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Abstract: Clear cell renal cell carcinoma (KIRC) is the most common and highly malignant pathologi-
cal type of kidney cancer, characterized by a profound metabolism dysregulation. As part of aspartate
biosynthesis, mitochondrial GOT2 (glutamic-oxaloacetic transaminase 2) is essential for regulating
cellular energy production and biosynthesis, linking multiple pathways. Nevertheless, the expression
profile and prognostic significance of GOT2 in KIRC remain unclear. This study comprehensively
analyzed the transcriptional levels, epigenetic regulation, correlation with immune infiltration, and
prognosis of GOT2 in KIRC using rigorous bioinformatics analysis. We discovered that the expression
levels of both mRNA and protein of GOT2 were remarkably decreased in KIRC tissues in comparison
with normal tissues and were also significantly related to the clinical features and prognosis of KIRC.
Remarkably, low GOT2 expression was positively associated with poorer overall survival (OS) and
disease-free survival (DFS). Further analysis revealed that GOT2 downregulation is driven by DNA
methylation in the promoter-related CpG islands. Finally, we also shed light on the influence of GOT2
expression in immune cell infiltration, suggesting that GOT2 may be a potential prognostic marker
and therapeutic target for KIRC patients.
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1. Introduction

Renal cell carcinoma (RCC) is one of the most common malignancies of the genitouri-
nary system, representing 3% of all malignancies in adults [1]. In the subtypes of kidney
cancer, kidney renal clear cell carcinoma (KIRC) accounts for about 75% of all RCC [2–4].
Indeed, due to the evident complexity from both morphological and molecular points
of view [5–9], KIRC patients have heterogeneous clinical outcomes [10,11]. Most KIRC
tumors are radiotherapy and chemotherapy-resistant, and ~30% of patients eventually
develop metastases [3,12,13]. Thus, it is critical to identify new sensitive tumor biomarkers
to advance the prognosis of KIRC.

Current shreds of evidence have demonstrated that KIRC is a metabolic disease [13–18].
This metabolic reprogramming is mainly related to loss-of-function mutation (or, less com-
monly, hypermethylation) in the von Hippel–Lindau (VHL) gene. VLH inactivation results
in constitutive activation of hypoxia-inducible factors (HIF-1α and HIF-2α), thereby alter-
ing many genes involved in angiogenesis, metabolism, chromatin remodeling, extracellular
matrix (ECM) and DNA repair [9,15,19–21]. Accordingly, mutations in several other genes
(e.g., PBRM1, SETD2, BAP1, KDM5C, and MTOR) have been continuously identified to
contribute to the pathogenesis (used to classify tumors into subgroups) and metabolic
remodeling process of KIRC [22,23].
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The metabolic shift in KIRC tumors covers different pathways and specific interme-
diates (e.g., amino acids, aerobic glycolysis, and fatty acid metabolism) [16,24], allowing
cancer cells to rapidly proliferate, and survive during nutrient depletion and hypoxia, and
evade the immune system [14]. Supporting this notion, aberrant tumor growth is promoted
by an enhanced supply of specific metabolites, and some of them, such as aspartate (Asp),
are limiting in some tumors [25–27]. Asp is usually synthesized in the mitochondrial matrix
through the sequential actions of MDH2 and glutamic-oxaloacetic transaminase 2 (GOT2)
and then transported to the cytosol for use by GOT1 and other enzymes [28].

GOT2, situated on chromosome 16q21, is a crucial enzyme for cancer cell metabolism,
(i) mediating the reversible interconversion of oxaloacetate and glutamate into aspartate and
α-ketoglutarate, providing energy for tumor cells (Krebs cycle) [29]; (ii) being a key trans-
fer enzyme in the malate-aspartate NADH shuttle activity and oxidative protection [30],
maintaining glycolysis, and (iii) participating in the amino acid metabolism of tumor
cells [31]. Increasing evidence has shown that dysregulation of GOT2 expression signifi-
cantly influences tumor growth and the prognosis of several human neoplasms [30,32–38].
However, the role of GOT2 in the development and prognosis of KIRC has not been re-
ported. To address these issues, this study aims to evaluate the expression levels of GOT2
in KIRC and determine its epigenetic modulation, prognostic value, and correlation with
tumor-infiltrating immune cells in KIRC patients through multiple databases.

