
Frontiers in Oncology | www.frontiersin.org

Edited by:
Harikumar KB,

Rajiv Gandhi Centre for Biotechnology,
India

Reviewed by:
Lekshmi R Nath,

Amrita College of Pharmacy, India
Federica Sangiuolo,

University of Rome Tor Vergata, Italy
Alexander Akhmedov,

University of Zurich, Switzerland

*Correspondence:
Li Qin

lqin@hnucm.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Molecular Targets
and Therapeutics,

a section of the journal
Frontiers in Oncology

Received: 28 October 2021
Accepted: 12 January 2022

Published: 16 February 2022

Citation:
Deng CF, Zhu N, Zhao TJ, Li HF,
Gu J, Liao DF and Qin L (2022)
Involvement of LDL and ox-LDL

in Cancer Development and
Its Therapeutical Potential.
Front. Oncol. 12:803473.

doi: 10.3389/fonc.2022.803473

REVIEW
published: 16 February 2022

doi: 10.3389/fonc.2022.803473
Involvement of LDL and ox-LDL
in Cancer Development and
Its Therapeutical Potential
Chang-Feng Deng1†, Neng Zhu2†, Tan-Jun Zhao1, Hong-Fang Li1, Jia Gu1,
Duan-Fang Liao1 and Li Qin1,3*

1 Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha,
China, 2 Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China, 3 Institutional
Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine,
Changsha, China

Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in
the rapid growth of cancer cells as well as the formation of metastatic lesions.
Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and
oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer,
colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and
ox-LDL play important roles during the occurrence and development of cancers. LDL can
deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of
PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-
binding proteins (SREBPs), which subsequently promotes cholesterol uptake and
synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized
low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to
induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer.
Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain
types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential
therapeutic effect of targeting lipid metabolism in cancer therapy warrants
more investigation.

Keywords: tumorigenesis, cancer development, LDL, ox-LDL, statins
INTRODUCTION

Cholesterol is an indispensable component of life, and the intracellular cholesterol levels are
maintained through a series of factors, including cholesterol synthesis, uptake, efflux, esterification,
metabolism, and transportation (1). Epidemiological studies have shown that cholesterol plays a
vital role in the occurrence and development of cancer, and high plasma cholesterol levels are
February 2022 | Volume 12 | Article 8034731

https://www.frontiersin.org/articles/10.3389/fonc.2022.803473/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.803473/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.803473/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lqin@hnucm.edu.cn
https://doi.org/10.3389/fonc.2022.803473
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.803473
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.803473&domain=pdf&date_stamp=2022-02-16


Deng et al. LDL and ox-LDL in Cancer
positively correlated with the death risk of certain cancer types
(2). It has been reported that every 10 mg/dL increase in
cholesterol increases the risk of recurrence of prostate cancer
by 9% (3). With the rapid proliferation of tumors, cancer cells
need large amount of cholesterol to meet membrane biogenesis
and biofunctional requirements (4). Statins mainly exert lipid-
lowering effect through mevalonate pathway. Studies have shown
that inhibition of mevalonate pathway can down-regulate the
expression of farnesyl pyrophosphate (FPP) and geranylgeranyl
pyrophosphate (GGPP) isoprenyls, the isoprenyl group is critical
in modifying G proteins involved in cancer cell proliferation,
migration, and survival (5). Various studies support the positive
roles of statins in human cancer suppression or patient’s
prognosis (6–8), and the statin users’ cancer-related mortality
and recurrence rate are significantly reduced (8).

In the process of tumorigenesis and progression, cancer cells
exhibit metabolic abnormalities to meet the elevated energy and
biosynthetic demands associated with the rapid growth of tumors
(9). It is worth mentioning that cholesterol is the precursor for
steroid hormones, bile acids, vitamin D, and oxysterols, and acts
as a key material for cell growth (10). Low-density lipoprotein
(LDL) is a critical lipoprotein and carrier of cholesterol mediating
the transfer of cholesterol from the liver to peripheral tissues (11).
When cellular cholesterol levels decrease, the expression of LDL
receptor (LDLR) increases, and the extracellular domain of LDLR
can bind to circulating LDL and promote its uptake through
endocytosis. After entering the cell, LDL will be delivered to the
lysosome. LDL is hydrolyzed by lipases, and then free cholesterol
is released for cell utilization (12). Recently, LDLR has been found
to be over-expressed in various cancers such as hepatocellular
carcinoma (HCC), lung cancer, breast cancer, colorectal cancer,
prostate cancer, and so on (13–15). Since cancer cells require
more cholesterol to obtain energy than normal cells, they may
raise their cholesterol levels through receptor-mediated
endocytosis of LDL (16). Abnormal lipid metabolism can
produce lipotoxicity that induces oxidative stress, which can
significantly increase reactive oxygen species (ROS) levels (17),
Gradual increase in oxidative stress can lead to the oxidation of
Abbreviations: ABCA1, ATP binding cassette transporters A1; ABCG1, ATP
binding cassette transporters G1; ACAT-1, coenzyme a-cholesterol
acyltransferase-1; BMI, Body mass index; ccRCC, clear cell renal carcinoma;
CD36, cluster of differentiation 36; CDHR, cadherin-related family member3; CT-
1, carditorphin 1; EMT, Epithelial mesenchymal transformation; ER, estrogen
receptor; FAK1, focal adhesion kinase 1; FPP, farnesyl pyrophosphate; GGPP,
geranylgeranyl pyrophosphate; GWAS, genome-wide association studies; HCC,
hepatocellular carcinoma; HER2, epidermal growth factor receptor 2; HIF-1a,
hypoxia-Inducible factor 1-Alpha; HMGA2, high mobility group AT-hook 2;
HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; LDL, low-density
lipoprotein; LDL-C, LDL-cholesterol; LDLR, LDL receptor; LOX-1, lectin-like
oxidized low-density lipoprotein receptor-1; LXR, liver X Receptor; miR-155,
microRNA155; miR-210, microRNA-210; MMPs, matrix metalloproteinases; NF-
kB, nuclear factor kappa-B; OS, overall survival; ox-LDL, oxidized low-density
lipoprotein; PCSK9, proprotein convertase subtilisin/kexin type 9; POX, proline
oxidase; PR, progesterone receptor; PSA, prostate-specific antigen; RAC1, Ras-
related C3 botulinum toxin substrate 1; RNS, reactive nitrogen species; ROS,
radical oxygen species; SPRED2, sprout-related EVH1 domain 2; SQLE, squalene
epoxidase; SREBP, sterol regulatory element-binding proteins; SRs, scavenger
receptors; TKI, tyrosine kinase inhibitor; TNM, tumor node metastases; VEGF,
vascular endothelial growth factor.
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intracellular LDL to oxidized low-density lipoproteins (ox-LDL).
Besides, oxidative stress promotes DNA damages in cancers,
which further results in malignant transformation and
carcinogenesis (18, 19). Elevated plasma ox-LDL has been
detected in breast cancer, gastric cancer, and colon cancer (20,
21). Since different types of cancer present different lipid
disorders, the lipid may play versatile roles according to the
types of cancer (22). Therefore, LDL and ox-LDL may have
variable effects during cancer development (Figure 1).

