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ABSTRACT
Background.Microbiomes are extremely important for their host organisms, providing
many vital functions and extending their hosts’ phenotypes. Natural studies of host-
associated microbiomes can be difficult to interpret due to the high complexity of
microbial communities, which hinders our ability to track and identify individual
members along with the many factors that structure or perturb those communities.
For this reason, researchers have turned to synthetic or constructed communities in
which the identities of all members are known. However, due to the lack of tracking
methods and the difficulty of creating a more diverse and identifiable community that
can be distinguished through next-generation sequencing, most such in vivo studies
have used only a few strains.
Results. To address this issue, we developed DISCo-microbe, a program for the design
of an identifiable synthetic community of microbes for use in in vivo experimentation.
The program is composed of two modules; (1) create, which allows the user to
generate a highly diverse community list from an input DNA sequence alignment using
a custom nucleotide distance algorithm, and (2) subsample, which subsamples the
community list to either represent a number of grouping variables, including taxonomic
proportions, or to reach a user-specified maximum number of community members.
As an example, we demonstrate the generation of a synthetic microbial community
that can be distinguished through amplicon sequencing. The synthetic microbial
community in this example consisted of 2,122 members from a starting DNA sequence
alignment of 10,000 16S rRNA sequences from the Ribosomal Database Project. We
generated simulated Illumina sequencing data from the constructed community and
demonstrate that DISCo-microbe is capable of designing diverse communities with
members distinguishable by amplicon sequencing. Using the simulated data we were
able to recover sequences from between 97–100% of community members using two
different post-processing workflows. Furthermore, 97–99% of sequences were assigned
to a communitymember with zero sequences beingmisidentified.We then subsampled
the community list using taxonomic proportions to mimic a natural plant host–
associated microbiome, ultimately yielding a diverse community of 784 members.
Conclusions. DISCo-microbe can create a highly diverse community list of microbes
that can be distinguished through 16S rRNA gene sequencing, and has the ability
to subsample (i.e., design) the community for the desired number of members and
taxonomic proportions. Although developed for bacteria, the program allows for
any alignment input from any taxonomic group, making it broadly applicable. The
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software and data are freely available from GitHub (https://github.com/dlcarper/
DISCo-microbe) and Python Package Index (PYPI).

Subjects Bioinformatics, Microbiology
Keywords Constructed community, Microbiome, 16S rRNA, Synthetic community, Taxonomic
profiling, In vivo experimentation

BACKGROUND
Multicellular eukaryotes live in association with complex communities of microorganisms
(Zilber-Rosenberg & Rosenberg, 2008; Bordenstein & Theis, 2015; Rosenberg & Zilber-
Rosenberg, 2016) that play important roles in host health and function (Huttenhower
et al., 2012; Schlaeppi & Bulgarelli, 2015; Engel et al., 2016). Given the complexity of these
systems and our inability to track and identify all members, it is often difficult to disentangle
the factors influencing the structure and interactions among host-associated microbiomes.
The development of synthetic model communities is a key strategy for addressing this issue
(Busby et al., 2017). Next-generation sequencing of marker genes has demonstrated that
both abiotic and biotic factors structure host-associated microbiomes (Spor, Koren & Ley,
2011; Huttenhower et al., 2012; Ofek-Lalzar et al., 2014; Adair & Douglas, 2017); however,
the marker genes commonly used in these studies provide low taxonomic resolution,
making it difficult to identify all microbes present in the community (Caporaso et al.,
2011). Metagenomics studies provide insight into potential microbial function, but are not
feasible for microbiomes within host tissues due to the presence of excess host DNA (Jiao
et al., 2006; Feehery et al., 2013; Thoendel et al., 2016; Marotz et al., 2018). Accordingly,
recent studies have utilized synthetic or simplified microbiome approaches to examine the
drivers of host-associated microbiome assembly, interactions, and function (Bodenhausen
et al., 2014; Lebeis et al., 2015; Timm et al., 2016; Niu et al., 2017). This approach involves
adding previously characterized microbial strains to an axenic host organism, allowing
for the investigation of colonization, shifts in community structure (Bodenhausen et al.,
2014), microbe–microbe interactions, and host–microbe interactions. When such data are
paired with genomic information, it becomes feasible to infer microbial strain metabolic
potential. Despite the increased use and prioritization of synthetic systems by the research
community (Busby et al., 2017), we currently lack adequate methods for systematically
designing a microbial community that is identifiable by common sequencing techniques.

