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Synchronization of two 
cavity‑coupled qubits measured 
by entanglement
Tian‑tian Huan1, Ri‑gui Zhou2 & Hou Ian1,3*

Some nonlinear radiations such as superfluorescence can be understood as cooperative effects 
between atoms. We regard cooperative radiations as a manifested effect secondary to the intrinsic 
synchronization among the two-level atoms and propose the entanglement measure, concurrence, 
as a time-resolved measure of synchronization. Modeled on two cavity-coupled qubits, the evolved 
concurrence monotonically increases to a saturated level. The finite duration required for the rising to 
saturation coincides with the time delay characteristic to the initiation of superfluorescence, showing 
the role of synchronization in establishing the cooperation among the qubits. We verify concurrence 
to be a good measure of synchronization by comparing it with asynchronicity computed from the 
difference between the density matrices of the qubits. We find that the feature of time delay agrees in 
both measures and is determined by the coupling regimes of the cavity-qubit interaction. Specifically, 
synchronization is impossible in the weak coupling regime.

Centuries ago, Huygens studied the correlation among the motions of pendulums and discovered the synchro-
nization pattern of these individual oscillators under the influence of a common oscillator they are coupled to1. 
How synchronizations arise in different situations has since remained a problem of interest2. In recent years, the 
study of the classical phenomenon has been revived under the quantum regime. Synchronization is observed 
between a pair of nanomechanical oscillators3 and on the motions of the Cooper pairs among Josephson-insu-
lated superconducting islands4. It is also ubiquitously predicted between a qubit and an oscillator5, between a 
cavity field and an oscillator6, between two oscillators7, among a trapped group of cold atoms8, and even between 
a quantum Van der Pol oscillator and an external drive9.

Here we study the synchronization of two qubits coupled indirectly to each other through a cavity field, in 
specific relevance to the quantum optical phenomenon of superfluorescence10,11. This nonlinear fluorescent effect 
embodies Dicke’s formulation of superradiance12, where the nonlinearity exemplifies in the N2-dependence of 
the emitted radiation intensity from an ensemble of N atoms. Furthermore, the emitted photonic pulse peaks 
after a positive time delay13,14 that bears no direct dependence on the atom-field coupling strength, showing 
the collective interatomic motion to be a nonlinear process. Experimentally recorded on hydrofluoric gas15, 
cesium16, and most recently rubidium vapor17, this delay shows the necessity of a finite time during which the 
atoms establish cooperation before the radiation is initiated18.

Such a delay is also characteristic of synchronization: it takes finite time for the classical Huygens pendulums 
to reach in-phase oscillations. If one regards the correlated atoms as quantized Huygens oscillators concentrated 
on the lowest two levels at the weak-energy limit, it is not hard to find the resemblance between cooperated 
radiation and synchronization. In this paper, we formalize the study of this resemblance by analyzing the entan-
glement dynamics19–21 of two cavity-coupled qubits, which is the minimum-dimensional system that emulates 
the structure of an atomic ensemble undergoing cooperated radiation.

Many different metrics have been proposed over the years to measure synchronization of different quantum 
systems, such as a set of two-level systems in a shared bath22, quantum dots23, and resonator modes24. We note that 
synchronization as a quantum correlation can be studied using quantum discord25, as it was for two oscillators26, 
and non-locality. The advantage of entanglement approach is avoiding the unnecessary constraint to two-party 
correlation. We use specifically, in contrast to quantum discord, concurrence27 as the entanglement measure to 
quantify quantum synchronization in order to extract the temporal features of atomic cooperation. Concurrence 
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is broadly applicable, especially for multipartite system. After it was introduced for two-qubit systems27, it was 
soon extended to the cases of three qubits28 and N-qubits29. Concurrence has then been generalized to two 
multi-level systems30,31 and finally to multipartite multi-level systems32. Given its generality, concurrence permits 
synchronization to be exemplified not only between two qubits, but among three parties that include the cavity 
field. In addition, synchronization is present in a Hilbert space of finite dimensions33, so non-locality is not an 
essential factor to initiate synchronization.