LDL and ox-LDL in Lipid Homeostasis
LDL is a complex particle containing proteins and lipids, and its
outermost layer is surrounded by a lipid core and monomeric
protein ApoB-100 (23). Cholesterol synthesized by the liver is
transported to cells throughout the body by LDL, and about 70%
of LDL-cholesterol (LDL-C) in plasma is degraded by LDLR-
mediated endocytosis (24). LDLR activity is the primary factor
determining circulating LDL levels. Due to its critical role in
cholesterol homeostasis, LDLR mediates various signaling
transduction in hepatocytes. Moreover, sterol regulatory
element-binding proteins (SREBPs) are transcription factors
for cholesterol production and absorption, and they regulate
one of the critical transcription pathways involved in cholesterol
homeostasis (25, 26). LDLR and several enzymes related to
cholesterol synthesis, including recombinant 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGCR) and squalene
epoxidase (SQLE), are directly regulated by SREBP (9). Once
LDL is endocytosed, it fuses with lysosomes and then is
hydrolyzed in the lysosome to release cholesterol, fatty acids,
and amino acids. When cellular cholesterol levels are low,
SREBP2 is cleaved and transferred to the nucleus, where it up-
regulates the expression of LDLR; when cellular cholesterol levels
are high, SREBP2 remains inactive, and LDLR expression is
down-regulated (27, 28). Proprotein convertase subtilisin/kexin
type 9 (PCSK9) is another key regulator of LDLR. PCSK9, as a
liver protease, can promote the degradation of hepatic LDL
receptors, leading to increased LDL-C levels (29–31). Up to
date, PCSK9 inhibitors evolocumab and alirocumab have been
successfully applied to reduce circulating LDL-C levels (32).
Excessive intracellular cholesterol can be esterified by acyl-
coenzyme A (cholesterol acyltransferases) and stored in lipid
droplets. Meanwhile, it can also be transported to the blood
through ATP binding cassette transporters A1 (ABCA1) or ATP
binding cassette transporters G1 (ABCG1), both ABCA1 and
ABCG1 are transcriptionally regulated by the Liver X Receptor
(LXR) (33). LXR helps maintain cholesterol homeostasis not
only through promotion of cholesterol efflux but also through
suppression of LDL uptake by enhancing E3 ubiquitin ligase
activity and mediating LDLR degradation (34).

LDL contains polyunsaturated fatty acids, which can be
oxidized by ROS and reactive nitrogen species (RNS) to
generate lipid peroxides, such as ox-LDL. Whereas ox-LDL, in
turn, stimulates ROS production (35). ApoB-100 is the protein
component of LDL, as well as a high-affinity ligand for LDLR
(36). Cysteine, lysine, histidine, and tyrosine residues in ApoB-
100 are also the oxidation targets of ROS and RNS, and the
oxidative modification of ApoB-100 may abrogate its function as
February 2022 | Volume 12 | Article 803473
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an LDLR ligand (37). Once ox-LDL is no longer recognized by
LDLR, it may be identified and combined with scavenger
receptors (SRs) such as lectin-like oxidized low-density
lipoprotein receptor-1 (LOX-1), scavenger receptor A (SR-A),
and cluster of differentiation 36 (CD36). Ox-LDL is a well-
known biomarker for cardiovascular diseases, and it enhances
endothelial cell adhesion by activating oxidative stress and
stimulates the expression of pro-inflammatory factors and
adhesion molecules, as well as chemokines in vascular
endothelial cells, leading to endothelial dysfunction (38). In
recent years, more and more studies have focused on ox-LDL
and cancers, and it has been found that the elevated levels of ox-
LDL, as well as LOX-1 and CD36, are related to the increased risk
of various cancers. Ox-LDL promotes epithelial-mesenchymal
growth, cytoplasmic transformation, induces protective
autophagy, activates inflammasomes, and the promotes release
of growth factors, cytokines, and other pro-inflammatory
markers to stimulate oncogenic signals, resulting in cell
mutations and chemotherapy resistance (39).

LDL and ox-LDL in Cancer Development
Alterations in blood cholesterol levels (decreased or increased) are
critical phenomena in many malignancies (2). Hyperlipidemia
has been shown to increase the risk of cancer (40), and cancer
cells tend to accumulate a high amount of cholesterol either by
up-regulating cholesterol biosynthesis or by enhancing
cholesterol uptake for rapid cancer development (41). Increased
intracellular cholesterol content has been observed in the tissues
of breast cancer, ovarian cancer, and renal cancer (42, 43).
Overproduction of LDLR is an important mechanism for
cancer cells to obtain more essential fatty acids through LDLR
endocytosis. It has been found that the up-regulation of LDLR
can promote the rapid uptake of LDL in most cancers. The
Frontiers in Oncology | www.frontiersin.org 3
expression of LDLR is affected by feedback regulation of LDL-C
levels in normal human prostate cells, while this feedback
regulation is commonly lost in prostatic cancer cells (44).

Epithelial mesenchymal transformation (EMT) is a process of
losing epithelial apical-basal polarity and cell-cell adhesion and
transiting to invasive mesenchymal cells. After EMT, cells
possess a number of malignant properties to carcinoma cells,
including invasive behavior, stemness, and greater resistance to
chemotherapy and immunotherapy (45). Many EMT
transcription factors are regulated by PI3K/Akt and ERK
signaling pathways to promote cancer cell proliferation and
migration (46). In addition, PI3K/Akt regulates cancer cell
growth by activating mTOR, which may promote cholesterol
synthesis and uptake by activating SERBP. STAT3 activation is
associated with transcription of genes involved in cell
proliferation, migration, and survival, as well as increased
expression of vascular endothelial growth factor (VEGF) and
matrix metalloproteinases (MMPs) that favor angiogenesis (47).
Preclinical studies have highlighted the importance of LDL in
supporting the growth and proliferation of different cancer types
by tuning numerous signaling pathways (PI3K/Akt, ERK,
STAT3, etc.) (48–50). Alternatively, with high LDL levels,
tumors may evade immune surveillance; LDL has been shown
to limit the antitumor therapeutic effect of human gd T cells in
vivo, thereby enhancing tumor metastasis (51). In line with the
results, chronic lymphocytic leukemia patients show a high
incidence of elevated LDL cholesterol and their survival rates
have improved after treatment with statins (52). Clinical data
have shown that higher levels of cholesterol and LDL are
associated with lower overall survival (OS) of patients treated
with anti-PD1/L1 (53). Moreover, LDL cholesterol promotes the
lymph node metastasis of colon cancer cells by inducing the
activation of microvascular endothelial cells (54). It is also worth
FIGURE 1 | LDL and/or ox-LDL bind to their receptors (LDLR, LOX-1, and CD36) respectively to promote tumorigenesis, cancer cell proliferation, cancer
angiogenesis, as well as cancer invasion and metastasis.
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noting that LDL has been found to enhance cell stemness (55).
Overall, these studies reveal that LDL has deleterious effects on
cancer development (Figure 2).

Elevated levels of ox-LDL are a significant feature of lipid
metabolism disorders and inflammation and have been
implicated in many aspects of cancer, ox-LDL has been shown
to induce mutagenesis, stimulate proliferation, induce
autophagy, and initiate metastasis. For example, Esterbauer
et al. showed that components of ox-LDL such as 4-
hydroxynonenal could stimulate primary rat hepatocytes
mutagenesis in vitro (56). In addition, ox-LDL can potentially
contribute to the induction of cancer by increasing the
expression of microRNA-210 (miR-210) (57). Ox-LDL
upregulates hypoxia-inducible factor-a (HIF-a) expression and
increases miR-210 expression, which leads to downregulation of
sprout-related EVH1 domain 2 (SPRED2), a protein that reduces
cell migration, leading to a higher risk of cancer and vascular
diseases (58). Other studies have shown that administration of
ox-LDL increases the proliferation of patient-derived
glioblastoma xenografts and ovarian carcinoma cells (59, 60).
These data support an effect of ox-LDL on promoting
tumor growth.

Autophagy is an evolutionarily conserved intracellular self-
defense mechanism, and organelles and proteins are degraded
Frontiers in Oncology | www.frontiersin.org 4
into autophagy bubbles through fusion with lysosomes. Cells
thereby prevent the toxic accumulation of damaged or
unnecessary components, but also recycle these components to
sustain metabolic homoeostasis (61). Recent studies suggest that
autophagy is a powerful survival strategy for cancer cells, by
recycling intracellular components in conditions of metabolic
stress or during anticancer treatments (62). Autophagy is an
important mechanism for ox-LDL to participate in cancer
progression. Ox-LDL activates the key metabolic enzyme
oproline oxidase (POX) and promotes cancer cell autophagy
through the mechanism related to ox-LDL and PPARg. This
study also found that the effect of POX on autophagy was
achieved by producing superoxide that took effects by
regulating beclin-1 (63). Another study showed that ox-LDL
was capable of inducing autophagy in part through activation of
microRNA155 (miR-155) in HUVEC cells (64). By activating
autophagy, cancer cells undergoing EMT can gain resistance to
cell death as a strategy for survival when spreading outside the
tumor mass (65).