Until now, synthetic communities have been constructed from a functional perspective
or with limited strains. For example, some researchers have focused on functional assets
(characteristics) of microbes to create a specific metabolic output, often by combining
a few bacterial (Shong, Jimenez Diaz & Collins, 2012; Mee et al., 2014; Shi et al., 2017) or
fungal strains (Minty et al., 2013; Hu et al., 2017). Although useful for bio-engineering
purposes, this approach is not as applicable to studies of microbiomes, in which diversity
is much greater. Host-associated synthetic communities have also been restricted to
a few strains, with confirmation through re-isolation, limiting researchers’ ability to
extrapolate tomore diverse communities (Bodenhausen et al., 2014;Niu et al., 2017;Herrera
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Paredes et al., 2018). Recent studies have linked host-associated microbiome function to
microbial diversity (Turnbaugh et al., 2008; Laforest-Lapointe et al., 2017), requiring the
incorporation of phylogenetic distance into synthetic community design. The design of
phylogenetically diverse communities is associated with at least two major challenges:
(1) creating a diverse community that can easily be distinguished through common
high-throughput sequencing technologies, and (2) ensuring that community members
possess the desired attributes (e.g., taxonomic composition and metabolic potential).
Without advanced computational abilities, overcoming these challenges is formidable and
time-consuming. Furthermore, manual bioinformatic workflows are difficult to document
and error-prone, costing additional time and decreasing reproducibility.

In this paper, we describe an easy-to-use command-line program, Design of an
Identifiable Synthetic Community of Microbes (DISCo-microbe), for creation of diverse
communities of organisms that can be distinguished through next-generation sequencing
technology for use in in vivo experiments. DISCo-microbe consists of twomodules, create
and subsample. The createmodule constructs a highly diverse community at a specified
sequence difference from an input of aligned DNA/RNA sequences, e.g., 16S sequence.
The module can either design a de novo community or design a community that includes
targeted organisms. create solves problem (1) by easily generating a diverse community
of members through an easily documentable method, ensuring reproducibility. The
subsample module provides options for dividing the community into subsets, according
to either the number of members or the proportions of a grouping variable, both of which
can be specified by the user. subsample module solves problem (2) by allowing the user
to subsample an already distinguishable community of members based on attributes of
interest. Although this software was designed for construction of microbial communities,
any DNA/RNA alignment can be used as input; consequently, users are not restricted
to any particular organismal group or marker gene. DISCo-microbe is implemented in
Python and is available through GitHub and PYPI.

MATERIALS AND METHODS
DISCo-microbe is a command-line program written in Python and requires Biopython
(Cock et al., 2009), which is automatically installed along with the program. We chose to
implement DISCo-microbe in Python for easy portability to almost all systems. DISCo-
microbe consists of two modules, create and subsample. We have written extensive
documentation for DISCo-microbe following the principles outlined in (Seemann, 2013;
Karimzadeh & Hoffman, 2018) including a quickstart tutorial that walks users through all
commands, illustrating the ease of use and reproducibility of DISCo-microbe.