Further, concurrence is proved to be a good measure for static analysis of collective phenomena such as 
radiation34,35. Therefore, we extend the employment of multipartite concurrence to the dynamical analysis of 
the finite-dimensional cavity-qubit system. It is found that the entanglement among the components universally 
begins at a zero level and rises to a saturated value after a finite delay. The length of the delay and the saturated 
level depend nonlinearly on the cavity-qubit coupling strength. We use numerical simulations to show that the 
nonlinear dependence is divisible into weak, strong, and ultrastrong coupling regimes, verifying the role of 
operation regimes36 in the dynamics of superconducting circuits. Under all coupling strengths, the saturated 
entangled state is sustained thereafter, where oscillations in concurrence only exists locally about the saturation 
offset with an amplitude much smaller than the offset. These distinctive features of a synchronized state stand in 
constrast to the sudden death or death and revival37 one usually sees in entanglement evolution.

To verify the coincidence between the maximization of concurrence and the dynamic process of synchroniza-
tion, we introduce a synchronization measure computed from the density matrix, which is modified from the 
synchronization measure introduced on the (x, p)-quadratures of quantum oscillators24. The transition point 
in time produced from the synchronization measures matches exactly the delay time found in the concurrence 
evolution, proving that the qubit-to-qubit synchronization is well registered in the entanglement. Moreover, 
since two-qubit systems on a superconducting circuit can produce superfluorescent pulses38, the synchronization 
delay is associated with the initiation of superradiance, thereby establishing the dynamic correlation between 
entanglement and the atomic cooperation for collective phenomena.

Results
The tripartite system.  The derivation for the dynamics discussed above is modeled on a generic cavity 
quantum electrodynamic (QED) system where each qubit is coupled to the cavity through dipole-field interac-
tion under the rotating wave approximation. The parameters adopted for the numerical analysis are sourced 
from the superconducting circuit implementation39,40 of the cavity QED system. Hence, the tripartite system can 
be illustrated from the model Fig. 1, where the cavity is indicated by the stripped waveguide and the qubits are 
located at the anti-nodes of the cavity field to ensure maximum coupling.

The total system Hamiltonian H = H0 +Hint +Hext is composed of three parts: the free Hamiltonian, the 
interactions among the system components, and the external driving, which reads, respectively, (� = 1)

In H0 , ωc denotes the frequency of the cavity mode and �A ( �B ) denotes the transition frequency of the left (right) 
qubit, associated with the Pauli matrix σA,z ( σB,z ). In Hint , ηA(ηB) denotes the coupling strength to the left (right) 
qubit. In Hext , the external driving field has frequency ωD and driving strength εD.

The combined system of a cavity and two qubits has its bare states described by the tensor product state 
{|eA�, |gA�} ⊗ {|n�} ⊗ {|eB�, |gB�} , where |eA� ( |gA� ) denotes the excited (ground) state of the left qubit; |n� denotes 
the Fock number states of the cavity mode; |eB� ( |gB� ) denotes the excited (ground) state of the right qubit. To 
simplifying the notation, we omit the subscripts A and B when writing the product states and let the first letter 

(1)H0 = ωca
†a+�AσA,z +�BσB,z ,

(2)Hint = ηA
(

aσA,+ + a†σA,−
)

+ ηB
(

aσB,+ + a†σB,−
)

,

(3)Hext = iεD
(

a†e−iωDt − aeiωDt
)

.

Figure 1.   Illustration of the tripartite system: two superconducting qubits is coupled to the cavity field 
(indicated by the red strip), through which entanglement between the qubits are generated over time. The cavity 
field is driven by an incident field entered from the left.
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denote the state of the left qubit, the middle letter that of the cavity mode, and the last letter that of the right 
qubit (e.g. |e, n, g� = |eA� ⊗ |n� ⊗ |gB�).