2. Materials and Methods
2.1. Differential Expression of GOT2 mRNA and Protein

Initially, pan-cancer analysis of GOT2 transcription levels was performed via the
TIMER2.0 database (Tumor Immune Estimation Resource, http://timer.cistrome.org/,
accessed on 1 December 2021) [39], using the differential expression module across all
TCGA tumors. The statistical significance computed by the Wilcoxon test was annotated
by the number of stars (* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001).

To keep the focus of our analyses on KIRC tumors, the GEPIA2 database (Gene Expres-
sion Profiling Interactive Analysis 2) (http://gepia.cancer-pku.cn/index.html, accessed on
1 December 2021) [40] was used to confirm the differential expression found in the TIMER
analysis by comparing the TCGA-KIRC (523 samples) with normal kidney samples from
GTEx (Genotype-Tissue Expression project, http://www.gtexportal.org/home/index.html,
accessed on 1 December 2021) (100 samples). The differential threshold of log2FC was 1
and the value cutoff of 0.05.

At the protein level, we used the UALCAN platform (http://ualcan.path.uab.edu/
index.html, accessed on 1 December 2021) [41,42] to mine GOT2 expression in the high-
throughput mass spectrometry data, obtained from the Clinical Proteomic Tumor Anal-
ysis Consortium (CPTAC) of normal kidney tissues (n = 84) and primary KIRC tumors
(N = 110) [43]. Integration and analysis of these data were described elsewhere [44,45].
Briefly, protein expression values (Log2 Spectral count ratio values) from CPTAC were first
normalized within each sample profile, then normalized across samples. Then Z-values
for each sample for GOT2 protein were calculated as standard deviations from the median
across samples.

In this study, we checked the expression of GOT2 in the protein expression module
of the HPA database (Human Protein Atlas, https://www.proteinatlas.org/, accessed on
1 December 2021) [46–48], and we analyzed the immunohistochemical results of GOT2 in
tumor tissue (ID: 2176) and normal tissue (ID: 2067). The antibody used in both samples
was HPA018139. All images of tissues stained by immunohistochemistry were manually
annotated by a specialist, followed by verification by a second specialist. Protein expression
score was based on immunohistochemical data manually scored concerning staining inten-
sity (negative, weak, moderate, or strong) and the fraction of stained cells (<25%, 25–75%
or >75%). Each combination of intensity and fractions was automatically converted into
an protein expression level score as follows: negative—not detected; weak <25%—not de-
tected; weak combined with either 25–75% or 75%—low; moderate <25%—low; moderate
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combined with either 25–75% or 75%—medium; strong <25%—medium, strong combined
with either 25–75% or 75%—high (For more details, see https://www.proteinatlas.org/
about/assays+annotation#ihk, accessed on 1 December 2021).

2.2. Clinical Correlations & Survival Analysis

Associations between clinicopathological parameters and mRNA expression of GOT2
were analyzed using the UALCAN (http://ualcan.path.uab.edu/analysis.html, accessed
on 5 December 2021) [41]. For these analyses, we included the following clinical features:
cancer stage (stages 1, 2, 3, and 4), gender, tumor grade (1, 2, 3 and 4), KIRC subtypes
(good risk: ccA; poor risk: ccB) [49], nodal metastasis status (N0: no regional lymph node
metastasis; N1: metastases in 1 to 3 axillary lymph nodes).

