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Background. Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text
data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension
feature spaces generated by the text data also pose an additional difficulty. Results. Here we present a Phylogenetic Tree-Based
Motif Finding algorithm (PMF) to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for
classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved
motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental
caries better than other existing methods. Conclusions. We extend the phylogenetic approaches to perform supervised learning on
microbiota text data to discriminate the pathological states for pneumonia and dental caries.The results have shown that PMFmay
enhance the efficiency and reliability in analyzing high-dimension text data.

1. Introduction

The microbial ecology in human determines or promotes
necessary bioprocesses in human bodies, and compositions
of microbial communities can be reflections for the health
conditions of the hosts [1]. In fact, the complex microbial
communities play key roles in human health from time to
time. For example, dysfunction of microbiota biogeography
or infection of pathogenicmicrobiotawould lead to a series of
human diseases, like pneumonia [2], dentes cariosus [3], and
so on [4, 5]. Fortunately, sequencing of 16S rRNA provides
informative knowledge for the distributions of microbiota
[6]. For instance, microbiota taxonomy analysis based on
the sequence data by bioinformatic tools such as Ribosomal

Database Project (RDP) website would facilitate investiga-
tions of key microorganisms associated with certain host
diseases [7].

On the other hand, traditional (supervised)methods such
as feature selection are frequently adopted in classifications of
microbiota-associated disease samples, for example, selecting
themicroorganism(s) which canmaximally discriminate dis-
eased and healthy hosts [6]. Nonetheless, substantial amounts
of sequence data actually embody the characteristics of entire
microbial communities rather than individual microbes [8].
Hence, the mapping results of 16S rRNA segments to indi-
vidual microbes based on the sequencing data would not
be informative enough for the aftermath feature selection.
Furthermore, sequences that cannot be mapped to known
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microbes might also have certain importance. Therefore,
algorithms focusing on the textual features of microbiota
sequences themselves (e.g., 𝑘-mer/𝑘-tun features) have been
applauded by recent researchers, as they skip the sequence-
microbe mapping and hence avoid the intrinsic drawbacks
[9, 10].

However, abundantly many features can be defined
regarding raw text data (i.e., strings); in other words, the
dimension of feature space would usually be extremely high;
thus the “curse of dimensionality” resulted [11]. In this regard,
motif-oriented algorithms are capable of accelerating the fea-
ture selection pipeline, as generalizing or lumping the textual
features of a lot of strings into certain motifs is equivalent to
degenerating the feature space (i.e., dimension reduction) [12,
13]. Nonetheless, extracting the motifs put forward another
issue, intuitively because motifs can be defined in various
different ways and there is no universal solution. Therefore,
systematic approaches for motif extraction/definition are
necessary.

For this purpose, here we present an improved text min-
ing method named Phylogenetic Tree-Based Motif Finding
algorithm (PMF). In this method, relevance between text
strings is considered, which are defined by the phylogeny
of the strings. By statistically associating the motif counts
computed via PMF with disease statuses, efficient classifi-
cation of disease samples based on (microbiota) sequence
texts could be achieved. We have simulated the 16S rRNA
datasets of pneumonia and dentes cariosus patients with this
pipeline, respectively. Compared to previous results [14], our
new pipeline shows better classifications. Additionally, the
pipeline is suitable for issues with high-dimensional feature
spaces.

2. Data and Methods

2.1. Data and Preprocessing. We acquired 16S rRNA sequenc-
ing fasta files of pneumonia patients and dental decay patients
from Zhou et al. [2] and Ling et al. [3], respectively. Two
to six length 𝑘-mer counting results in each meta-genomic
sequence were calculated [15]. The 𝑘-mer counting results
were shown in Files S1 and S2 in Supplementary Material
available online at http://dx.doi.org/10.1155/2016/6598307.
Each counting and its antisense complementary result were
summarized and combined together. The 𝑘-mer frequencies
were normalized by the reciprocal of length of each sequence
as weight and divided by the number of sequences in each
fasta file. Identified microbes of 16S rRNAs’ sequences from
Zhou et al. [2], which were downloaded from NCBI website
(ID: GU737566 to GU737625 and HQ914698 to HQ914775)
(http://www.ncbi.nlm.nih.gov), were used for constructing
the phylogenetic trees. After removing redundant sequences,
a total of 90 microbe species were used for further analysis.