The free Hamiltonian H0 and the interaction Hamiltonian Hint constitute a closed subsystem, for which there 
exist dressed states that diagonalize H0 +Hint . To find an analytical expression for the dressed states, we consider 
the sets of energy-conserving states |e, n, g� , |g , n+ 1, g� , and |g , n, e� , which are resonant within single-photon 
processes, to contribute to a dressed state for each n. In other words, the state |e, n, e� which is resonant with 
|g , n+ 2, g� through a double-photon process is omitted, allowing the derivation below to be purely analytical. 
Single-photon processes among the collective states of an ensemble of two-level systems are responsible for 
the majority of qubit operations useful for quantum information processing, which includes generating the 
entangled W-state34 and the multistable attractor states41. Such collective states are also experimentally proven 
on superconducting qubits42.

These single-photon resonant states form an invariant subspace, for which the closed Hamiltonian consists 
of 3× 3 symmetric block matrices. Therefore, we have the eigen-equation

where the eigenvectors |u(n)k � denote the dressed states that diagonalize the 3n× 3n matrix H0 +Hint and the 
eigenvalues E(n)k  denote the dressed-state energies in the diagonalized space. The index k enumerates {1, 2, 3} to 
indicate the dressed levels within the n-th cluster.

Block-diagonalizing H0 +Hint for Eq. (4) results in a cubic equation of E(n)k  for each n, whose roots are

In the equation, � = �A −�B denotes the detuning between the two qubits and δ = ωc −�A −�B the detun-
ing between the cavity and the two qubits combined. The angle θ is defined through its triple-angle formula

The corresponding eigenvector reads

where the transformation coefficients are

with Z(n)
k  being the normalization constant

The detailed derivation is given in the Methods section.
In the dressed space spanned by the basis vectors of Eq. (7), the closed Hamiltonian is written in the diago-

nalized form

while the annihilation operator

under the single-photon processes is transformed to

where the indices j and k enumerate over the set {1, 2, 3}.

(4)(H0 +Hint)|u(n)k � =E
(n)
k

∣

∣

∣
u
(n)
k

〉

,

(5)E
(n)
k =

2

3

√

δ2 + 3(�2 + η2A + η2B) cos

(

θ +
2kπ

3

)

+ nωc +
δ

3
.

(6)cos(3θ) =
2δ3 + 9δ

(

η2A + η2B
)

− 18δ�2 + 27�
(

η2A − η2B
)

2
[

δ2 + 3(�2 + η2A + η2B)
]3/2

.

(7)|u(n)k � = α
(n)
A,k|e, n, g� + α

(n)
C,k|g , n+ 1, g� + α

(n)
B,k |g , n, e�,

(8)α
(n)
A,k = −ηA(�− nωc + E

(n)
k )

/

Z
(n)
k ,

(9)α
(n)
C,k =

[

�2 − (E
(n)
k − nωc)

2
]/

Z
(n)
k ,

(10)α
(n)
B,k = ηB(�− E

(n)
k + nωc)

/

Z
(n)
k ,

(11)Z
(n)
k =

(

η2A

[

�+ E
(n)
k − nωc

]2
+ η2B

[

�− E
(n)
k + nωc

]2
+

[

�2 − (E
(n)
k − nωc)

2
]2
)1/2

.

(12)H0 +Hint =
∑

n,k

E
(n)
k |u(n)k ��u(n)k |,

(13)
a = IA ⊗ a⊗ IB

≈
∑

n

|g , n, e��g , n+ 1, e| + |e, n, g��e, n+ 1, g | +
√
2|g , n+ 1, g��g , n+ 2, g |

(14)a =
∑

n,j,k

[

α
(n)∗
A,j α

(n+1)
A,k +

√
2α

(n)∗
C,j α

(n+1)
C,k + α

(n)∗
B,j α

(n+1)
B,k

]

|u(n)j ��u(n+1)
k |
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The permitted dressed level transitions induced by the external driving can be found by substituting Eq. (14) 
into Eq. (3). In the following, we consider the weak-energy limit where the transitions are confined to the low-
est two clusters of states ( n = 0 and n = 1 ). This consideration greatly simplify the numerical analysis of the 
evolution by confining the matrix representation of the equations of motion to 6 dimensions. It is also realistic 
since higher clusters require the much less likely occurrence of multi-photon resonance driven by the external 
εD . Though obtaining states of high photon number are possible with the assistance of auxiliary qubits43, they 
are much shorter-lived. We therefore write the total Hamiltonian as

in the dressed space. Introducing the time-dependent state vector

in the confined state space and applying it to the Hamiltonian above, one has the Schrödinger equations of the 
time coefficients

where �l denotes the weight of the summation over the index l for the system component A (the left qubit), B 
(the right qubit), or C (the cavity), i.e. �A = �B = 1 and �C =