The prognosis analysis was estimated by Kaplan–Meier (KM) survival curves gen-
erated by the Kaplan Meier (KM) Plotter (http://kmplot.com/analysis/, accessed on
5 December 2021) [50], GEPIA2 (http://gepia.cancer-pku.cn/index.html, accessed on
1 December 2021) [40] and HPA database (http://www.proteinatlas.org/, accessed on
5 December 2021) [46–48]. In this study, KIRC patients were split into high and low expres-
sion groups based on the median expression levels of GOT2, and then these two groups
were compared in terms of relapse-free survival. Moreover, the hazard ratio (HR) with a
95% confidence interval (CI) and the p-value of the log-rank test were obtained. For all
survival analyses, p < 0.05 was considered statistically significant.

2.3. GOT2 Methylation Analysis

To explore the DNA methylation level of all CpG islands located in GOT2 of KIRC-
TCGA samples, we used the MethSurv database (https://biit.cs.ut.ee/methsurv/, accessed
on 10 December 2021) [51]. Next, Shiny Methylation Analysis Resource Tool (SMART)
(http://www.bioinfo-zs.com/smartapp/, accessed on 10 December 2021) [52] was used for
differential methylation analysis of each GOT2 probe and Spearman’s correlation between
methylation level (β-values, 450 k array) and mRNA level (Log2-scaled, TPM+1). CpG-
aggregated methylation values were determined by mean (β-values).

2.4. Analysis of Immune Cell Infiltration

We calculated and compared the GOT2 gene expression contributed by different
immune cell types in kidney samples (TCGA tumor/normal and GTEx normal) by the
GEPIA2021 (http://gepia2021.cancer-pku.cn/, accessed on 1 December 2021) [53]. For
each GTEx/KIRC-TCGA sample, we run the CIBERSORT algorithm (absolute mode) with
the default parameters to obtain the absolute proportions of 22 immune cell subtypes. The
22 immune cells included: memory B cells, naïve B cells, activated memory CD4+ T cells,
resting memory CD4+ T cells, naïve CD4+ T cells, CD8+ T cells, follicular helper T cells
(Tfh), regulatory T cells (Tregs), and gamma/delta T cells, activated dendritic cells (DC),
resting dendritic cells, eosinophils, macrophages (M0–M2), activated mast cells, resting
mast cells, monocytes, resting NK cells, activated NK cells, neutrophils, and plasma cells.
ANOVA (analysis of variance) was used for quantitative comparison. Sidak’s multiple
comparisons test was used for the post-test, and p < 0.05 was considered significant.

2.5. Association between GOT2 and Tumor Microenvironment Exploration

The Tumor Immune Single-cell Hub (TISCH, http://tisch.comp-genomics.org/home/,
accessed on 1 April 2022) is an online single-cell RNA-seq database focused on the tumor mi-
croenvironment (TME) [54]. In our analyses, two human KIRC scRNA-seq datasets [55,56]
were used to obtain the GOT2 average expression at the single-cell level. The expression of
GOT2 was collapsed by the mean value. The gene expression level displayed using UMAP
and violin plots was quantified by the normalized values.
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3. Results
3.1. Expression Level of GOT2 mRNA in Pan-Cancer

To determine whether GOT2 expression correlates with cancer, we surveyed GOT2 ex-
pression in multiple cancer types and adjacent normal tissues through the TIMER database.
As shown in Figure 1, compared with normal tissues, GOT2 expression was higher in
BLCA (Bladder Urothelial Carcinoma), CESC (Cervical squamous cell carcinoma and
endocervical adenocarcinoma), COAD (Colon adenocarcinoma), KICH (Kidney Chro-
mophobe), ESCA (Esophageal carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung
squamous cell carcinoma), STAD (Stomach adenocarcinoma) and UCEC (Uterine Corpus
Endometrial Carcinoma). Conversely, GOT2 had markedly lower expression in CHOL
(Cholangiocarcinoma), GBM (Glioblastoma), KIRC (Kidney renal clear cell carcinoma),
LIHC (Liver hepatocellular carcinoma), PRAD (Prostate adenocarcinoma) and THCA (Thy-
roid carcinoma). All these data indicated that the dysregulation of this glutamic-oxaloacetic
transaminase was common across several tumors, including KIRC.