The pneumonia samples included 101 patients with
hospital-acquired pneumonia (HAP), 43 patients with
community-acquired pneumonia (CAP), and 42 normal
persons as control. 71 HAP cases, 32 CAP cases, and 30 cases
of normal samples were allocated as training data; fitness
was calculated using 5-fold proportional cross validation.
The other 30 cases of HAP, 13 cases of CAP, and 12 cases of

Table 1: Alphabet of generalized letters.

Letter Members Antisense complementary
letter

R AG Y
Y CT R
W AT W
M AC K
K GT M
S CG S
H ACT D
B CGT V
V ACG B
D CGT H
N ACGT N

normal were set as the test data, so that classifications were
evaluated. For the 𝑘-mer counting profiles of 16S rRNAs fasta
file collected from dental plaques samples, the training data
contained 23 dental decay patients and 20 normal samples
and the test data contained 9 dental decay patients and
8 normal samples. For the 𝑘-mer counting of 16S rRNAs
collected from saliva samples, the training data contained
23 dental decay patient samples and 19 normal samples;
and the test data contained 10 dental decay patient samples
and 8 normal samples. The partition of the training and
test datasets, as well as the cross validation of training data
themselves, was adopted from the previous study; hence
impartial comparisons (with previous results [14]) could be
performed.

2.2. Phylogenetic Tree-Based Motif Finding (PMF) Method.
The improved text mining method, Phylogenetic Tree-Based
Motif Finding algorithm (PMF), handled counting results of
each person’s 16S rRNA fasta file. PMF algorithm consisted
of three parts: motif finding, motif sorting, and model eval-
uation. Motif finding was the main part of the algorithm, in
which key step was constructing a clustering tree to combine
the original strings to a new motif, that is, transforming
original letters (“A,” “T,” “C,” and “G”) into the generalized
letters (“Y,” “R,” “W,” “K,” “M,” “S,” “D,” “V,” “B,” “H,”
and “N”). The rules of the generalized letters were shown in
Table 1.

Minimumdistancemethodwas used to cluster the phylo-
genetic tree. For each pair of sequences with the same length,
the phylogenetic distance was calculated by summarizing dif-
ferences of all sites. For the generalized letters, the differences
were calculated using the number of intersections divided
by the number of unions. The phylogenetic distance of two
motifs was estimated by summarizing differences of both
original and generalized sites. If the phylogenetic distance
of antisense complementary sequence was smaller than the
original sequence, the instance of its antisense complemen-
tary sequence was selected. To calculate the complementary
generalized letters, each member of the generalized letters
was calculated, (i.e., “A” versus “T” and “C” versus “G”),
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and results were summarized by rules of Table 1. If there was
more than one pair of sequences with theminimum distance,
the phylogenetic distances were sorted using Kruskal-Wallis
statistics in descending order as follows:

KW = 1 − 𝑝
new

−
∑
𝑛

𝑖=1
(1 − 𝑝

original
𝑖

)

𝑛
, (1)

where 𝑝
new was the Kruskal-Wallis test 𝑝 value of new

motif profile, 𝑝
original
𝑖

was the Kruskal-Wallis test 𝑝 value
of 𝑖th original sequence covered by the new motif, and 𝑛

was the number of original sequences or their antisense
complementary sequences covered by the new motif. The
generalized motif (and its antisense complementary motif)
was composed of a group of original sequences; the original
sequences with profiling were defined as covered by the new
motifs. Profile of the new motif was calculated as follows:

profiling motif = profile (:, covered) ∗ LDA weights, (2)

where “profile(:, covered)” were the profiles of original
sequences covered by the new motif (i.e., rows were samples
and columns were the covered original sequences), and
LDA weights were the linear combination weights calculated
by Linear Discriminant Analysis (LDA) [16] method with
maximum Fisher’s Rayleigh quotient (shown in “Linear
Discriminant Analysis” part in the other method). Therefore
profiles of the covered sequences were replaced by the profile
of new motif.