Recent evidence suggests that as specific receptors for ox-
LDL, CD36, LOX-1 are upregulated in and contribute to the
pathophysiology of dyslipidemia-related diseases, such as
cardiovascular disease and obesity (66, 67). Studies have found
that LOX-1 is upregulated and promotes tumor development in
FIGURE 2 | Signaling pathways of LDL on cancer progression. The accumulation of LDL can damage the anti-tumor effects of T cells. Through up-regulating the
expressions of stemness genes (Sox2, Bmi 1, Oct4, Nanog), LDL supports cancer metastasis. LDL activates p38 and MAPK as well as PI3K/Akt/mTOR signaling
pathways, leading to cancer proliferation and metastasis. Besides, through activation of PI3K/Akt signaling, LDL compromises the TKI anti-tumor efficacy against cancer
cells. LDL decreases adhesion molecules (CD226, Ocludin, Claudin 7, CDHR3), which help cell migration. Moreover, LDL can activate HER2/Akt/ERK signaling pathway
and up-regulate STAT3 target genes (including anti-apoptotic genes and MMP-9, Cyclin D1, COX-2) expression, which promote the survival and invasion of cancer cells.
February 2022 | Volume 12 | Article 803473
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different cancers such as breast cancer, colorectal cancer, and
ovarian cancer. Together, the combination of ox-LDL and LOX-
1 stimulates ROS production, which leads to oxidative DNA
damage (39). Besides, it can promote cancer cell proliferation,
invasion, and angiogenesis by activating nuclear factor kappa-B
(NF-kB) and up-regulating the expression of VEGF, MMP-2,
andMMP-9 (20, 39). The scavenging receptor CD36, a scavenger
receptor for ox-LDL, is found to be highly expressed in multiple
cell types and mediates lipid uptake, immunological recognition,
inflammation, molecular adhesion, and apoptosis (68).
Furthermore, addition of ox-LDL has been shown to stimulate
the proliferation of glioblastoma patient-derived xenografts,
whereas siRNA-mediated knockdown of CD36 resulted in
reduced proliferation. Ox-LDL is internalized by CD36 and the
accumulation of ox-LDL and oxysterol metabolites can lead to
overexpression of carditorphin 1(CT-1), which subsequently
promotes inflammation, proliferation, and angiogenesis (60).
Park et al. showed that the binding of ox-LDL to CD36
enhanced the activation of focal adhesion kinase 1 (FAK1) and
Ras-related C3 botulinum toxin substrate 1 (RAC1) (69), which
might be in part responsible for the cellular morphological
changes necessary for the initiation of EMT, including loss of
Frontiers in Oncology | www.frontiersin.org 5
polarity and actin polymerization (70). As an important signal
membrane transporter, CD36 is involved in the uptake of ox-
LDL and binds with ox-LDL to participate in EMT signal
transduction. All of these effects are shown in Figure 3.
DISSECTING THE ROLES OF
LDL AND OX-LDL IN PARTICULAR
TYPES OF CANCERS

LDL and ox-LDL in Breast Cancer
Breast cancer is the second leading cause of cancer-related deaths
in females (71). Breast cancer is a heterogeneous disease, with
major subtypes defined by expression of estrogen receptor (ER),
progesterone receptor (PR), and epidermal growth factor
receptor 2 (HER2) receptor (72). The major subtypes are as
follows: luminal (ER-positive), HER2-like (mainly ER-negative
and HER2-positive), and basal-like (mainly ER-negative, PR-
negative, and triple-negative). The HER2-like and basal-like are
the most aggressive and these subtypes are often used to predict
prognosis and treatment responses (73).
FIGURE 3 | Ox-LDL binds to its receptor CD36 or LOX-1 and participates in tumorigenesis and development. Ox-LDL can cause DNA damage by generating ROS,
thereby increasing the risk of carcinogenesis. Besides, ox-LDL binds to LOX-1 and activates NF-kB target genes (VEGF, MMP-2, MMP-9) to increase cell
proliferation, motility, and angiogenesis. In addition, ox-LDL is also internalized by CD36 and further accumulates oxysterol metabolites, leading to the cytokine CT-1
expression that can promote inflammation and angiogenesis in cancer. Ox-LDL increases the expression of miR-210 by activating the expression of HIF-a and then
down-regulating SPRED2, which leads to cancer cell migration. Furthermore, through triggering the PI3K/Akt/GSK3b cascade, ox-LDL can promote EMT in cancer.
Autophagy is an important mechanism of ox-LDL involved in cancer EMT, ox-LDL induces cancer cell protective autophagy by activating miR-155 and regulating
prolinase POX. Through the activation of POX, ox-LDL produces superoxide and up-regulates beclin-1, thereby mediating cancer cell autophagy.
February 2022 | Volume 12 | Article 803473
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A positive correlation between LDL-C and breast cancer
progression has been observed. A prospective study in Portugal
showed that plasma LDL-C levels were positively correlated with
the tumor volume, breast cancer patients with higher levels of
LDL-C at diagnosis have larger tumors, higher differentiation
grade, and proliferative rate (74). Two Mendelian randomized
studies support the finding that the increased plasma LDL-C is
associated with a higher risk for breast cancer (75, 76). In
contrast, two studies found that LDL-C was negatively
associated with breast cancer risk (77, 78). Confounding
factors such as region, diet, and comorbidities, as well as
individual researchers’ biases in the selection of populations
and measurement methods, might have contributed the
differences in clinical studies (79).

The LDL-C exerts its effects on breast cancer cells through a
variety of mechanisms. LDL promotes the proliferation and
migration of ER-negative cell lines, but not ER-positive cancer
cells. LDL-C can also induce the proliferation of the HER2-
positive breast cancer cell line BT-474 (48). Clinicopathological
studies have shown that with the increase in LDLR and acyl
coenzyme a-cholesterol acyltransferase-1 (ACAT-1), the
accumulation of cholesterol ester increases accompanied by
the advancement of tumor grade (80). The increased LDL-C
internalization and esterification may explain these differences
in HER2-like or triple-negative breast cancer cells. They present
with increased expression of LDLR and increased expression
and activity of ACAT-1, which lead to a more remarkable
ability to absorb, store, and utilize exogenous cholesterol in cells
(81). A potential mechanism for LDL-promoted breast
tumorigenesis is to increase phosphorylation of oncogenic
signaling pathways, Akt and ERK via activating HER2 (48,
82). LDL also promotes the progression and metastasis of breast
cancer through Akt-induced EMT and angiogenesis, increases
the levels of mesenchymal markers Slug, vimentin, and b-
catenin, and decreases in expression of adhesion molecules
(cadherin-related family member3(CDHR), CD226, Claudin 7
and Ocludin), thereby promoting the migration and invasion of
breast cancer cells (48, 83). Beyond in vitro studies, Gallagher et
al. found that elevated LDLR expression in tumor accelerated
LDL-C-mediated breast cancer growth in hyperlipidemic mice,
In contrast, LDLR silencing and lower circulating levels of LDL-
C retard tumor growth in HER2 positive and triple-negative
breast cancer mouse models (84). So far, ample studies have
emphasized the importance of LDL in breast cancer occurrence
and development.