Figure 1. GOT2 expression levels in pan-cancer (TCGA dataset). The box plot comparing specific
GOT2 expression in tumor samples (red plot) and paired normal tissues (blue plot) was derived from
the TIMER database (* p < 0.05, ** p < 0.01, *** p < 0.001). TPM: transcripts per million.

3.2. GOT2 mRNA and Protein Are Downregulated and Correlated with Clinicopathological
Parameters in KIRC

Next, to focus our analysis on KIRC, we investigated the transcription levels of GOT2
performing a single-gene differential analysis using RNA-seq data from the TCGA database
(KIRC-TCGA), compared with non-tumor tissues from the GTEx database by GEPIA2. Our
results showed that the mRNA expression levels of GOT2 in KIRC tissues (n = 523) were
significantly lower than in adjacent normal tissues (n = 100) (Figure 2A). Correspondingly,
in the CPTAC KIRC cohort, there was a significant downregulation of GOT2 in the tumors
(Figure 2B), consistent with the immunohistochemical (IHC) staining images from the
Human Protein Atlas (HPA) (Figure 2C). This further confirmed that the expression of
GOT2 in tumor tissues was significantly lower than that in normal tissues.
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Figure 2. Expression of GOT2 in KIRC and normal patients. (A) Differential expression of GOT2
between KIRC samples from TCGA database (Red, n = 523 samples) and normal human kidney
samples from GTEx database (Blue, n = 100 samples). (* p < 0.05, *** p < 0.001) (B) Significant
downregulation of GOT2 protein level in the CPTAC KIRC cohort, analyzed by UALCAN. KIRC:
n = 110; Normal samples: n = 84. Z-values represent standard deviations from the median across
samples. (C) Representative images of immunohistochemical (IHC) staining of GOT2 protein in
normal kidney tissue (Patient ID: 2067; Staining: medium; Intensity: moderate; Quantity: 75–25%;
Location: cytoplasmic/membranous) and KIRC tissue (Patient ID: 2176; Staining: low; Intensity:
weak; Quantity: >75%; Location: cytoplasmic/membranous) from the HPA database. Scale bars: left,
100 µm; right, 25 µm. Antibody used in both samples: HPA018139.

3.3. Relationship between GOT2 Expression and Clinical Pathological Parameters of Patients
with KIRC

We next investigated the correlation between clinical parameters and the GOT2 expres-
sion in KIRC. Data showed that GOT2 expression levels were significantly associated with
stage, gender, grade, KIRC subtypes, and nodal metastasis status (Figure 3A–G). Lastly,
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concerning the most commonly mutated genes in KIRC, patients harboring VHL, PBRM1,
and SETD2 mutations under-expressed GOT2 (Figure 3H–J). Thus, it is likely that GOT2
expression may serve as a potential diagnostic biomarker for KIRC patients.

Figure 3. Association between GOT2 expression and the clinicopathological features of KIRC patients.
Box plots of GOT2 mRNA expression according to: (A) KIRC stages (Stages 1, 2, 3 and 4). (B) gender
(male, female). (C) KIRC grades (1, 2, 3 and 4). (D) clear cell renal cell carcinoma (ccRCC) good risk
(ccA) and poor risk (ccB) subtype classification. (E) nodal metastasis status. GOT2 protein expression
was differentially expressed in (F) clinical stages and (G) tumor grade ** p < 0.01, *** p < 0.001. GOT2
expression in the KIRC cohort (TCGA) according to (H) VHL mutation status, (I) PBRM1 mutation
status and (J) SETD2 mutation status, ** p < 0.01, *** p < 0.001.