Workflow
Create module
The createmodule has two required arguments, an alignment of DNA or RNA sequences
in FASTA format (–i-alignment) and a user-specified minimum sequence distance
between community members (–p-editdistance). The module uses a greedy algorithm
to construct a community maximizing the number of members at the user-specified

Carper et al. (2020), PeerJ, DOI 10.7717/peerj.8534 3/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.8534


AAACTT TGC
|  |  |  |  |  |  | |  |  |

AAACTT TGC

Python
hamming
distance

Custom
hamming 
distance

Distance value: 1

Distance value: 0Ambiguity Codes:
Y = C or T

Figure 1 Demonstration of custom nucleotide Hamming distance.Demonstration of Python Ham-
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ties.
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sequence distance. The optional arguments for the create module include: (i) a community
starter list (–p-include-strains), containing members the user would like to be included
in the community; (ii) a seed number (–p-seed), for reproducibility; (iii) a metadata file
(–i-metadata) for combination with the final community; iv) an option to output the
FASTA file (–o-fasta) of the final community and; (v) an option to import a sequence
distance database (–i-distance-database; described below).

The create module operates in two distinct phases. The first phase creates a database
of all pairwise sequence distances from the input alignment, calculated using a modified
Hamming distance. The Hamming distance is a coding theory metric that measures the
number of positions at which two sequences of equal length differ. Because the Hamming
distance does not consider the nature of the differences, it can be problematic to determine
the distance betweenmolecular sequences, inwhichnucleotide ambiguities can be common;
such ambiguities artificially inflate the number of differences between sequences, possibly
causing the final community to be less distinguishable than expected (Fig. 1). To deal
with IUPAC nucleotide ambiguities, we created a custom Hamming distance, termed the
nucleotide Hamming distance, which accommodates nucleotide ambiguities and adjusts
the distance value accordingly (Fig. 1). Furthermore, this metric can mitigate sequence
errors introduced by PCR and sequencing technologies (Pfeiffer et al., 2018; Filges et al.,
2019), allowing the identification of sequences containing up to d−1 errors, where d is the
user-specified minimum sequence distance. Lastly, we included an export of the distance
database as a flat file for easy manipulation with command line utilities. This option also
allows the user to load the database of previously calculated distances if a modification to
the run parameters is wanted. Furthermore, the distance database is updated in real-time
as distances are calculated, acting as a checkpoint to resume calculations with minimal lost
time in the event that DISCo-microbe quits unexpectedly.

The second phase of the create module runs a greedy algorithm to construct a
community. To initiate the community-building algorithm, the user can specify a starting
community, which will be validated to determine that all pairwise distances meet the
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minimum requirement indicated by –p-editdistance. If the starting community is not
valid at the indicated sequence distance, an error message with the conflicting sequence
identifiers will be displayed. If a starting community is not specified, the individual with
the fewest connections at the user-specified sequence distance (–p-editdistance) will
be used to initiate the community (Fig. 2). If there is a tie for the fewest connections, one
individual is selected at random. Once an initial community is established, the algorithm
will iteratively add new members to the community by creating a list of possible members
that meet a single requirement. The individual must meet the minimum sequence distance
to any of the existing members; for example, if the user has specified a distance of 2, the
module will check if the individual is at a distance of 0, 1 or 2 from any existing members. If
this requirement is met, the individual is added to the list of potential communitymembers.
Next, the individual in the list with the fewest connections at the specified sequence distance
(Fig. 2 inset) will be added to the community. Ties for the fewest connections are broken
by randomly selecting an individual. The module will continue the process as described
until there are no more individuals that meet the requirement for addition to the potential
community member list. Current hierarchical clustering algorithms do not guarantee all
sequences within a cluster are the specified distance from sequences within another cluster
(Westcott & Schloss, 2015), which is essential to DISCo-microbe, motivating us to develop
the currently implemented algorithm. Once the community list is complete, the program
will output a tab-delimited text file of community members. The community list can be
combined with metadata information (optional), such as taxonomic information, which
is recommended if the user will be using the ‘subsample by proportions’ option later. A
FASTA file of the community list can also be created if desired.