It has been found that elevated levels of ox-LDL are detected in
the plasma of breast cancer patients, and the elevated plasma ox-
LDL levels are positively correlated with the increase of breast
cancer risk (85, 86). In addition, as the main receptor for
internalization of ox-LDL, LOX-1 is overexpressed in 70% of
human breast cancers and has been shown to be positively
correlated with tumor grade and stage (87). Ox-LDL promotes
the proliferation of the non-tumorigenic mammary epithelial cell
line MCF10A cells and up-regulates the pro-inflammatory signals.
Concretely, ox-LDL stimulates the proliferation of breast cancer
cells via miR-21 in a dose-dependent manner, thereby activating
Frontiers in Oncology | www.frontiersin.org 6
the PI3K/Akt signaling pathways (88). Additionally, hominoid-
specific oncogene, TBC1D3, a protein that regulates migration of
human breast cancer cells have been found to up-regulate LOX-1
expression by activating the TNFa/NF-kB signaling. Ox-LDL binds
to LOX-1 and activates inflammatory pathways through NF-kB,
leading to transformation (13, 88). In contrast, depletion of LOX-1
by siRNA inhibits the invasion andmigration of transformed breast
mammary epithelial cells (13). Similarly, inhibition of LOX-1 by an
antibody or a recombinant LOX-1 protein substantially suppresses
the transendothelial migration of human breast cancer cells (89–
91). Furthermore, LOX-1D4 is a splice variant of LOX-1 expressed
in humans that lacks exon 4 (92). Due to the specific metabolic
environment of different breast cancer phenotypes, LOX-1 and its
splicing variant LOX-1D4 may play a carcinogenic role in the
specific regulation of expression patterns. A full understanding of
LOX-1 and LOX-1D4 molecular pathways in breast cancer may
help develop a possible therapeutic option specific for different
phenotypic cancer subtypes (87). As indicated above, a more in-
depth study of ox-LDL and LOX-1 as potential mediators for the
cholesterol-breast cancer link should be performed.

LDL and ox-LDL in Colorectal Cancer
Recently, the field of cancer research has directed increased
interest towards subsets of obesity-associated cancers.
Specifically, data shows that in countries with high obesity
prevalence, colorectal cancer incidence is high (93). Body mass
index (BMI) is an important indicator of the survival of cancer
patients, including colorectal cancer (94).

High levels of LDL-C are associated with increased colorectal
cancer risk (95, 96), whereas the levels of free cholesterol and
LDL-C in serum are found to be significantly lower in patients
with lymph node metastasis than in patients without lymph node
metastasis (97). Similarly, LDL-C acts as an independent
prognostic factor for poor prognosis in metastatic colorectal
cancer patients (98), and these results corroborate that higher
LDL-C promotes distant metastasis in patients with colorectal
cancer (98, 99). LDLR is essential for transporting serum LDL
into cells. Several studies have evaluated the LDLR expression in
colorectal cancer and have observed increased expression in
colorectal cancer tissues, especially in colorectal cancer patients
at stage N and M (55, 100). Serum LDL-C levels in advanced
cancer patients decreased due to the increased metabolic
demands in cancer cells. Therefore, a decreased in blood
cholesterol level in colorectal cancer patients may be a
consequence of increased uptake of blood cholesterol by cancer
cells; it is less likely to be a cause for colorectal cancer initiation
(101). Study also showed that LDL could enhance stemness by
increasing stemness-related genes, such as Sox2, Oct4, Nanog,
and Bmi1 in colorectal cancer cells, increased ROS levels that can
further activate MAPK pathways, and stimulated intestinal
inflammation and colorectal cancer (55). Together, these
studies hinted that LDL has deleterious results in colorectal
cancer development.

A case study in Japan showed a significant positive association
between elevated levels of plasma ox-LDL and risk of colorectal
cancer (102). ox-LDL and oxidative stress may increase the risk of
February 2022 | Volume 12 | Article 803473
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obesity-related colorectal cancer via NF-kB signaling and could
be used as potential predictive and prognostic biomarkers for
obesity complicated with colorectal cancer (103). Other research
has found LOX-1 to be more directly linked to the risk of
colorectal cancer compared to ox-LDL (104). One study on the
involvement of LOX-1 in colorectal cancer has shown that LOX-1
expression is increased in 72% of human colon carcinomas, and
overexpressed in 90% of highly aggressive and metastatic tumors
(104). Furthermore, LOX-1 expression is positively correlated
with cancer stage and grade than healthy counterparts (105). It is
worth noting that a recent study reported that the serum sample
and 100 tissue samples from 238 colorectal cancer patients
showed high levels of LOX-1 compared with those who present
low serum levels, high levels of LOX-1 determine a poorer OS and
prognosis of patients. Therefore, LOX-1 may help in liquid biopsy
detection and cancer diagnosis and treatment under the premise
that cancerous tissues are not available (106). LOX-1 takes its
effects in colorectal cancer via upregulating of VEGF‐A165, HIF-
1a, and b‐catenin, which are involved in cell migration and
metastasis (107).

LDL and ox-LDL in Pancreatic Cancer
pancreatic cancer is one of the most devastating malignancies,
with a 5-year OS rate of less than 5% (108). Currently, treatment
is dependent on surgical resection. However, only about 25% of
pancreatic cancer patients are eligible for surgical resection due
to pancreatic cancer invasion (109). Genome-wide association
studies (GWAS) show that genetic factors are the primary risk
factors related to pancreatic cancer; moreover, smoking, diabetes,
drinking, obesity, chronic pancreatitis, and diet are all known
risk factors for pancreatic cancer (110–112). A study found that
genetically higher levels of LDL-C were associated with
pancreatic cancer (113). As study showed that lipoprotein
metabolic processes, in particular cholesterol uptake, are
activated in the tumor. These metabolic processes increase the
amount of cholesterol and the expression of LDLR in pancreatic
tumor cells. Clinical data suggest that overexpressed LDLR is
related to a high recurrence of pancreatic cancer (114, 115). High
cholesterol intake is associated with an increased risk of
pancreatic cancer (116), and knockdown of LDLR in patients’
cells greatly reduces cholesterol uptake and alters its distribution,
decreases cancer cell proliferation, and limits the activation of the
ERK1/2 survival pathway. LDL-C can promote the proliferation
of pancreatic cancer cells by activating the STAT3 pathway and
upregulating the levels of oncogenes such as Bcl-2, Bcl-xL,
survivin controlled by this transcription factor in pancreatic
cancer cells (49). These findings suggest that LDLR can be a
novel metabolic target in limiting patients progression
(114, 115).

LOX-1 is overexpressed in pancreatic cancer tumors
compared with adjacent normal tissues, stimulates the
migration of pancreatic cancer cells and invasion of lymph
nodes by inducing EMT, and has been associated with higher
tumor node metastases (TNM) staging and poorer OS (117).
Recent study has found that ox-LDL transforms into a glycolytic
phenotype by promoting metabolism and inducing
cytoprotective autophagy, thereby making pancreatic cancer
Frontiers in Oncology | www.frontiersin.org 7
cells resilient or resistant (118) LOX-1 can up-regulate the
expression of c-Myc, and the transcription of high mobility
group AT-hook 2 (HMGA2). HMGA2 is up-regulated in many
cancers, which can regulate cell proliferation and differentiation,
as well as promote metastasis (119). Furthermore, LOX-1 is
associated with pancreatic cancer drug resistance, the long-chain
non-coding RNA GSTM3TV2 can up-regulate LOX-1 and
promote the resistance of pancreatic cancer cells to
gemcitabine (120). These findings suggest the potential role of
ox-LDL receptors in the development of pancreatic cancer.