3.4. Low Expression of GOT2 Is Associated with Poor Outcome in KIRC Patients

Initially, to explore the influence of GOT2 expression on KIRC outcomes, we conducted
a Kaplan–Meier test and Cox regression analysis to delve into the associations with overall
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survival (OS) and disease-free survival (DFS). As shown in Figure 4A,B, the OS and DFS
of KIRC patients with low expression of GOT2 were significantly shorter than those with
high expression. At the same time, we also noticed that the low level of GOT2 protein was
significantly related to the worse OS (p = 0.023) (Figure 4C). Additionally, we investigated
the relationship between GOT2 expression and clinicopathological features of KIRC patients
in the Kaplan–Meier plotter database. Surprisingly, low GOT2 mRNA expression was
correlated with worse OS in KIRC patients with stage 4 (HR = 0.56, p = 3.50 × 10−2), grade
3 (HR = 0.53, p = 7.90 × 10−3), and low mutation burden (HR = 2.28, p = 3.49 × 10−2)
(Table 1). Here, the differences in the clinical characteristics suggest that the use of GOT2 as
an indicator gene should be carefully combined with the patient’s condition.

Figure 4. Kaplan–Meier survival analysis demonstrating the relationship between GOT2 expression
and prognosis in KIRC patients. Overexpression of GOT2 mRNA prolonged (A) OS (n = 258) and
(B) DFS (Disease-Free Survival; n = 258) of KIRC patients. (C) High expression of GOT2 protein
prolonged OS of KIRC patients (n = 528) (p = 0.023). HR, hazard ratio; OS, overall survival; GOT2,
Glutamic-Oxaloacetic Transaminase 2; KIRC, Kidney Renal Clear Cell Carcinoma.
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Table 1. Correlation of GOT2 mRNA expression and clinical outcomes in KIRC from TCGA database.

Clinicopathological Characteristics n Hazard Ratio
(95% CI) Logrank p

Stage

1 265 1.67 (0.92–3.03) 8.94 × 10−2

2 57 0.29 (0.06–1.31) 8.56 × 10−2

3 123 0.35 (0.74–2.39) 3.47 × 10−1

4 82 0.56 (0.32–0.97) 3.50× 10−2

Gender

Female 186 0.62 (0.36–1.05) 7.45 × 10−2

Male 344 0.71 (0.47–1.06) 9.56 × 10−2

Grade

1 14 - -
2 227 1.51 (0.8–2.84) 2.04 × 10−1

3 206 0.53 (0.33–0.85) 7.90 ×10−3

4 75 0.64 (0.35–1.19) 1.60 × 10−1

Mutation burden

High 168 1.34 (0.77–2.34) 2.94 × 10−1

Low 164 2.28 (1.04–4.99) 3.49× 10−2

Race

White 459 0.72 (0.5–1.02) 6.17× 10−2

Asian 8 - -
Black/African American 56 0.39 (0.12–1.29) 1.10 × 10−1

Hemoglobin result

Elevated 5 1.73
(0.1076–27.8905) 6.98 × 10−1

Normal 184 0.70 (0.3784–1.3129) 2.70 × 10−1

Low 261 1.22 (0.8484–1.7628) 2.81 × 10−1

Laterality

Right 280 1.12 (0.7181–1.7561) 6.11 × 10−1

Left 248 0.71 (0.4721–1.0682) 1.00 × 10−1

Bilateral 4 - -

Serum calcium result

Elevated 10 0.65 (0.1599–2.6446) 5.48 × 10−1

Low 203 0.79 (0.5749–1.5257) 7.92 × 10−1

Normal 150 0.62 (0.376–1.0547) 7.88 × 10−2

Bold numbers indicate a statistically significant correlation with a p-value less than 0.05. Abbreviations:
CI = confidence interval.

3.5. Hypermethylation of DNA in the Promoter Region Leads to Low Expression of GOT2 in KIRC

To further explore the epigenetic mechanism underlying GOT2 underexpression, we
analyzed the methylation level of seventeen probes covering the island (promoter region),
N Shelf, S Shore, and Open Sea regions of GOT2, chosen through the UCSC Genome
Browser (Table 2; Figure 5). Notably, the results showed that lower methylation levels for
GOT2 lay on probes at the promoter (island). At the same time, most hypermethylated
sites fell in the open sea, N Shelf, and S Shore regions (Figure 6). Given that methylation
of CpG sites within the gene promoter is a common mechanism in gene silencing, we
next compared the methylation level of the probes that covered the GOT2 promoter be-
tween normal vs. KIRC-TCGA samples (Figure 5). Interestingly, we found that the average
methylation of all CpG sites (probes) near the TSS (transcription start site) of GOT2 was sig-
nificantly higher in tumor tissues than in the normal counterpart (Aggregation, p = 0.00022)
(Figure 7A). Further analysis revealed a negative correlation between the methylation level
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and the mRNA of GOT2 (Aggregation: R = −0.3, p = 0.0071) (Figure 7B), thus indicating
that upregulation of DNA methylation level of CpGs island-associated promoter region
may contribute to the downregulation of GOT2 in KIRC patients.