subsample module
The subsample module is designed to take the final output community from the create
module and provide a subsample of the community. The module has multiple subsampling
procedures. The first method is a random sampling (option: –p-num-taxa) of the
indicated number of members, nfinal . The second method (option: –p-proportion) is
for subsampling the specific proportions of a grouping variable. To illustrate the use of
this option, we will refer to taxonomic information as the grouping variable; however, the
user may provide any grouping variable for subsampling. For this option, the user will
input two files: the community file from the create module with taxonomic information
combined, and a file of the taxonomic groupings with desired proportions. DISCo-microbe
will then generate a subsampling of the original community that is optimized to reflect
the desired proportions. The optimization is accomplished through a greedy minimization
of the sum of differences,

∑
t∈TGf

current
t − f specifiedt , for the set TG of taxonomic groups

specified in file 2 (taxonomic proportions file). Here, f current =
〈
f current1 ,..., f currentn

〉
and

f specified =
〈
f specified1 ,..., f specifiedn

〉
are vectors of taxonomic group frequencies for the current

and desired community, respectively, with
∑

t∈TGf
current
t = 1 and

∑
t∈TGf

specified
t = 1.

The algorithm initializes f current as the vector f input of taxonomic group frequencies of the
community provided in file 1 (from createmodule)withmembers belonging to taxonomic
groups in the set X , where groups not specified in file 2 are removed (X ≡{x ∈X |x 6∈TG}),
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and f input renormalized such that
∑

t∈TGf
current
t = 1. Next, the algorithm will continuously

iterate the following three steps:
(1) Determine the taxonomic group with largest difference in taxonomic group

frequencies, tmax =maxt∈TG(
{
f currentt1 − f specifiedt1

}
,...,

{
f currenttn − f specifiedtn

}
).

(2) If the number of members in the taxonomic group identified in step 1 is less than
2 (ntmax < 2) break and output the current community; otherwise, randomly remove a
member from tmax ,resulting in f current

′

.
(3) If

∑
t∈TGf

current
′

t −f specifiedt <
∑

t∈TGf
current
t −f specifiedt , set f current = f current

′

t , otherwise
stop the module and output the current community.

The user can modify the behavior of the algorithm by specifying both the number of
members and the taxonomic proportions (–p-num-taxa and –p-proportion). Providing
both options will force the algorithm to continue until the total number of members in
the community, ntotal , is ≤ nfinal (user-specified final number of members). Further, when
both options are specified, step 2 of the greedy minimization is modified to not break
iteration when ntmax < 2, and instead removes a member from the taxonomic group with
the next-largest difference in frequencies, tnext , where ntnext ≥ 2. Additionally, if the force
number option (option: –p-taxa-num-enforce) is used along with –p-num-taxa and
–p-proportion, the algorithm will stop iteration when ntotal = nfinal regardless of whether
the sum of frequency differences could be further minimized.
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Test data set
The Ribosomal Database Project (Cole et al., 2014) file of 16S rRNA genes was downloaded
(release 11.5, May 2019), and uncultured strains were using fasgrep (Lawrence et al., 2015).
The alignment was trimmed to the V4 region, which is a commonly used region for
next-generation sequencing of bacterial communities (Thompson et al., 2017). The initial
file contained 239,244 sequences and was randomly subsampled to 10,000 sequences due
to the computational intensity of building the community. A reference-based alignment
against the SILVA database v. 132 (Pruesse et al., 2007) was created using the program SINA
(Pruesse, Peplies & Glöckner, 2012). Alignment sites containing only gaps were removed
using alncut (Lawrence et al., 2015). Additionally, 15 sequences aligned poorly and were
removed, resulting in a final alignment of 9,985 sequences at a length of 502 bp. The
9,985-sequence alignment was used to create a highly diverse community at a minimum
pairwise sequence distance of 3, with the seed set to 10 for reproducibility. Following
construction, the subsamplemodule was used to subsample the community to mimic the
taxonomic composition a plant-associated microbiome. The final alignment, taxonomic
proportion file, and commands used to create the community are available on GitHub for
users to reproduce.