√
2 . In the equations, we observe the Einstein 

summation convention.
In the rotating frame cj(t) = c′j(t)exp{−iE

(0)
j t} and dj(t) = d′j(t)exp{−iE

(1)
j t} , the coupled equations can be 

written as the linear homogeneous system of differential equations ċ′ = Ac′ where c′ =
[

c′1 c
′
2 c

′
3 d

′
1 d

′
2 d

′
3

]

 and

where the square brackets [·] indicate 3× 3 submatrices in the matrix A with j and k being the row and the column 
indices, respectively. We denote ζkj = ωD −

(

E
(1)
k − E

(0)
j

)

 for the detuning between the driving and the dressed 
states. Since A is integrable, then solving the linear system for {cj , dj} and expanding the dressed states by using 
the bare states in Eq. (16), one can find the expansion coefficients γ of the state vector

back in the bare state space.

Evolution of the state vector.  To see that the evolution of the state vector can initiate the synchronization 
of the two delocalized qubits, we assume the cavity mode is initially driven by the external field to reach a partial 
population inversion while setting the qubits initially at the ground. In other words, the expansion coefficients at 
the initial moment are: γ (0)

C =
√
0.9 , γ (1)

C =
√
0.1 , and γ (0)

A = γ
(0)
B = γ

(1)
A = γ

(1)
B = 0.

We plot out the evolutions of these coefficients in Fig. 2, using the experimentally accessible parameters 
of superconducting charge-phase qubits40: �A/2π = �B/2π = 6.1 GHz, ηA/2π = ηB/2π = 500 MHz, and 
ωc/2π = 6.32 GHz. The frequency of the external field is maintained at ωD/2π = 5.3 GHz. The lower set of 
states with n = 0 is given in Fig. 2a whereas the upper set with n = 1 is given in Fig. 2b. Note that, for the imple-
mentation of cavity QED system on a superconducting circuit, the cavity field refers to the standing microwave 
field that is sustained in the stripline (Cf. Fig. 1) and coupled capacitively to the Josephson-junction qubit. 
Hence, by distancing qubits and placing them at different positions relative to the cavity nodes, it is possible to 
realize arbitrary cavity-qubit interactions. For instance, maximal coupling can be obtained by placing the qubits 
at antinodes42.

We observe that for both the lower set and the upper set of states, there exists a transition point of the oscilla-
tions of the coefficients, which is located at about 3.7µs in the plots. In particular, γ (0)

C  is transited from a region 
of shrinking oscillation to a region of small fluctuation at this point. Meanwhile, γ (1)

A ,γ (1)
B  , and γ (1)

C  are transited 
from an amplifying region to a region of saturated oscillation envelope. The contrasting behavior of the two sets 
of coefficients demonstrates that the energy excitation that exists in the cavity mode is transferred to the left 
and the right qubits whose complementary oscillations imply the build-up of the entanglement between them.

(15)

H(0,1) =
∑

j

[

E
(0)
j |u(0)j ��u(0)j | + E

(1)
j |u(1)j ��u(1)j |

]

−
∑

j,k

iεDe
iωDt

[(

α
(0)∗
A,j α

(1)
A,k +

√
2α

(0)∗
C,j α

(1)
C,k + α

(0)∗
B,j α

(1)
B,k

)

|u(0)j ��u(1)k | +H.c.
]

(16)|ψ(t)� =
∑

j

(

cj(t)|u(0)j � + dj(t)|u(1)j �
)