With the clustering rule, the original sequences could be
transformed into the generalized motifs. To suit for high-
dimension characteristics of text data, first 𝑚th nonredun-
dant pairs of sequences were combined to new motifs, where
𝑚 = square root (Sqrt in short) of the total number
of sequences with the same length. The batch computing
method could accelerate motif finding part of PMF and avoid
overfitting the training data [17]. Therefore the generalized
motifs were found iteratively until all sites changed into “N.”

After findingmotifs with the same length, different length
(e.g., from two to six) motifs needed to be sorted using motif
sorting part of PMF by integrating Kruskal-Wallis 𝑝 value
[18] and specificity in descending order. For each motif, the
specificity was calculated as follows:

specificity =
∑
𝐾

𝑖=1
(1 − 𝑥

𝑖
/4)

𝐾
, (3)

where 𝐾 was the length of each sequence and 𝑥
𝑖
was the

number ofmembers of 𝑖th site’s (generalized) letter.Therefore
each motif could be sorted in descending order as follows:

1 − 𝑝 value + specificity. (4)

With suitable motifs, original profiles could be merged into
profiles of motifs by (2), and covered profiles could be deleted
so dimensions reduction would be performed. The more
original sequences were replaced by generalized motifs; the
linear bias was getting greater, but variance was getting lower,
and vice versa. To compromise between the bias and variance
criteria, model evaluation part was performed to select

necessary motifs. Other than training errors calculated by (5-
fold proportional) cross validation, number of dimensions
was also considered. Therefore, at most the first 𝑝 (𝑝 =

Sqrt{𝑁}) models with minimum training errors were set as
candidate models to be evaluated and combined with dimen-
sions (in descending order). The number of dimensions was
considered as the logarithm penalty [17], together with the
training errors, so the minimum value model was selected as
follows:

𝑖 ← argmin{training error + log (dimension)

∗
log (𝑁 ∗ 𝑘)

(𝑁 ∗ 𝑘)
} ,

(5)

𝑁 = min {number training data, 𝑏} , (6)

𝑘 =
min (dimension)
max (dimension)

, (7)

where 𝑏 was the number of candidate models with lower
dimensions than the model minimum training error.

The pipeline of the proposed algorithm is described in
detail below and its flowchart was shown in Figure 1.

Step 1 (initialization). Delete features (sequences) with zeros
variance profile. Set counters of 2 to 6 length sequences to
zero.

Step 2. Enter each loop from Step 3 to Step 5 until the counter
reaching 𝑛

𝑘
− 1 for length of sequences is from 2 to 6,

respectively (i.e., 𝑛 = 2, 3, 4, 5, 6).

Step 3. Select and sort first 𝑘𝑛/2 pairs of sequences withmin-
imum phylogenetic distance combined with profile Kruskal-
Wallis statistics in descending order as (1).

Step 4 (remove redundancy of the selected pairs). For each
current sorted pairs, delete any later selected pairs having
intersection with the current one. Finally select𝑚 = Sqrt(𝑘𝑛)
pairs at most.

Step 5. Merge the final selected pairs of sequences into the
generalized sequences/motifs. Combine profiles of original
sequences covered by the generalizedmotif using Linear Dis-
criminant Analysis (LDA) method with maximum Fisher’s
Rayleigh quotient value. Counter ← Counter + 𝑚.

Step 6. Sort the motifs by the specificity and Kruskal-Wallis
𝑝 value in descending order using (4).

Step 7. Evaluate models by (5). Treat original profiles by
selected suitable motifs using (2).

2.3. Other Methods

2.3.1. Kruskal-Wallis Test. Kruskal-Wallis [18] test is a non-
parametric method for testing whether samples originate
from the same distribution. The test assumes that all samples
from the same group have the same continuous distribution,
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Yes

Treat profiles by selected motifs using LDA method.

