation consisting
of a protein-phospholipid bioparticle (NanoDisk) containing a
“super aggregate” form of amphotericin B (ND–AMB) (Burgess
et al., 2013). ND–AMB presented lower C. albicans and
A. fumigatus minimum inhibitory concentrations than those
observed for Ambisome R©. It also induced no kidney or liver
toxicity in mice. In addition, in C. albicans infected immune-
competent mice, ND-AMB treatment was as effective as sodium
deoxycholate amphotericin B or Ambisome R©, whereas in a
leukopenic model of candidiasis, the 50% effective dose of ND-
AMB was around threefold lower than Ambisome R©.

In addition to the lipid formulations, polymeric systems
for the delivery of Amphotericin B have been developed by
several research groups (Table 2). The results proved this type
of preparation to be satisfactory for the efficient delivery of this
drug by several routes, such as intravenously (Amaral et al., 2009;
Tang et al., 2014; Souza et al., 2015) and orally (Italia et al.,

2009, 2011, 2012). The biological response may vary according
to the type of polymer used or even by combining different
polymer types. An example is the formulation developed by Tang
et al. (2014), in which AMB was encapsulated within PLGA in
association with ε-caprolactone. In this combination, the authors
reported an AMB encapsulation efficiency of 84% and the same
fungicidal effect on C. albicans as for the free drug (Tang et al.,
2014). The proposed formulation was less toxic and caused lower
mortality than free AMB, proving, as noted before, the potential
of polymeric nanoparticles to protect against cytotoxicity but
preserving the same fungicidal efficacy (Amaral et al., 2009).

Amaral et al. (2009) developed a nanostructured formulation
for Amphotericin B within PLGA functionalized with
dimercaptosuccinic acid (DMSA). This acid presents tropism
to the lungs, being suitable to be incorporation in formulations
for drug delivery to this organ (Amaral et al., 2009, 2010). In
this study, authors noted that intraperitoneal administration of
the formulation was able to cause the same therapeutic effect in
murine model of paracoccidioidomycosis compared to sodium
deoxycholate Amphotericin B. However, the great advantage of
this polymeric formulation was that it was given to the animals
every 3 days, considering the slow release of Amphotericin B
from nanoparticles, in contrast to the conventional formulation,
which was administrated daily. Complementary studies
conducted by the same research group showed that amphotericin
B PLGA nanoparticles were also comparable to Ambisome R©

in the therapy of murine paracoccidioidomycosis (Souza et al.,
2015). In addition, both studies reported no undesirable side
effects in animals at the dose used. High concentrations of
Amphotericin B were found in lungs, liver and spleen of
animals treated with this polymeric formulation (Souza et al.,
2015).

Van de Ven et al. (2012) showed that both Amphotericin
B PLGA nanoparticles and nanoemulsion had in vitro
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antifungal capacity against C. albicans, A. fumigatus, and
Trichophyton rubrum and were less hemolytic than sodium
deoxycholate Amphotericin B (Van de Ven et al., 2012). In
addition, both formulations were effective against murine
disseminated aspergillosis after intraperitoneal administration,
with similar or even better antifungal capacity than Fungizone R©

and Ambisome R© at equivalent doses. Italia et al. (2011)
proposed Amphotericin B PLGA nanoparticles for oral
delivery, which significantly reduced fungal burden during
invasive pulmonary and disseminated aspergillosis (Italia et al.,
2011).

In a very interesting approach, Tang et al. (2015a) developed
specialized pH-responsive Amphotericin B PLGA nanoparticles
conjugated with poly(L-histidine) and PEG that had high affinity
for fungal cell wall elements under acidic conditions and were
further modified for increased targeting efficacy with anti-C.
albicans antibody (Tang et al., 2015a). The formulation had
reduced hemolytic activity and cytotoxicity on human renal
tubular epithelial cells, and was effective against C. albicans both
in vivo and in vitro after intravenous administration. Nystatin
loaded PLGA nanoparticles functionalized with Glucosamine
were formulated by Mohammadi et al. (2017) to enhance the
adhesion of nanoparticles to C. albicans cell walls (Mohammadi
et al., 2017). The nanoparticles exhibited higher antifungal
activity than free Nystatin, suggesting an increase in Nystatin
levels in fungal cell membrane by entrapment in the polymeric
matrix.