Table 2. List of the 17 probes analyzed. CGI: CpG islands.

Probe Chromosome Start End CGI Position

cg04793118 chr16 58707974 58707975 Open Sea
cg06070269 chr16 58718235 58718236 Open Sea
cg06624121 chr16 58718247 58718248 Open Sea
cg04471375 chr16 58718261 58718262 Open Sea
cg06302295 chr16 58730982 58730983 N Shelf
cg08348831 chr16 58733959 58733960 Island
cg13626907 chr16 58733963 58733964 Island
cg14863484 chr16 58734106 58734107 Island
cg09082840 chr16 58734264 58734265 Island
cg16406345 chr16 58734350 58734351 Island
cg08578141 chr16 58734361 58734362 Island
cg10055227 chr16 58734416 58734417 Island
cg08950929 chr16 58734423 58734424 Island
cg00028829 chr16 58734507 58734508 S Shore
cg10140957 chr16 58734573 58734574 S Shore
cg13883681 chr16 58734661 58734662 S Shore
cg08987251 chr16 58735200 58735201 S Shore

Figure 5. Chromosomal distribution of the methylation probes associated with GOT2. Upper panel:
Circos plot depicting the genomic information of GOT2 (16q21) and the probes used in this study.
Lower panel: Segment plot showing the detailed information of genomic locations of each probe
of GOT2, highlighting CpG island, N shelf, S Shore and Open Sea. The coverage of the promoter
region is displayed as the red region (red box), which includes eight probes (cg08348831, cg13626907,
cg14863484, cg09082840, cg16406345, cg08578141, cg10055227 and cg08950929). Numbers below
represent the genomic length scale (1 kb).
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Figure 6. Dynamics of DNA methylation across all probes of GOT2 in KIRC. Heat map showing the
methylation levels of GOT2 among different CpGs sites (probes) integrating ethnicity, race, age, vital
status, and genomic regions of CpG sites (UCSC) from KIRC. Red to blue scale indicates high to low
methylation levels.

3.6. GOT2 Expression Correlates with Immune Cell Infiltration in KIRC

Tumor-infiltrating immune cells are essential for immune response and prognosis in
KIRC patients [57,58]. To determine whether GOT2 could potentially impact immune cell
infiltration in KIRC, we first examined the differences in GOT2 expression across the six
immune subtypes proposed by Thorsson et al. [59]. We observed that GOT2 expression
was highest in patients harboring the C5 subtype (immunologically quiet) and lowest in
patients exhibiting the C2 subtype (IFN-gamma dominant), indicating that GOT2 can be
used as a marker for immunophenotyping of patients with clear-cell renal cell carcinoma
(Figure 8A).
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Figure 7. Hypermethylation of GOT2 leads to downregulated expression in KIRC. (A) Differen-
tial methylation level of eighth GOT2 probes (cg08348831, cg13626907, cg14863484, cg09082840,
cg16406345, cg08578141, cg10055227 and cg08950929) between KIRC patients (n = 313) and normal
samples (n = 157) from TCGA. (B) Spearman’s correlation between methylation level (β-values, 450 k
array) and mRNA level (Log2-scaled, TPM + 1) of GOT2 in KIRC samples from TCGA.