Normalization weights; the counter ← counter + 1

counter ← counter + 1

Figure 1: PMF algorithm flowchart.

and they are mutually independent. In this study, Kruskal-
Wallis 𝑝 value was used to rank features.

2.4. Information Gain Method. Information Gain [19] mea-
sures the classification ability of each feature with respect
to the relevance with the output class, which is defined as
Information Gain = 𝐻(𝑆) − 𝐻(𝑆 | 𝑥):

𝐻(𝑆) = −∑

𝑠∈𝑆

𝑝 (𝑠) log
2
(𝑝 (𝑠)) ,

𝐻 (𝑆 | 𝑥) = − ∑

𝑥∈𝑋

𝑝 (𝑥)∑

𝑠∈𝑆

𝑝 (𝑠 | 𝑥) log
2
(𝑝 (𝑠 | 𝑥)) ,

(8)

where 𝑆 and 𝑥 are features. Whenmeasuring the mutual rela-
tion between the extracted features and the class, Information

Gain is also known as mutual information. 𝑘-mer counting
values were discretized using two thresholds’ mean ± std. If
more than one sequence was with the same InformationGain
value, they were sorted by Kruskal-Wallis 𝑝 value.

2.5. Chi-Square Statistic. This method uses the Chi-square
statistic to discretize numeric attributes and achieves feature
selection via discretization [20]. The Chi-square value is
defined as

𝜒
2

=

𝑐

∑

𝑖=1

𝑘

∑

𝑗=1

(𝐴
𝑖𝑗
− 𝐸
𝑖𝑗
)
2

𝐸
𝑖𝑗

,

𝐸
𝑖𝑗
=

𝑀
𝑖
𝐵
𝑗

𝑁
,

(9)

where 𝑐 is the number of intervals, 𝑘 is the number of classes,
𝐴
𝑖𝑗
is the number of samples in the 𝑖th interval and the 𝑗th

class,𝑀
𝑖
is the number of samples in the 𝑖th interval, 𝐵

𝑗
is the

number of samples in the 𝑗th class, and𝑁 is the total number
of samples. 𝑘-mer counting values were discretized using two
thresholds’ mean ± std. If more than one sequence was with
the same Chi-square statistic, they were sorted by Kruskal-
Wallis 𝑝 value.

2.6. Linear Discriminant Analysis. Linear Discriminant
Analysis (LDA) is a typical variable transformation method
to reduce dimensions [16]. The key step of LDA is to
maximize the Rayleigh quotient:

𝐽 (𝑊) =
𝛼
𝑇

𝑆
𝐵
𝛼

𝛼𝑇𝑆
𝑊
𝛼
, (10)

where the “between-class scatter matrix” is defined as

𝑆
𝐵
= ∑

𝑘

(𝑝
𝑘
− 1)∑

(𝑚
𝑘
− 𝑚) (𝑚

𝑘
− 𝑚)


(𝐾 − 1)
(11)

and the “within-class scatter matrix” is defined as

𝑆
𝑊

=

𝐾

∑

𝑘

(𝑦 − 𝑚
𝑘
) (𝑦 − 𝑚

𝑘
)


(𝑁 − 𝐾)
. (12)

𝐾 is the number of classes, 𝑝
𝑘
is the number of the samples

within the 𝑘th class,𝑚
𝑘
is themean value of the samplewithin

the 𝑘th class, and𝑚 is the mean value of all the samples.
Traditional LDA requires the total scatter matrix to be

nonsingular. To deal with the singularity problems, classical
LDA method was modified in a way that a unit diagonal
matrix with small weights was added to the within-class
scatter matrix, if the scatter matrix is singular [14].

3. Results and Discussion

We first performed the PMF algorithm on pneumonia sam-
ples. We considered both 2-class problem (pneumonia: CAP
+ HAP, versus normal) and 3-class problem (HAP, CAP,
versus normal). Conventionally, due to the data imbalance,
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Table 2: Classification results of pneumonia data in 3-class problem.