Benchmarking
We performed benchmarking on the distance database calculation and the full create
command using hyperfine (https://github.com/sharkdp/hyperfine). Benchmarking was
performed on a MacBook Air with 1.3 GHz Intel Core i5 with 10 replicate runs per
benchmark. To perform the benchmarking, we subsampled the 16S ribosomal test dataset
described above using the subsample command, to 50, 100, 250, 500, 1,000, 2,500, 5,000,
7,500, and the full 9,985 sequences for both the distance database calculation and the full
create command.

Simulated Illumina data
We simulated 2 × 250 bp paired-end Illumina MiSeq sequencing data for the 16S rRNA
RDP community described above using ART v2.5.8 (Huang et al., 2012) with the provided
empirical error models for the Illumina MiSeq. We generated three different simulated
sequencing data sets with 500 sequences per community member and two samples per
simulation. The simulated data was analyzed using two post-processing workflows. The first
workflow merges the forward and reverse reads using PEAR (Zhang et al., 2014) followed
by dereplicating the sequences using FAST (Lawrence et al., 2015). The second workflow
utilizes the dada2 pipeline (Callahan et al., 2016), a program commonly used in the analysis
of microbial amplicon sequencing. The dada2 program models Illumina sequencing
error and attempts to correct errors to recover the true sequence variants. The resulting
sequences of both workflows were assigned to community members using the consensus
BLAST (Altschul et al., 1990) method implemented in QIIME2 (Bolyen et al., 2019) with
a 99% identity and 99% query length cutoff against the database of community member
sequences. Using the community member assignment output, we determined the percent
of sequences assigned to community members, percent of community members recovered,
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and for the dereplicated workflow, the accuracy of community member assignment.
Unfortunately, the dada2 pipeline doesn’t provide a mapping of the predicted sequence
variants to sequencing reads preventing us from determining the accuracy of community
member assignment. Sequences that were unassigned by the consensus BLAST method
were searched against the community member sequences using BLASTN keeping the top
two hits.

RESULTS
Workflow example
To demonstrate the applicability, usability, and ease of documenting workflows when using
DISCo-microbe to construct identifiable diverse communities, we created and subsampled
a community with a minimum sequence distance of 3 using 16S rRNA sequences from
the RDP database. The initial sequence alignment contained the V4 region from 9,985
sequences with an average pairwise sequence distance of 10.6± 3.6%). Using the following
create module

command:

disco create –i-alignment RDP_aligned_sequences.fasta –p-editdistance 3 –p-seed 10 –i-metadata
RDP_Metadata_Taxonomy.txt –o-community-list RDP_Community_ED3_seed10.txt

we constructed a community of 2,122 members that could be distinguished through
next-generation sequencing. Using the following subsample module

command:

disco subsample –i-input-community RDP_Community_ED3_seed10.txt –p-seed 10 –p-group-by
Class –p-proportion RDP_Class_Proportions_file.txt

the community was reduced to 784 communitymembers with the approximate proportions
of a plant–associated microbiome (Table 1; Cregger et al., 2018). The options for each
module used above, along with the version of DISCo-microbe and Python, are the only
documentation required to reproduce the design of this extremely complex community.

Benchmarking
As the number of sequences increased the time to calculate the distance database and
to create the full community increased exponentially (Fig. 3). Upon examination, the
distance database was the most computationally expensive portion of the create module
responsible for between 55 and 95% of the total time to create the community (Fig. 3).
The full community construction with the alignment of 9,985 sequences using the create
module took on average 13.09 min (±4.42 s) with 12.26 min (±4.01 s) being the distance
database calculations.
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Table 1 Subsampled bacterial class proportions. Bacterial class proportions used to subsample the com-
munity generated from the Ribosomal Database Project database and the actualized proportions of the re-
sultant community.