To better understand the role of GOT2 in the infiltration of immune cells in KIRC,
we used the CIBERSORT deconvolution analysis [53] for rough correlation analysis. The
immune-related signatures revealed that GOT2 was higher in CD8+ T cells, follicular
helper CD4+ T (Tfh) cells, M1 and M2 Macrophages in KIRC-TCGA tumors than in normal
tissues (Figure 8B). To further expand and strengthen these results, the analysis of two
independent single-cell RNA sequencing (scRNA-seq) datasets [55,56] showed that GOT2
was mainly expressed within endothelial cells, followed by proliferative T cells (Tprolif),
plasmacytoid dendritic cells (pDCs), exhausted CD8+ T Cells (CD8Tex), Treg cells and
conventional dendritic cells 2 (cDC2) (Figure 9A,B). These results imply that GOT2 may
play an essential role in the tumor microenvironment of the clear-cell renal cell carcinoma,
affecting both stroma and immune cells. Interestingly, GOT2 was broadly expressed
within some clusters of immune cells (e.g., CD8ex and Tprolif) that also co-expressed some
immune checkpoint inhibitors (e.g., CTLA4, TIGIT, TOX, EOMES, LAG3, PDCD1, HAVCR2,
and CD96) (Figure 10), thus strongly suggesting that GOT2 is involved in the dynamic
regulation of immune homeostasis and is particularly relevant to T cell functionality.
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Figure 8. Association of GOT2 expression, with immune subtypes and immune cell infiltration.
(A) GOT2 mRNA levels in TCGA-KIRC immune subtypes. C1: wound healing subtype (n = 7),
C2: INF-γ dominant (n = 20), C3: inflammatory (n = 445), C4: lymphocyte depleted (n = 27), C5: im-
munologically quiet (n = 3), C6: TGF-β dominant (n = 16). One-way ANOVA p-value = 1.2 × 10−4.
(B) GOT2 expression in different immune cells types in KIRC samples from TCGA and normal
samples from TCGA and GTEx.
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Figure 10. The expression source of the signature genes was revealed by single-cell analysis
(GSE111360 dataset). The signature was composed of GOT2, LAG3, CTLA4, EOMES, LGALS9,
CD96, HAVCR2, PDCD1, TIGIT, and TOX.

4. Discussion

KIRC is characterized by profound metabolic reprogramming that involves multi-
ple pathways [14,15]. Current evidence suggests that changes in the supply of specific
metabolites, such as aspartate, which is essential for nucleotide and protein synthesis in
proliferating cells and maintains the reducing potential [28,60,61], can function as oppor-
tunistic fuel sources for high proliferation and tumor growth [25,27,62]. As part of the
malate–aspartate shuttle, mitochondrial GOT2 generates aspartate from oxaloacetate and
glutamate [63]. Additionally, this enzyme is involved in energy transduction, specifically
amino acid metabolism and the urea and TCA cycles. Thus far, there is no available
information about the detailed roles of GOT2 in KIRC. Herein, we elucidated the most
comprehensive insights into understanding the epigenetic regulation and the potential
association of GOT2 with the clinical and immunity of KIRC.
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Based on a pan-cancer perspective, we initially demonstrated that GOT2 is differen-
tially expressed in 18 tumor types, thus potentially being a therapeutic target. Further
interrogating KIRC, we showed that the GOT2 mRNA and protein levels were markedly
decreased in KIRC patients than in normal tissues. Besides, we observed that this transam-
inase was markedly lower as the pathological stage increased and was also strongly im-
pacted by other clinicopathological characteristics, which conferred a worse outcome. Our
findings are consistent with Zhao et al. [64], who also reported the decreased expression
and prognostic value of GOT2 in hepatocellular carcinoma (HCC). The results from a recent
study support a scenario in which in VHL-deficient KIRC, but not in non-clear renal cell car-
cinomas (NCRCC), the simultaneous suppression of GOT1 and GOT2 is HIF1α-dependent,
which impairs oxidative and reductive aspartate biogenesis [61]. Hence, to compensate for
the low levels of aspartate seen in the KIRC [65], glutamine metabolism has a dominant
role in sustaining KIRC growth [66]. This conceivably explains the down-expression of
GOT2 in KIRC patients harboring VHL, PBRM1, and SETD2 mutations seen in our study,
thus suggesting that GOT2 repression represents a specific metabolic feature of KIRC.