LDL and ox-LDL in Prostate Cancer
Prostate cancer is the second most common malignancy
worldwide in men (121). The growth of prostate cancer cells
depends on the steroidal hormone androgen. Cholesterol is a
common precursor of steroid hormones and plays a vital role in
prostate differentiation and growth (120, 122). Epidemiological
studies have shown strong or weak correlations between
differences in plasma LDL-C concentration and the incidence
of prostate cancer, though some are contradictory. Several
studies failed to find any association between LDL-C and
aggressive prostate cancer risk (123, 124), while a sizeable
Mendelian randomization study showed a weak association
between higher LDL-C levels and an increased risk of
aggressive prostate cancer (125). In contrast, in another
prospective study from the Netherlands, there is a positive
association between prostate cancer risk and serum
concentrations of LDL-C. Moreover, LDL-C is associated with
higher cancer prevalence and more advanced tumor phenotypes
(122, 126–128) These divergent results may be explained by the
heterogeneity in the approaches used and significant differences
in the follow-up of these studies.

Incubation of prostate cancer cells with LDL can significantly
increase its proliferation, migration, and invasion (129). In
addition, LDL-mediated effects on proliferation of prostate
cancer cells are caused by PTEN loss and activation of Akt and
ERK signaling pathways, and further activates SREBP,
upregulating LDLR leading to cholesterol accumulation and
cholesterol ester production (130). Moreover, LDL-C has been
associated with higher cancer prevalence and more advanced
tumor presentation. In the TRAMP mouse model, an
autochthonous model of prostate cancer, hypercholesterolemia
is shown to result in increased tumor volume and progression as
well as increased tumor incidence and metastases to the lung
(131). Furthermore, increased activation of de novo synthesis of
cholesterol in tumor epithelial cells and influx of LDL from the
surroundings tissues via LDL-R and SR-B1 promoted the bone
metastasis of prostate cancer (132). It is noteworthy that normal
cholesterol feedback of LDLR messages and protein is lost in
prostate cancer (44). Because of the lack of LDLR feedback
regulation, prostate cells obtain more essential fatty acids and
increase prostaglandin 2 synthesis, leading to uncontrolled
growth of prostate cancer cells (133). These studies suggest
that prostate cancer may rely on cholesterol for metabolism
and that low levels of LDL in cancer reflect the highly invasive
nature of tumors. This suggests that LDLR may be an attractive
therapeutic target for prostate cancer cells (134).
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Elevated plasma ox-LDL levels and LOX-1 expression may
indicate advanced prostate cancer and lymph node metastasis.
The cell signaling pathway in human prostate cancer cells (PC-3)
treated with ox-LDL analyzed by phosphorylated protein chip is
of importance. Ox-LDL can affect a variety of signaling pathways
of PC-3 cells, including b-catenin, cMyc, NF-kB, STAT1, STAT3,
and apoptosis-related signaling pathways (including P27 and
caspase-3), which affects the proliferation, migration, and
invasion of prostate cancer cells, and in vitro experiments
confirmed this (135). ox-LDL contributes to tumor progression
through LOX-1 activation. Ox-LDL significantly triggers LOX-1
significantly and proportionally increases the expression of pro-
angiogenic markers VEGF, MMP-2, and MMP-9, thereby
promoting tumor metastasis (136). In addition, LOX-1 activated
by ox-LDL reduces the expression of epithelial markers (E-
cadherin and plakoglobin) and the expression of mesenchymal
markers (vimentin, N-cadherin, snail, slug, etc), which lead to
EMT that can further induce the invasion and migration of
prostate cancer cells (20). All these observations suggest the use
of ox-LDL and LOX-1 as a therapeutic target for prostate cancer.

LDL and ox-LDL in Renal Cancer
Renal cancer is a common type of human malignancies. Clear cell
renal carcinoma (ccRCC) is the primary subtype of renal cancer,
characterized by abnormal lipid accumulation of cholesterol,
cholesterol esters and triglycerides (137). Although abnormal
LDL level is related to increased cancer risk (138), the
correlation between high LDL levels and renal cancer risk is not
consistently observed in clinical studies. Several recent studies
have focused on the relationship between LDL and renal cancer
and have come to conflicting conclusions. Two studies reported
that LDL is elevated in renal cancer and is positively associated
with cancer risk (138, 139). While contrary to the results of the
study conducted by Zhang et al. this could be explained by the fact
that the data in control groups differed between the two studies,
and the serum lipid levels in the Zhang et al. controls were much
higher. Different dietary patterns and lifestyles in north and south
China may account for the discrepancy (140). It has been proved
by in vitro and in vivo experiments that LDL-C decreases the anti-
tumor effect of tyrosine kinase inhibitor (TKI) on renal cancer
and endothelial cells by activating the PI3K/Akt pathway (50).
Surprisingly, low LDLR expression was found in renal cancer
subtypes of ccRCC cells, while SR-BI expression was significantly
increased. High cholesterol levels in ccRCC were partly related to
SR-BI-mediated HDL uptake (141, 142). The results of large-scale
clinical trials indicated a direct correlation between LDL-C and
renal cancer risk, encouraging more basic research in the future to
elucidate the potential mechanisms of those correlations.

There is not yet an epidemiological study examining ox-LDL
and renal cancer, while in vitro analysis of ccRCC showed that
LOX-1 is expressed both in the cytoplasm and in the nucleus
(143). It is known that diet-induced hypercholesterolemia
increases the expression of LOX-1 in renal arterioles, and
subsequently facilitates the uptake and cytotoxicity effects of
ox-LDL (144) Ox-LDL enhanced the LOX-1 expression in
tubular epithelial cells in a dose-dependent manner within a
certain concentration range and mediates EMT progression in
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rat renal tubular epithelial cells NRK-52E. Moreover, HK-2 cells
derived from normal kidneys exposed to ROS at a non-cytotoxic
level for a long term showed increased proliferation, anchored
independent growth, and enhanced tumorigenicity in nude mice
(145). These studies provide direct evidence for the malignant
transformation of renal tubular epithelial cells induced by
oxidative stress.

LDL and ox-LDL in HCC
HCC is the most prevalent cancer with a poor prognosis
worldwide (146). Lipid seems to play a fundamental role in the
development and progression of HCCs (147). As a key organ in
lipid metabolism, liver is involved in the production of
apolipoproteins, endogenous lipids and lipoproteins, which
depend on the integrity of biofunctions of liver. Therefore,
liver function in patients with HCC is significantly impaired,
resulting in a distinctly abnormal patterns of serum lipids and
lipoproteins (148). Multiple studies have shown that a decrease
in both plasma HDL and LDL was slightly to significantly in
HCC patients (149, 150). A large nationwide population-based
study in South Korea showed that low lipid profile is an
independent risk factor and preclinical marker of HCC (151).
Similarly, in a report in Japan, low LDL was associated with
increased mortality of HCC (152). However, there are some
reports that the changes in lipoprotein levels and their prognostic
significance in HCC are contradictory, and elevated LDL
predicted a poorer prognosis for patients with HCC (153).
Another study showed that low plasma HDL, high plasma
LDL, and especially the combination of two, were significantly
related to more aggressive HCC phenotype and the combination
was significantly associated with a higher hazard ratio for death
(154). There seems to be a two-way process because the presence
of HCC is related to the aforementioned changes in plasma lipid.
Low lipid profiles may reflect the degree of liver damage. When
HCC occurs, the metabolism and synthesis of cholesterol are
impaired, resulting in a decrease in plasma cholesterol levels
(155). Meanwhile, the cancer cells increase cholesterol
consumption to maintain faster proliferation, and changes in
lipid content can alter HCC biological functions (154).

Previous study showed that serum cholesterol might promote
the expression of VEGF, MMP-2, and MMP-9 by activating the
NF-kB signaling pathway in HCC cells, indicating the pro-
inflammatory effects of cholesterol (156). In non-alcoholic fatty
liver disease mice, a high-fat diet can induce HCC. Following
initiation of the obesogenic diet, the mice developed obesity,
insulin resistance, hypertriglyceridemia, and elevated LDL-C,
and eventually developed HCC (157, 158). Besides, LDLR and
cholesteryl ester levels are higher in the murine HCC tissues
(159). Similarity, as described in human HCCs, LDLR is also up-
regulated in cancer cells and stimulates cell proliferation (160).