(17)ċj(t) =− iE
(0)
j cj(t)− εDe

iωDt�lα
(0)∗
l,j α

(1)
l,k dk(t),

(18)ḋj(t) =− iE
(1)
j dj(t)+ εDe

−iωDt�lα
(1)∗
l,j α

(0)
l,k ck(t),

(19)A =





0 −
�

εDe
iζkjt�lα

(0)∗
l,j α

(1)
l,k

�

εDe
−iζjk t�lα

(1)∗
l,j α

(0)
l,k 0





(20)
|ψ(t)� =γ

(0)
A (t)|e, 0, g� + γ

(0)
C (t)|g , 1, g� + γ

(0)
B (t)|g , 0, e�

+ γ
(1)
A (t)|e, 1, g� + γ

(1)
C (t)|g , 2, g� + γ

(1)
B (t)|g , 1, e�
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Bipartite and tripartite concurrences.  To fully capture the evolution characteristics of the two cavity-
coupled qubits from a holistic point of view, we apply two entanglement measures—bipartite concurrence and 
tripartite concurrence—to the state vector of the total system.

The bipartite concurrence quantifies the inseparability of the joint pure state of two coupled systems of arbi-
trary dimensions by inverting the density matrix. For our case here, the joint state is the product state |ψAB� of 
the indirectly coupled left and right qubits. Thus the inversion is conducted through the superoperator SD1 ⊗ SD2 
w he re  t he  d i me ns i ons  D1 = D2 = 2  and  t he  bip ar t i te  c onc u r re nc e  i s  d e f i ne d  as 
C2(ψAB) =

√
�ψAB|S2 ⊗ S2(|ψAB��ψAB|)|ψAB� . Given the consideration of pure states, for which trρ2 = 1 and 

trρ2
A = trρ2

B , the definition reduces to C2(ψAB) =
√

2
[

1− tr
(

ρ2
A

)]

 where ρA = trB(trC(|ψ��ψ |)) is the reduced 
density matrix of the left qubit.

Applying |ψ(t)� in Eq. (20) to the formula, we derive the evolution of the bipartite concurrence, shown as 
the blue curve in Fig. 3. It becomes apparent that the transition point that manifests in Fig. 2a,b signifies the 
concurrence reaching a maximum after a gradual monotonic increase in the oscillation envelope. This maxi-
mum concurrence is retained thereafter. The finite delay time τD = 3.7µs that the concurrence spends to reach 
its maximal value reflects the time the two qubits use to reach a maximal synchronization through their mutual 
couplings to the cavity mode.

The cavity mode plays an active part in initiating the entanglement between the two qubits. From the entan-
glement-theoretic point of view, the concurrence is distributed among the qubits as well as the cavity. Taking away 
the pairwise entanglements between any two parties in the tripartite system, one obtains the residual concurrence 
that remains as an equally distributed entanglement among all three parties28. Extending the original formula-
tion on three-qubit systems, we generalize the inversion operations for two arbitrary-dimensional systems given 
above to three arbitrary-dimensional system. That is, we introduce the superoperator

for our D1 × D2 × D3 dimension tripartite system, where D1 = D3 = 2 for the qubits and D2 = n for the cavity 
mode. In Eq. (21), I denotes the identity matrix while ρA , ρC , ρB , ρAB , ρCB , and ρAC denote the reduced density 
matrices of the components and the two-component subsystems. Applying the inversion, we thus derive a tri-
partite residual concurrence

Again, using Eq. (20), we plot the tripartite concurrence as the red curve in Fig. 3. One can verify from the plot 
that the residual concurrence evolves in a similar fashion, which contains a signifying transition point at the 
exactly same location τD as that of the bipartite concurrence. Before τD , it arises from a zero value under a simi-
larly increasing envelope whereas, after τD , it retains a non-zero saturated value. The identical delay time again 
demonstrates the duration that the system components spend on cooperation before maximal synchronization 
is reached.

(21)
SD1 ⊗ SD2 ⊗ SD3(ρ) = I ⊗ I ⊗ I − I ⊗ I ⊗ ρB − ρA ⊗ I ⊗ I − I ⊗ ρC ⊗ I

+ ρAB ⊗ I + I ⊗ ρCB + ρAC ⊗ I − ρ.