Method Error rate Dimension Feature
On training data On test data

SVM/FMS 0.1895 0.2637 29 Microbes
SVM/PMF 0.062 0.0756 411 Sequences
SVM/Kruskal-Wallis 0.1187 0.5273 272 Sequences
SVM/Information Gain 0.143 0.2124 12 Sequences
SVM/Chi-square statistic 0.1743 0.5909 1280 Sequences
SVM 0.2187 0.3812 4390 Sequences
NNA/FMS 0.2013 0.3406 112 Microbes
NNA/PMF 0.2152 0.2081 786 Sequences
NNA/Kruskal-Wallis 0.2718 0.3363 85 Sequences
NNA/Information Gain 0.2354 0.4141 39 Sequences
NNA/Chi-square statistic 0.2649 0.3107 69 Sequences
NNA 0.442 0.6162 4390 Sequences

the accuracy for each class was used to measure the classi-
fication, which was equivalent to combining the specificity
and sensitivity in general classifications. Two widely applied
methods, nearest neighbor algorithm (NNA) and support
vector machine (SVM), were used to select the optimal
classifier set of motifs extracted by PMF for pneumonia
samples. Since SVM mainly suits pairwise classifications,
normal samples must be discriminated against the pneumo-
nia samples (CAP and HAP) before CAP and HAP were
classified in a 3-class problem. To evaluate the performance
of our (𝑘-mer) motif-oriented method, we compared our
results with those of previous methods, including the Feature
Merging and Selection algorithm (FMS) based on sequence-
microbe associations [14], as well as other 𝑘-mer counting
feature selection algorithms, for example, the Information
Gain method [19], Chi-square statistic method [20], and
primitive Kruskal-Wallis statistic method [18].

Figure 2 showed the learning curves for the training
data; combined with logarithm penalty evaluation, the best
evaluated models were selected with 1321 and 1369 runs of
PMF for the 3-class problem, with SVM and NNA classifiers,
respectively. Optimal models for the 2-class problem were
selected with 1218 and 1136 runs of PMF (with SVM and
NNA). As shown in Tables 2 and 3, our method had the
lowest mean error in both 3-class and 2-class problem (with
either SVM or NNA combined), compared with the previous
methods mentioned earlier.

In statistics, a receiver operating characteristic (ROC)
curve is the summary of both sensitivity and specificity for
various thresholds. ROC was constructed for each subset
of features (Figure 3). As shown, the optimal features that
are selected under the combined criteria of cross validation
andmodel evaluation possessed high specificity (∼80%) with
high sensitivity (∼70%) for the 3-class problem, indicating
the ability of our method. Moreover, even higher specificity
and sensitivity were obtained (>0.95) for the 2-class problem.
Noteworthy, PMF combined with SVM performed better in
the classification; therefore the results derived by PMF with

SVM for the 𝑘-mer counting profiles of pneumonia samples
were used for further analysis.

Heat map is a frequently used matrix of pairwise sample
correlations indicating anticorrelation or correlation using
a color scale, that is, green to red. Figure 4(a) showed that
the original data profile was almost invisible for patterns or
sample classifications, after being analyzed by our method,
since the original feature space had been reduced to a much
smaller space spanned by a few features (with the most
important variances retained).Therefore as shown in Figures
4(b) and 4(c), the heatmaps of the samples weremuch clearer
with high resolutions for classifications.

Profiles with reduced dimensions obtained by PMF
were sorted according to the Kruskal-Wallis 𝑝 values. The
top 5 motifs with 𝑝 value < 0.05 in 3-class problem
were “KCTCWT,” “TTCGHT,” “CGATCS,” “TCWCTA,”
and “TTWCGC”. Sequences (including antisense comple-
mentary sequences) covered by the first motif “KCTCWT”
(𝑝 value = 0.0126) were matched to the microbe taxonomic
results of Zhou et al. [2]. 6 out of 19 matched microbes
were among the top 20 genera suspiciously contributing
to pneumonia [2] (Table S1). 10 out of the remaining 13
microbes were also related to pneumonia [21–30] (Table
S1). The 2 motifs with 𝑝 value < 0.05 in 2-class problem
were “WTCGTC” and “ATCWCT”. Sequences covered by
first one “WTCGTC” (𝑝 value = 0.0288) were matched to
the published taxonomic data [2]. Five out of 6 matched
microbes were related to pneumonia [2, 29, 30] (Table S2).
Furthermore, by pinpointing the 25 (e.g., 19 + 6) matched
microbes in a phylogenetic tree constructed from the pub-
lished taxonomic data (using MEGA6 software [31] with
minimumdistancemethod), we observed that distribution of
the microbes was dispersed, indicating the diverse functions
performed by microbiota for human (Figure 5).