Activation of oxidative stress is another key pathogenic
mechanism. Plasma malondialdehyde and ox-LDL levels are
significantly increased in HCC patients, and the oxidative
stress was usually reversed after HCC resection (161). In
addition, the uptake of ox-LDL via the CD36-Nogo-B-YAP
pathway consequently drives the development of NAFLD-
associated HCC (162).
February 2022 | Volume 12 | Article 803473

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Deng et al. LDL and ox-LDL in Cancer
LDL and ox-LDL in Ovarian Cancer
Ovarian cancer is the most lethal gynecological malignancy in
women. Patients with early ovarian cancer usually do not have
cancer-specific symptoms, as a result, most are diagnosed with
advanced ovarian cancer (163). Epidemiological studies of ovarian
cancer risk and lipid levels are contradictory. A recent meta-
analysis showed that the differences in plasma LDL-C between
ovarian and non-ovarian cancer patients are not significant (164).
In the Mendelian randomization analysis of 22,406 patients with
invasive epithelial ovarian cancer, no association was found
between the genetic variation that controls circulating LDL-C
and the risk of epithelial ovarian cancer (165). While in a
retrospective clinical study involving 1,550 ovarian cancer
patients that assessed blood lipid characteristics, it was found
that compared to the benign ovarian tumor group, levels of LDL-C
and TC in the ovarian cancer group were significantly lowered
(166). It should be noted that intracellular cholesterol levels were
found to be elevated in high-grade serous ovarian cancer cells and
malignant ascites (167). This might be explained by the highly
malignant nature of ovarian cancer, which progresses quickly.
Rapid tumor growth requires large amount of consumption of
cholesterol and which subsequently leads to decreased plasma
levels of LDL-C (168). Furthermore, ovarian cancer patients with a
low blood cholesterol level at the time of diagnosis show
improvement in blood cholesterol level after successful primary
surgery and chemotherapy (169).

Clinical case-control studies suggest that plasma ox-LDL
levels are associated with an increased breast and ovarian
cancer risk. Ox-LDL is mitogenic to ovarian cancer cells. ox-
LDL at a dose of 0.1 mg/mL stimulates the proliferation of
ovarian cancer cell lines CAOV3 and SKOV3 and reduces the
sensitivity of cancer cells to cisplatin (85, 86). Alternatively, LXR
agonists and fluvastatin can reverse the effect of ox-LDL,
suggesting LXR ligands and statins may be effective in the
treatment of ovarian cancer (60). While the data remain
limited, available evidence suggests that abnormal lipoprotein
profiles might promote ovarian cancer development.

LDL and ox-LDL in Gastric Cancer
Gastric cancer is the second most common cancer worldwide
and the third leading cause of cancer-related deaths (121). A
prospective study reveals that higher LDL-C to be a risk factor for
gastric cancer, and compared with healthy controls, serum LDL-
C levels were lower in patients with gastric cancer; whereas, LDL-
C levels in gastric cancer tissues are higher than normal tissues
(170). More importantly, increased LDL levels favor cancer
metastasis to lymph nodes (171). It is possible that diagnosed
cancer at its late stage may cause a reduction in serum LDL-C
levels due to a rapid cell division. Alternatively, through the LDL-
lowering effect, recent studies have demonstrated that statins
reduce the risk of gastric cancer by inhibiting cancer cell growth
and cell death (172). Despite multiple researches supporting the
prognostic value of serum lipid levels in gastric cancer, a solid
association has not been confirmed (170, 173).

Recent studies showed that the blood levels of ox-LDL
increased in gastric cancer patients, and LOX-1 was up-
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regulated in gastric cancer tissues (21, 174). High expression of
LOX-1 is not only related to cancer invasion and lymph node
metastasis but is also associated with TNM stage and OS reduction
(174). In vivo and in vitro experiments demonstrated that ox-LDL
could activate the NF-kB signaling pathway via LOX-1, with
subsequent upregulation of VEGF-C and promotion of the
lymphatic metastasis of gastric cancer (21). Besides, LOX-1
promotes cell migration and invasion by activating the PI3K/
Akt/GSK3b pathway and then enhances the EMT process of
gastric cancer cells (174). These results suggest that LOX-1 may
represent a promising prognosis factor for gastric cancer and
serves as a novel molecular target for gastric cancer therapies.

LDL and ox-LDL levels and their possible effects on the
development of those types of cancers are summarized in
Tables 1, 2 below, and different roles of LDL and ox-LDL in
cancer progression summarized in Table 3.

TARGETING LDL AND OX-LDL FOR
CANCER THERAPY

Given the association between high cholesterol levels and cancer
progression, treatments aiming to lower serum cholesterol levels
may have beneficial effects on cancer. Considering the role of
LDL/ox-LDL in cancer occurrence, progression, and metastasis,
targeting the receptors of LDL and ox-LDL may be a clinically
valuable therapeutic strategy. It has been shown that the
inhibition of LDLR activity in pancreatic and breast cancer
cells can significantly reduce cholesterol absorption and
subsequent inhibition of cell proliferation (84, 115). Many
malignant cancers have an increased demand for lipoprotein
due to the requirement for lipids for the rapid proliferation of the
tumors, which is met by the increased availability of LDL
through upregulation of LDLR. LDLR is not downregulated,
especially in prostatic cancer with the elevation of LDL level in
the body (44). Thereby, taking LDL as a carrier, anticancer drugs
can target tumor cells more precisely and effectively. Other
studies have shown that targeting ox-LDL-related receptors has
the potential to reduce metastasis in a variety of in situ cancer
models. In xenograft models, the inhibitory effect of LOX-1
significantly inhibits the formation of metastasis in tumor-
bearing mice (107). Thus, LDL and ox-LDL and their receptors
play an essential role in the process of cancer treatment and can
be used as an effective adjunct to current cancer treatment.

Traditional cholesterol-lowering drugs such as statins
competitively inhibit the endogenous cholesterol synthesis by
targeting the rate-limiting enzyme HMG-CoA reductase and
block hydroxymethyl, to control the biosynthesis of cholesterol
in the cell, which can effectively reduce LDL-C (178–180). In
recent years, statins have been considered anti-cancer drugs
(181). Statins are associated with significantly reduced risk of
breast cancer, colorectal cancer, ovarian cancer, pancreatic
cancer, lung cancer, and lymphoma, Statins have been shown
to inhibit tumor growth at clinically relevant doses and diminish
metastasis in animal models (182, 183). Besides, statins reduce
mortality and the risk of prostate-specific antigen (PSA)
recurrence in a dose-dependent manner after prostatectomy
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TABLE 1 | LDL levels and their possible effects on the development of selected types of cancer.

Cancers Study design Experimental subjects LDL
level

Main effects Ref

Breast cancer Mendelian
randomization

>400,000 cases ↑ Increase cancer risk (75)

Prospective 244 cases ↑ Promote tumor growth and
differentiation

(74)

In vitro HTB20, 4 T1, HTB126, MDA MB 231, MCF7, HS578T, MDA MB
468 cell lines

Promote proliferation, migration,
invasion, angiogenesis (48, 83)

In vivo Female BALB SCID, NOD SCID and BALB/C mice; (Rag1−/−/LDLR−/

− and Rag1−/−/ApoE−/− mice
↑ Promote tumor growth (84)

Colorectal cancer Case-cohort 34148 cases ↑ Increase cancer risk (96)
Retrospective 453 cases ↑ Promote distant metastasis (98)
In vitro SW480, LoVo and RKO cell lines Promote migration (55)
In vivo AOM/DSS-treated mice ↑ Enhance intestinal inflammation (55)

Pancreatic
cancer

Mendelian
randomization

8769 cases ↑ Increase cancer risk (175)

In vitro PK4A cell line Promote proliferation (115)
In vivo Male Pdx1-Cre, Ink4a/Arffl/fl and LSL-KrasG12D mice ↑ Increase recurrence risk and drug

resistance
(115)