Bacterial class Input
proportions

Output
proportions

Actinobacteria 0.0885 0.0906
Alphaproteobacteria 0.1857 0.1875
Anaerolineae 0.004 0.0013
Aquificae 0.0003 0.0013
Bacteroidia 0.1 0.0982
Betaproteobacteria 0.1286 0.1301
Chitinivibrionia 0.004 0.0013
Chloroflexia 0.005 0.0051
Deferribacteres 0.0003 0.0013
Deinococci 0.0003 0.0026
Deltaproteobacteria 0.0418 0.0434
Fibrobacteria 0.0004 0.0026
Fusobacteriia 0.0003 0.0026
Gammaproteobacteria 0.4112 0.4133
Gemmatimonadetes 0.0073 0.0026
Ktedonobacteria 0.0097 0.0013
Nitrospira 0.0036 0.0051
Planctomycetia 0.009 0.0102

DISCo-microbe designs communities with members distinguishable
by amplicon sequencing
We simulated Illumina MiSeq sequencing data from the 2,120 member community
constructed from the 9,985 16S rRNA sequences from the RDP database and described
above. Unexpectedly, sequencing data was only generated from the first 2,065 community
members due to an undocumented limit on the number of input sequences that ART
(Huang et al., 2012) will process, however this does not change the overall results of the
analysis. We noticed that ART simulated sequencing data consistent with empirically
determined error rate of 0.24% errors per base (Pfeiffer et al., 2018). However, an average
of 25% of the simulated sequences contained an error compared to an average of 6.4% of
empirical sequences (Pfeiffer et al., 2018). Using the dereplication workflow, we were able
to recover sequences from all 2,065 community members (Fig. 4A) and 97.7% (±0.0004%)
of dereplicated sequences were assigned to a community member with the remaining
2.3% of sequences unassigned (Fig. 4B). Notably, none of the sequences were misclassified.
Using the dada2 workflow, we recovered sequences from fewer of the community members
(97.8% ± 0.0007%) compared to the dereplication workflow (Fig. 4A) but had a higher
rate (99.3% ± 0.001) of sequence variants assigned to a community member (Fig. 4B).
BLASTing unassigned sequences against the communitymember sequencesmostly resulted
in the top hit being the correct community member. Unexpectedly, one of the unassigned
sequences from the dada2workflow only had one nucleotide different from two community
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members. Upon further examination of these two community members we identified an
alignment error in the alignment used to create the community that when corrected
resulted in the two community members having a pairwise distance of 2 instead of the
required 3.

DISCUSSION
Microbial diversity is linked to function (Turnbaugh et al., 2008; Laforest-Lapointe et al.,
2017), but understanding that diversity can be difficult due to the low resolution of
taxonomic marker genes and the complexity of the microbial community, limiting our
ability to identify and track individual community members. To tease apart the complex
interactions within communities, there has been an increased demand for synthetic
community systems (Busby et al., 2017). However, the generation of complex communities
of organisms that can be easily distinguished through high-throughput methods can be
difficult without strong computational skills. In general, two challenges are associated with
the design of a synthetic community: (1) creation of a distinguishable community through
common sequencing methods and (2) development of a community with the desired traits.
Additionally, manual creation can lead to a lack of reproducibility due to the difficulty
of documenting the workflow. In this paper, we describe an easy to use command-line
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program, Design of an Identifiable Synthetic Community of Microbes (DISCo-microbe),
for the creation of diverse communities of organisms that can be distinguished through
next-generation sequencing technology during in vivo experiments. DISCo-microbe solves
the two previously mentioned problems using two modules, create and subsample.