Chitosan is a natural polysaccharide with cationic nature
and mucoadhesive proprieties that has been frequently used to
build biodegradable polymeric nanoparticles for drug delivery.
Amphotericin B chitosan nanoparticles were developed by
Serrano et al. (2015) intending to avoid drug gastrointestinal
degradation, improve stability and enhance bioavailability in
target organs such as lung, liver, and spleen, while diminishing
kidney exposure (Serrano et al., 2015). They have demonstrated
that oral administration of these nanoparticles was effective
in the treatment of murine models of visceral leishmaniasis,
candidiasis and aspergillosis, having comparable efficacy to
parenteral Ambisome R©. Chitosan nanoparticles were used by
Sanchez et al. (2014) for topical delivery of Amphotericin
B to burn wounds infected with C. albicans, with enhanced
tissue healing and even better antifungal activity than sodium
deoxycholate formulation (Sanchez et al., 2014). Amphotericin
B loaded nanoparticles made of lecithin and chitosan were
proposed by Chhonker et al. (2015) for prolonged ocular
application such as during fungal keratitis (Chhonker et al.,
2015). The formulation presented in vitro antifungal efficacy
against C. albicans and A. fumigatus, pronounced mucoadhesive
properties and improved bioavailablity as compared with
Fungizone R©.

Approaches to increase Amphotericin B delivery into
central nervous system (CNS) are also under investigation.
Amphotericin B polybutylcyanoacrylate nanoparticles modified
with polysorbate 80 were used as therapy for cryptococcal
meningitis murine model (Xu et al., 2011). Nanoparticles were
detected in the brain 30 min after systemic administration
into mice with a higher concentration than Amphotericin B

liposomes. Survival rate of mice treated with nanoparticles
was significantly higher than that of sodium deoxycholate
and liposomal amphotericin B treated groups, with lower
fungal burden in brain tissue. Another formulation based
in transferrin transcytosis at the blood-brain barrier was
proposed by Tang et al. (2015c). In this study, anti-transferrin
receptor antibody-modified Amphotericin B-loaded PLA-
PEG nanoparticles were developed and presented significant
reduction of CNS fungal burden and increased mouse survival
time when administered intravenously for the treatment of
meningitis induced by C. glabrata inoculation (Tang et al.,
2015c).

Shirkhani et al. (2015) developed Amphotericin B
polymethacrylic acid nanoparticles for the prophylaxis of
A. fumigatus infection in a transplant immunosuppression
murine model with invasive aspergillosis. The formulation was
given by nebulization and prevented fungal growth and lung
inflammation (Shirkhani et al., 2015).

Amphotericin B magnetic nanoparticles were reported by
Saldanha et al. (2016). In this study, authors developed
Amphotericin B loaded lauric acid pre-coated magnetite
nanoparticles and showed nanocomplex antifungal activity both
in vivo and in vitro against P. brasiliensis infection (Saldanha
et al., 2016). The nanocomplex was more cytotoxic to fungal cells
than to human urinary cells and murine peritoneal macrophages
in vitro, while no biochemical and histopathological alterations
were observed during intranasal therapy against murine
paracoccidioidomycosis. The formulation exhibited similar
antifungal activity to that of sodium deoxycholate Amphotericin
B administrated intraperitonealy, with the advantage to allow
a three-fold reduction in the number of applications and
to be suitable for nasal delivery. Another Amphotericin B
magnetic liposomal system were proposed by Zhao et al.
(2014) aiming to enhance drug selectivity to CNS during
fungal infections. The liposomal system was administered via
carotid artery route in SD rats and could improve drug
concentration and enhance magnetic targeting to brain tissue in
the presence of a magnetic field. Amphotericin B and nystatin
magnetic nanoparticles were also designed by Niemirowicz
et al. (2016). Both nanosystems displayed stronger fungicidal
activity than unbound drugs against Candida spp. (Niemirowicz
et al., 2016). Nanosystems were more potent than free agents
when tested against Candida strains and were able to prevent
Candida biofilm formation more effectively with lower hemolytic
capacity.

Some fungal pathogens have the ability to reside inside host
cells, such as macrophages. Therefore, nanoparticles uptake by
host cells is very desirable as a strategy to enhance antifungal
abilities against intracellular fungi. Zia et al. (2015) showed
that killing of intracellular C. albicans after treatment with
amphotericin B polyglutamic acid nanoparticles was higher than
with Ambisome R© (Zia et al., 2015). Amphotericin B is also used
for the treatment of infections caused by Leishmania spp., which
is an intracellular parasite, so that intense investigation has been
done in order to enhance drug antiparasitic effects throughout
nanostruturation (Asthana et al., 2015; Jain et al., 2015; Bose et al.,
2016).
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NANOPREPARATIONS FOR AZOLES

The increase of oral bioavailability of azoles is one of the
advantages conferred by the use of nanotechnology for this
class of drug. It is interesting to note that although preparing a
formulation at the nanoscale may suggest similar results when
using the same type of nanoparticle and material, this is not
always true. For example, a study encapsulating econazole and
clotrimazole in both PLGA and alginate (Pandey et al., 2005)
demonstrated that the latter seems to be better at improving
pharmacokinetic parameters. Though, both proved to be effective
for the oral route.