Our method was also tested on 𝑘-mer counting profiles
from dental decay sample. These samples were collected
from saliva and dental plaques separately. Combined with
logarithm penalty evaluation, the best evaluatedmodels were
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Figure 2: Learning curves of PMF algorithm for 3-class problem with NNA (a), for 3-class problem with SVM (b), for 2-class problem with
NNA (c), and for 2-class problem with SVM (d).

Table 3: Classification results of pneumonia data in 2-class problem.

Method Error rate Dimension Feature
On training data On test data

svm/FMS 0.0922 0.1279 42 Microbes
svm/PMF 0 0 551 Sequences
svm/Kruskal-Wallis 0.01 0 28 Sequences
svm/Information Gain 0 0.0116 26 Sequences
svm/Chi-square statistic 0.01 0.0417 127 Sequences
svm 0.0667 0.0116 4390 Sequences
NNA/FMS 0.1279 0.2393 20 Microbes
NNA/PMF 0 0.0833 361 Sequences
NNA/Kruskal-Wallis 0.0167 0.125 13 Sequences
NNA/Information Gain 0.0214 0.125 12 Sequences
NNA/Chi-square statistic 0.0381 0.125 26 Sequences
NNA 0.2667 0.5 4390 Sequences
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Figure 3: Continued.
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Figure 3: ROC curves ofmotif finding step of PMF algorithm for pneumonia samples (CAP+HAP) in 2-class problem (a, b), normal samples
(c, d), CAP samples in 3-class problem (e, f), and HAP samples in 3-class problem (g, h), with NNA or SVM.
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Figure 4: Heat map of 𝑘-mer counting profiles of original pneumonia data for 3-class problem (a), data after treating by PMF for 3-class
problem, (b) and data after treating by PMF for 2-class problem (c). Rows are retained motifs and columns are disease classes. From left to
right are 30 normal, 32 CAP, and 71 HAP samples for 3-class problem and 30 normal 103 pneumonia samples for 2-class problem.
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Figure 5: Phylogenetic relationship of identified microbiota signatures. Identified microbes matched by significant motifs are highlighted
with underline (“KCTCWT”) or strikethrough (“WTCGTC”).
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selected with 2330 and 2485 runs of PMF for dental plaques
(with SVM) and saliva samples (with NNA), respectively
(Figure S1). The results showed that our method could also
select suitable classifiers and perform better on the test data
than the previous and other methods (Tables S3 and S4).

4. Conclusions

In this paper, we presented the PMF method to analyze
the align-free 𝑘-mer counting profiles of 16S rRNA micro-
bial data. The improved pipeline systematically analyzed
relevance between each pair of sequences using minimum
distance phylogenetic trees. Moreover, PMF also considered
relationships between 𝑘-mer counting profiles and the disease
status. In addition, by combining original profiles using the
LDA method, PMF learned profiles of text strings suitable
for disease classification. Batching method also accelerated
PMF and avoided overfitting of training data. As a result,
via combing characteristics of sequences and classification
statistics of text profiles, PMF selected suitable motifs to
evaluate metagenome characteristics of human microbiota
disease.

In conclusion, we developed an improved motif-based
text mining algorithm, and the new pipeline was verified
by both pneumonia and dentes cariosus samples. As the
classification results have shown, it was demonstrated that
PMFwas an effective approach for finding informativemotifs
from training data, and it was validated well compared with
the previous study and other widely used methods. PMF per-
formed well and it could extend evolutionary/phylogenetic
approaches to perform supervised learning on microbiota
text data to discriminate disease/pathology status.
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