The createmodule allows the user to construct a diverse community that is identifiable
using common sequencing methods, thus solving the first problem. The ability to specify
a minimum sequence distance allows flexibility in the construction of the community due
to its robustness to sequencing errors introduced through PCR and sequencing (Pfeiffer
et al., 2018). For example, if the user sets the minimum sequence distance to 5, sequences
containing up to 2 sequencing errors ([d−1]/2) can be confidently assigned to the correct
community member, sequences containing up to 4 errors (d−1) can be identified, and
it would take a minimum of 5 errors to assign a sequence to the incorrect community
member. Usually, the smaller the minimum sequence distance, the more members will be
included in the constructed community, potentially motivating users to set the minimum
sequence distance to lowest setting of 1. However, at a minimum sequence distance of l,
it only requires a single sequencing error to assign a sequence to the wrong community
member. In order to implement the create module, we developed a custom nucleotide
Hamming distance that accommodates nucleotide ambiguities. This is the first application
of the Hamming distance algorithm incorporating IUPAC nucleotide ambiguity codes to
measure distance between pairs of aligned sequences implemented in Python (see Šošić &
Šikić, 2017 for an implementation in C). We determined that the most time-consuming
step is the creation of the distance database due to the number of calculations required
[n!/2(n−2)!]. Despite the large number of calculations required to create the distance
database, the runtime for the create module on the largest community containing 9,985
sequences was only 13 min on a MacBook Air laptop.
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The subsample module allows flexibility in the final constructed community.
Specifically, it allows users to adapt the community to their experimental specifications,
either by limiting the number of strains, specifying proportions of a grouping variable, or
both. The subsamplemodule eliminates major problem (2) by allowing users to tailor the
already distinguishable community to include desired traits or proportions of members,
examples of which are found in the detailed documentation.

Using simulated Illumina MiSeq data, we demonstrated the ability of DISCo-microbe
to design diverse communities with members distinguishable by amplicon sequencing. We
were able to identify sequences from 97.5% and 100% of community members when using
the dada2 and dereplication workflows respectively. Notably, when using the dereplication
workflow, we show that we do not have any misclassified sequences indicating that all
members were distinguishable. Furthermore, the inability to assign 2.3% and 0.7% of
sequences to community members in the dereplicate and dada2 workflows respectively
were a result of multiple sequencing errors. The number of unassignable sequences in
our simulated data is likely an overestimation compared to real data. Given that 25%
of ART simulated Illumnia MiSeq reads had at least one error compared to the recently
documented empirical rate of 6% (Pfeiffer et al., 2018). Despite the greater number of
sequences being mutated than expected in a real sequencing run, we still show the ability
to discriminate between community members with a high degree of accuracy and recall.
Further investigation into the unassigned sequences using BLASTN demonstrated the
ability to accurately assign all but one of these sequences based on their top BLAST hit
against the community member sequences. Consequently, increasing the overall percent
of sequences assigned to community members and percent of community members
recovered without increasing our false positive rate. The only sequence unassignable by
BLASTNwas a dada2 sequence variant that only has a single nucleotide difference from two
community members. Upon further investigation of these two community members we
discovered errors in the alignment resulting in an overestimation of the distance between
these two community members. This illustrates the dependence of DISCo-microbe on an
accurate input alignment to determine the correct distance between individuals, and thus
creating a community at the desired sequence distance. Notably, despite this alignment
error the dereplication workflow along with BLASTN was able to accurately distinguish all
community members making the community still identifiable.

CONCLUSIONS
DISCo-microbe is the first software designed for the construction of a diverse community
of organisms that can be distinguished through low-cost, high-throughput amplicon
sequencing for use in in vivo experiments. DISCo-microbe allows non-programmers
to easily and reproducibly construct communities in which the members are identifiable
through amplicon sequencing and the communities conform to user-specified attributes or
numbers of members. DISCo-microbe is also the first software to implement a nucleotide
specific Hamming distance in Python that takes into account nucleotide ambiguities in
sequencing data. Although initially designed for bacterial community construction, the
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input of a nucleotide sequence alignment from any region allows the software to be used
with any group of organisms. DISCo-microbe is designed for easy expansion of utilities;
planned future versions will include new algorithms for community construction as well
as new modules for creating a suite of tools for the design of constructed communities and
processing of the resulting data.

Availability and requirements
Project name: DISCo-microbe

Project home page: https://github.com/dlcarper/DISCo-microbe
Operating system(s): platform-independent
Programming language: Python ≥ 3.4
Other requirements: BioPython
License: GNU General Public License v3.0

Abbreviations

DNA Deoxyribonucleic acid
RNA Ribonucleic acid
rRNA Ribosomal ribonucleic acid
FASTA Fast-all (file format)
PYPI Python Package Index
PCR polymerase chain reaction
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