Prostate cancer Cohort 2842 cases ↑ Increase cancer risk (176)
Cross-sectional 190 cases ↑ Increase cancer risk (127)
In vitro LNCaP and VCaP cell lines Promote proliferation and migration (129)
In vivo C57Bl/6J mice ↑ Promote tumor growth (131)

Renal cancer Retrospective 362 cases ↑ Increase cancer risk (139)
Case-control Cancer patients:550 cases Control:570 cases ↑ Increase cancer risk (138)
In vitro SK-45 and PNX0010 cell lines Resist chemotherapy (50)
In vivo Male C.B17/Icr-scid mice ↑ Promote tumor growth (50)

Hepatocellular
carcinoma

Prospective 26891 cases ↓ Increase cancer risk (151)
Cohort 16217 cases ↓ Increase mortality (152)
In vitro HepG2 and Huh7 cell lines Promote inflammation (156)
In vitro C57BL/6J mice ↑ Increase cancer risk (177)

Ovarian cancer Retrospective 267 cases ↑ Improve 5-year RFS (168)
Case-control Cancer patients: 22406 cases Controls:40941 cases No significant associations (165)

Gastric cancer Case-control Cancer patients: 412 cases Controls: 2934 cases ↑ Increase cancer risk (170)
Cross-sectional 205 cases ↑ Predict metastasis risk (171)
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TABLE 2 | LDL levels and their possible effects on the development of selected types of cancer.

Cancers Study design Experimental subjects ox-LDL level Main effects Ref

Breast cancer Case-control Cancer patients:32 cases Controls: 30 cases ↑ Increase cancer risk (86)
In vitro MCF10A cell line Promote tumorigenesis (88)

Colorectal cancer Case-control Cancer patients: 161 cases Controls: 395
cases

↑ Increase cancer risk (102)

Retrospective 52 cases ↑ Increase cancer risk
(103)

Pancreatic cancer In vitro KLM-1 cell line Promote tumorigenesis and proliferation (118)
Prostate cancer Retrospective 75 cases ↑ Promote Gleason score and lymph node

metastasis (135)
In vitro LNCaP, PC-3, C4-2, C4-2B and DU-145 Promote proliferation, migration, and invasion (20,

135,
136)

In vivo Male BALB/c mice ↑ Enhance tumor angiogenesis (136)
Hepatocellular
carcinoma

Cross-
sectional

50 cases ↑ Induce carcinogenesis (161)

In vivo Female athymic nude mice and C57BL/6 mice Promote tumorigenesis (162)
Ovarian cancer Case-control Cancer patients:32 cases Controls:30 cases ↑ Predict cancer risk (86)

In vitro CAOV3, SKOV3 cell lines Promote proliferation and drug resistance (86)
Gastric cancer Retrospective 17 cases ↑ Promote lymph node metastasis (21)

In vitro HGC-27 and MGC-803 cell lines Promote metastasis (21)
In vivo Female BALB/c nude mice ↑ Promote lymph node metastasis (21)
80
↑: up-regulation, ↓down-regulation.
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(184), as well as improve OS in patients with metastatic renal
cancer (25.6 months vs. 18.9 months) (185).

Mevalonic acid, a the precursor of non-steroidal isoprenoids,
is a lipid attachment molecule for small G proteins, such as Ras,
Rho, and Rac, and has been implicated in various aspects of
tumor development and progression (179). Statins have been
shown to inhibit the proliferation of breast cancer cells by
suppressing FPP and GGPP modifications and activation of
Ras, Rac, and Rho, small GTPases. In addition, statins inhibit
cancer cell growth by inducing apoptosis through activation of
Bax and down-regulation of the levels of anti-apoptotic protein
Bcl-2 (186). However, the effects of statins on angiogenesis are
divergent. Statins induce angiogenesis at low doses, while an
opposite effect is observed at higher doses (187). Furthermore,
statins can inhibit the viability and proliferation of cancer cells by
blocking various signaling pathways, such as PI3K/ATK and
MAPK, and may improve the efficiency of chemotherapy when
used in combination with other chemotherapeutic agents (184).
However, statins with different solubility show different effects
on cancer therapy. Lipophilic statins have better anticancer
activities than hydrophilic statins; this may be partly attributed
to their better ability in diffusing into extrahepatic tumors. In this
regard, it is proposed that hydrophilic statins are not effective in
inhibiting extrahepatic HMG-CoA reductase, and are thus
ineffective in reducing cancer susceptibility (188).

CONCLUSION AND PROSPECTS
Most cancers show a high demand for cholesterol, LDL or ox-
LDL to maintain rapid growth and survival. LDL and ox-LDL
play divergent roles in different types of cancers. In certain types
of cancer at their early stages, elevated plasma LDL-C levels in
patients are observed, such as in colorectal cancer patients.
However, plasma LDL-C was reported to be lowered in
patients with metastatic cancer. The relationship between low
plasma LDL-C levels and cancer can be explained by increased
uptake of cholesterol from plasma by malignant cells to meet
their own proliferation needs. Elevated plasma levels of either
LDL or ox-LDL are positively correlated with the progression of
breast cancer, colorectal cancer, and pancreatic cancer, but no
such correlation has been found between ox-LDL and thyroid or
nasopharyngeal cancers, which may be due to the differing needs
for cholesterol in different cancer types. LDLR and LOX-1, as
receptors for LDL and ox-LDL, respectively, are overexpressed in
Frontiers in Oncology | www.frontiersin.org 11
a variety of cancers and are associated with accelerated cancer
progression. However, there is currently limited data on whether
high expression levels of these receptors will be present increase
the risk of cancer. The connection seems clear, and it is necessary
to determine the correlation between LDL and ox-LDL-related
receptors and cancer risk. Statins have multiple anti-cancer
effects such as inhibition of cancer cell proliferation,
promotion of cancer cell apoptosis, and enhancement of the
efficacy of chemotherapy drugs, and liposoluble statins may be
more suitable for cancer treatment.

Epidemiological studies have shown that cancer is often
accompanied with metabolic diseases, such as hypertension,
hyperlipidemia, and diabetes. Cancer patients often have high-
risk habits such as smoking, drinking, and a high-fat diet. Such
confounders may lead to elevated LDL/ox-LDL levels in cancer
patients. Identifying the causes of elevated LDL and/or ox-LDL
levels may help to elucidate novel therapies for reducing LDL and/
or ox-LDL levels in cancer patients. Complex feedback loops
regulate cholesterol homeostasis, by only inhibiting one pathway
of cholesterol metabolism might have little effect on tumor
growth. With the increased discovery of inhibitors targeting
cholesterol metabolism, the effects of combination therapy
simultaneously block cholesterol synthesis, uptake, esterification,
or cancer trafficking should be further explored. Despite exciting
progress in this field, many fundamental questions remain to be
addressed, such as could some drugs currently used for the
treatment of metabolic diseases be repurposed as anti-tumor
drugs? What is the most effective combination way to treat a
particular type of cancer cells with different approaches? These
unresolved issues reflect the urgent need for more research on the
mechanism of cholesterol metabolism in cancer.

Taken together, these studies strongly suggest that LDL, ox-
LDL, as well as their receptors, play important roles in
tumorigenesis and cancer development. Lowering LDL and ox-
LDL levels may be a novel therapeutic strategy to prevent
cancer progression.
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TABLE 3 | Summary of the role of LDL and ox- LDL in cancer progression.