DNA methylation of specific CpG sites in the promoter region is tightly linked with
transcription repression. In the last few years, its role in carcinogenesis has been of con-
siderable interest [67–69]. It is currently well known that KIRC is characterized by many
epigenome aberrations [70,71]. Furthermore, many studies have pointed out the occurrence
of a pattern known as CpG island methylator phenotype (CIMP) in 20% of KIRC [71,72].
However, no study has previously been carried out to analyze the role of DNA methyla-
tion in GOT2 expression in KIRC. Here, for the first time, we provided evidence that the
methylation of the GOT2 promoter was increased in KIRC patients compared to normal
samples. Additionally, the correlation analysis results revealed that promoter methylation
was negatively correlated with the regulation of gene expression. According to these results,
it can be speculated that the DNA hypermethylation in the promoter-associated CpG is-
lands may be one of the mechanisms leading to GOT2 down-expression in KIRC. However,
additional efforts are necessary to determine the potential impact of additional events,
such as chromatin structural modifications, miRNAs, and the influence of metabolites on
patients exhibiting GOT2 promoter hypermethylation.

In addition, another innovative aspect of this study clarified the significant correlations
between GOT2 expression and various tumor-infiltrating immune cells in KIRC. Previous
studies have found that T cells and macrophages represented the dominant populations in
most KIRC cases [73,74], consistent with our findings, which indicates that GOT2 expression
was more likely to affect the tumor infiltration of subtypes of T cells, especially CD8+ T
cells and follicular helper CD4+ T (Tfh) cells, and M1 and M2 macrophages compared to
normal renal tissue. Our deep-dissection of individual cell subsets from scRNA-seq data
revealed that GOT2 was broadly expressed within exhausted CD8+ T Cells (CD8Tex) and
in the proliferative T cells (Tprolif). Unlike all solid tumors, high tumor-infiltrating CD8+

T-cells predicted poor overall survival and inferior therapeutic responsiveness in patients
with KIRC [75–77]. However, a comprehensive characterization of immune cells from KIRC
patients using scRNA-seq along with T-cell-receptor (TCR) sequencing revealed that CD8+

T-cells exhibited four distinct groups that may represent transcriptional states upon tumor
infiltration with distinct prognostic significance: two of them were associated with a PD-1+

TIM-3+ exhausted subcluster, one with a proliferative subcluster, and a fourth with the
higher levels of cytokine signaling [73]. Moreover, a correlation observed between increased
clusters with the signature CD8_6 (CD8+T-cells) and TAM_3 (macrophages) showed a
better prognosis. In another study, a first-in-class CAR T-cell therapy co-expressing GOT2
enhanced T-cell metabolic function for treating GPC3-positive solid tumors, supporting
the progress of a future first-in-human trial in subjects with GPC3-positive tumors [78].
Considering this context, we argue that GOT2 is likely to play distinct roles at different
stages of T-cell exhaustion and might potentially be modulated by the spectrum of changes
in TME conditions of KIRC patients, including tumor metabolism, hypoxia, nutrient
restriction, and exhaustion driven by chronic stimulation, thus strengthening the potential
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application of synergic modulation of the GOT2 and T cell exhaustion markers in non-
responsive KIRC patients to boost antitumor and immune responses.

In conclusion, using a series of rigorous bioinformatics analyses, we showed that
the mRNA and the expression levels of the GOT2 protein were significantly decreased in
KIRC patients compared to normal ones. This low expression was positively associated
with clinicopathological features, culminating in poor clinical outcomes for KIRC patients.
Notably, we provide the first mechanism insights into the epigenetic-mediated regulation
of GOT2, which is driven by the DNA methylation in the promoter-related CpG islands.
Finally, we also shed light on the influence of GOT2 expression in immune cell infiltration,
suggesting that GOT2 may be a potential prognostic marker and therapeutic target for
KIRC patients.
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