Considering the severity of some fungal infections affecting
the lungs, nanostructured delivery systems for drugs capable
of reaching this organ are sought. Some studies showed the
tropism for the lungs by PLGA nanoparticles. The PLGA-
encapsulated voriconazole showed a higher accumulation in
the lungs when compared with free voriconazole (Das et al.,
2015). This characteristic was also observed by other researchers
when they also encapsulated voriconazole in PLGA for nasal
administration. The study demonstrated the system allows
the early release of the drug in the lungs in the first 2
h, followed by a sustained release during 15 days (Sinha
et al., 2013). Itraconazole PLGA nanoparticles conjugated with
dimercaptosuccinic acid were developed for pulmonary delivery
and induced antifungal inhibition against P. brasiliensis with
lower in vitro cytotoxicity than free drug (Cunha-Azevedo et al.,
2011).

Voriconazole loaded PLGA nanoparticles were developed by
Peng et al. (2008) in order to improve drug bioavailability
and stability for oral delivery (Peng et al., 2008). Nanoparticles
had a more persistent and potent antifungal effect than free
voriconazole both in vitro and in vivo in a systemic candidiasis
murine model.

Other triazole loaded polymeric nanostructured formulations
have been investigated and had in vitro antifungal activities
against A. flavus (Patel et al., 2010, 2011), A. fumigatus
(Essa et al., 2012), and C. albicans (Qiu et al., 2015). Some
polymers have mucoadhesive properties, such as chitosan, and
can be used to prepare drug delivery systems for mucosa
from the eyes, mouth and vagina. Rençber et al. (2016)
developed a buccal mucoadhesive nanoparticle containing
fluconazole and EUDRAGIT R©, a nonbiodegradable and cationic
copolymer, for the local treatment of oral candidiasis. The
formulation presented in vitro antifungal activity against C.
albicans for an extended period, and no cytotoxic effect in
chinese hamster ovary cells was observed. Rabbits with oral
candidiasis were successfully treated with local administration
of the nanoparticles once a day (Rençber et al., 2016). More
sophisticated drug delivery systems formed by different types
of nanoparticles can be prepared (Jøraholmen et al., 2014). For
example, in one polymer the drug is encapsulated and this
polymer is coated with another to present the proper in vivo
application.

Ultraflexible liposomes carrying miconazole also showed to
be more efficient and able to penetrate the cell barrier carrying
the drug. As they are able to adapt their shape according to the
characteristics of the near microenvironment, they are able to
penetrate and release the drug more efficiently (Pandit et al.,
2014). It is also possible to promote the release of miconazole
only to the skin, without penetrating it or reaching the epidermis
(Elmoslemany et al., 2012), which is important for reducing
toxicity.

Solid lipid nanoparticles (SLN) have been intensively
investigated for topical delivery of azole antifungals. Jain et al.
(2010) developed a formulation of miconazole nitrate loaded
SLN-bearing hydrogel for skin delivery (Jain et al., 2010). Studies
indicated that miconazole SLN-bearing hydrogel resulted in
considerably less skin irritation as compared to miconazole
hydrogel and suspension after 24 h of application. In addition,
micozanole SLN treatment of cutaneous candidiasis in albino
rats presented greater efficiency and fast recovery. Mohanty
et al. (2015) investigated SLNs for topical ocular delivery of
itraconazole (Mohanty et al., 2015). Permeation of itraconazole
in freshly excised goat corneas was observed, and SLN inhibited
Aspergillus flavus in vitro growth, indicating antimicrobial
efficacy of formulations.

Moazeni et al. (2016) tested fluconazole-loaded SLN efficacy
against fluconazole-resistant Candida spp. strains. Fluconazole-
resistant C. albicans, C. parapsilosis, and C. glabrata strains
behaved as susceptible strains after treatment with fluconazole
SLN, emphasizing the promising benefits of nanostructuration
for the delivery of antifungal agents.

CONCLUDING REMARKS

The high incidence of fungal infections is a problem that can
be aggravated mainly by the increase of the elderly population
and also by immunocompromised patients. In this way, it is
important that new and more effective therapies are developed
for the treatment of these mycoses. One strategy that has received
importance for this purpose is the development of drugs applying
the principles of nanotechnology. It is possible to use the same
conventional drugs, but aiming to increase its therapeutic efficacy
and also the reduction of its side effects. Thus, unlike the
basic development of a novel antifungal molecule, which is
also of relevant importance, conventional formulations may be
improved in effectiveness by the resources of Nanobiotechnology.
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