Lipoproteins Receptors Mechanism Effects on cancer Ref

LDL LDLR Inhibit PD1/L1 and gd T cells Anti-tumor therapy resistance (51, 53)
Up-regulate Stemness genes Enhance cell stemness (55)
Activate Akt/ERK2, p38/MAPK, PI3K/Akt/mTOR signaling pathways; decrease
adhesion molecules expression

Proliferation and metastasis (48, 50, 55, 82)

Activate STAT3 signaling Invasion (49)
ox-LDL LOX-1,

CD36
Induce DNA damage by ROS, activate miR-210 expression Inflammation and mutagenesis (39, 57, 58)
Activate POX to up-regulated beclin-1 activate miR-155 Autophagy (63, 64)
Activate NF-kB target genes VEGF, MMP-2, MMP-9 by binding with LOX-1; up-
regulate cytokines CT-1 by accumulating ox-LDL oxysterol metabolite

Proliferation, invasion, and
angiogenesis

(39, 60)

Activate PI3K/Akt/GSK3b signaling pathway EMT and migration (174)
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85. Cedó L, Reddy ST, Mato E, Blanco-Vaca F, Escolà-Gil JC. HDL and LDL:
Potential New Players in Breast Cancer Development. J Clin Med (2019) 8
(6):853. doi: 10.3390/jcm8060853

86. Delimaris I, Faviou E, Antonakos G, Stathopoulou E, Zachari A, Dionyssiou-
Asteriou A. Oxidized LDL, Serum Oxidizability and Serum Lipid Levels in
Patients With Breast or Ovarian Cancer. Clin Biochem (2007) 40(15):1129–
34. doi: 10.1016/j.clinbiochem.2007.06.007

87. Pucci S, Polidoro C, Greggi C, Amati F, Morini E, Murdocca M, et al. Pro-
Oncogenic Action of LOX-1 and its Splice Variant LOX-1D4 in Breast
Cancer Phenotypes. Cell Death Dis (2019) 10(2):53. doi: 10.1038/s41419-
018-1279-1

88. Khaidakov M, Mehta JL. Oxidized LDL Triggers Pro-Oncogenic
Signaling in Human Breast Mammary Epithelial Cells Partly via
Stimulation of MiR-21. PloS One (2012) 7(10):e46973. doi: 10.1371/
journal.pone.0046973

89. Wang B, Zhao H, Zhao L, Zhang Y, Wan Q, Shen Y, et al. Up-Regulation of
OLR1 Expression by TBC1D3 Through Activation of Tnfa/NF-kb Pathway
Promotes the Migration of Human Breast Cancer Cells. Cancer Lett (2017)
408:60–70. doi: 10.1016/j.canlet.2017.08.021

90. Liang M, Zhang P, Fu J. Up-Regulation of LOX-1 Expression by TNF-Alpha
Promotes Trans-Endothelial Migration of MDA-MB-231 Breast Cancer
Cells. Cancer Lett (2007) 258(1):31–7. doi: 10.1016/j.canlet.2007.08.003

91. Khaidakov M, Mitra S, Kang BY, Wang X, Kadlubar S, Novelli G, et al.
Oxidized LDL Receptor 1 (OLR1) as a Possible Link Between Obesity,
Dyslipidemia and Cancer. PloS One (2011) 6(5):e20277. doi: 10.1371/
journal.pone.0020277

92. Rizzacasa B, Morini E, Pucci S, Murdocca M, Novelli G, Amati F. LOX-1
and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-
Targeted Therapies. Int J Mol Sci (2017) 18(2):290. doi: 10.3390/
ijms18020290

93. Bardou M, Barkun AN, Martel M. Obesity and Colorectal Cancer. Gut
(2013) 62(6):933–47. doi: 10.1136/gutjnl-2013-304701
Frontiers in Oncology | www.frontiersin.org 14
94. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and Cancer–
Mechanisms Underlying Tumour Progression and Recurrence. Nat Rev
Endocrinol (2014) 10(8):455–65. doi: 10.1038/nrendo.2014.94

95. Yang Y, Gao G, Shi J, Zhang J. Increased Blood Lipid Level is Associated
With Cancer-Specific Mortality and All-Cause Mortality in Patients With
Colorectal Cancer (≥65 Years): A Population-Based Prospective Cohort
Study. Risk Manage Healthc Policy (2020) 13:855–63. doi: 10.2147/
RMHP.S260113

96. Agnoli C, Grioni S, Sieri S, Sacerdote C, Vineis P, Tumino R, et al. Colorectal
Cancer Risk and Dyslipidemia: A Case-Cohort Study Nested in an Italian
Multicentre Cohort. Cancer Epidemiol (2014) 38(2):144–51. doi: 10.1016/
j.canep.2014.02.002

97. Zhang X, Zhao XW, Liu DB, Han CZ, Du LL, Jing JX, et al. Lipid Levels in
Serum and Cancerous Tissues of Colorectal Cancer Patients. World J
Gastroenterol (2014) 20(26):8646–52. doi: 10.3748/wjg.v20.i26.8646

98. Liao F, He W, Jiang C, Yin C, Guo G, Chen X, et al. A High LDL-C to HDL-
C Ratio Predicts Poor Prognosis for Initially Metastatic Colorectal Cancer
Patients With Elevations in LDL-C.OncoTargets Ther (2015) 8:3135–42. doi:
10.2147/OTT.S90479

99. Notarnicola M, Altomare DF, Correale M, Ruggieri E, D’Attoma B,
Mastrosimini A, et al. Serum Lipid Profile in Colorectal Cancer Patients
With and Without Synchronous Distant Metastases. Oncology (2005) 68(4-
6):371–4. doi: 10.1159/000086977

100. Sharma B, Gupta V, Dahiya D, Kumar H, Vaiphei K, Agnihotri N. Clinical
Relevance of Cholesterol Homeostasis Genes in Colorectal Cancer. Biochim
Biophys Acta Mol Cell Biol Lipids (2019) 1864(10):1314–27. doi: 10.1016/
j.bbalip.2019.06.008

101. LaRosa JC. Lipids and Cardiovascular Disease: Do the Findings and Therapy
Apply Equally to Men andWomen?Women’s Health Issues (1992) 2(2):102–
11. discussion 11-3. doi: 10.1016/s1049-3867(05)80278-6

102. Suzuki K, Ito Y, Wakai K, Kawado M, Hashimoto S, Toyoshima H, et al.
Serum Oxidized Low-Density Lipoprotein Levels and Risk of Colorectal
Cancer: A Case-Control Study Nested in the Japan Collaborative Cohort
Study. Cancer Epidemiol Biomarkers Prev (2004) 13(11 Pt 1):1781–7.

103. Keshk WA, Zineldeen DH, Wasfy RE, El-Khadrawy OH. Fatty Acid
Synthase/Oxidized Low-Density Lipoprotein as Metabolic Oncogenes
Linking Obesity to Colon Cancer via NF-Kappa B in Egyptians. Med
Oncol (Northwood London England) (2014) 31(10):192. doi: 10.1007/
s12032-014-0192-4

104. Murdocca M, Mango R, Pucci S, Biocca S, Testa B, Capuano R, et al. The
Lectin-Like Oxidized LDL Receptor-1: A New Potential Molecular Target in
Colorectal Cancer. Oncotarget (2016) 7(12):14765–80. doi: 10.18632/
oncotarget.7430

105. Murdocca M, De Masi C, Pucci S, Mango R, Novelli G, Di Natale C, et al.
LOX-1 and Cancer: An Indissoluble Liaison. Cancer Gene Ther (2021) 28(10-
11):1088–98. doi: 10.1038/s41417-020-00279-0

106. Nakashima-Nakasuga C, Hazama S, Suzuki N, Nakagami Y, Xu M, Yoshida
S, et al. Serum LOX-1 is a Novel Prognostic Biomarker of Colorectal Cancer.
Int J Clin Oncol (2020) 25(7):1308–17. doi: 10.1007/s10147-020-01673-2

107. Murdocca M, Capuano R, Pucci S, Cicconi R, Polidoro C, Catini A, et al.
Targeting LOX-1 Inhibits Colorectal Cancer Metastasis in an Animal Model.
Front Oncol (2019) 9:927. doi: 10.3389/fonc.2019.00927
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