(22)
C3(ψ) =

√

�ψ |SD1 ⊗ SD2 ⊗ SD3(|ψ��ψ |)|ψ�

=
√

1− trρ2
B − trρ2

A − trρ2
C + trρ2

AB + trρ2
CB + trρ2

AC − trρ2.

Figure 2.   The time evolutions of the six expansion coefficients: (a) for n = 0 ; (b) for n = 1 . The red, the blue, 
and the yellow curves associate with the state |e, n, g� , |g , n+ 1, g� , and |g , n, e� , respectively.
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Comparing Figs. 2 and 3, one sees that the energy quantum first dwells on the cavity mode ( |g , 1, g� and 
|g , 2, g� ) without being emitted and absorbed by the qubits. Only when the two qubits start to establish a coop-
erated motion does the qubit-cavity-qubit resonance become effective such that the qubits be excited to their 
respective excited states |e, 1, g� and |g , 1, e� . The entanglement is also established among the three components 
when the excitation commences.

The concurrences plotted in Fig. 3 are computed upon a symmetric setting of system parameters: the level 
spacings and the coupling strengths of the qubits are assumed identical. The tripartite concurrence of an asym-
metric scenario with the right qubit level spacing raised to �B/2π = 7.1GHz is shown as the green curve in 
Fig. 4 while the rest of the parameters remain unchanged. For comparison, the symmetric case is plotted as the 
red curve in the background. We observe that the delay to saturated synchronization is inversely correlated with 
the larger eigenfrequency out of the two qubits. For the case in Fig. 4, increasing �B reduces delay time τD . On 
the other hand, symmetric settings lead to maximal synchronization at saturation. The asymmetric case given 
by the green curve has the saturated synchronization reduced to a lower level. Simulation under parameters set 
to varied values (not shown in figures) verify these observations.

We note that the dynamics originated from the equations of motion (17)–(18) does not take into consideration 
the relaxation effects which would require a master equation approach under the presence of an environment. 
Their omission greatly simplifies our derivations and assists the illustration of the temporal features during the 
synchronization. These features would not be obscured even when environmental effects are observed since 
their time scales are much shorter than accessible coherence times on superconducting circuits. For instance, 
the synchronization delays in both settings of Fig. (4) appear within the first 4 µs after initiation. Whereas, 
superconducting qubits can achieve coherence time up to 100 µs using fabrication techniques44 and even up to 
hundreds of µs when an error-correcting feedback mechanism is implemented45.

The synchronization between the qubits is also affected by how strong they are driven by the cavity mode, 
i.e. the coupling strengths ηA and ηB . Shown in Fig. 5 for the symmetric scenario ηA = ηB in a semilog plot, the 
greater is the coupling, the lesser is the delay τD . The numerical fit shows that the delay obeys a quadratic rela-
tion over the exponential increase in coupling strength. After the delay, a shorter delay time is associated with 
a higher saturated level of concurrence, showing a stronger synchronization between the qubits are reflected in 
both short delay and higher entanglement measure.

Asynchronicity.  Multi-partite concurrence as a measure of synchronization reveals a gradual increase 
between two qubits in the time domain, explaining the existence of a delay in the superfluorescent pulse of coop-
erated radiation from a system-intrinsic point of view. This synchronization is affected by many factors, among 
which the symmetry of the system parameters plays an important part. Tuning the system from a symmetric 
setting to an asymmetric setting is accompanied by tuning the transition rates of the qubits from a synchronous 
setting to an asynchronous setting. For the latter, we refer to the scenario where the population of the left qubit 
oscillates at a Rabi frequency not synchronous to that of the right qubit.

Figure 3.   Time evolution of the bipartite concurrence C2(ψAB) between the two qubits (blue) and the tripartite 
concurrence C3(ψ) among the qubits and the cavity (red). A symmetric scenario is assumed between the left 
and the right qubits: ηA/2π = ηB/2π = 500 MHz and �A/2π = �B/2π = 6.1 GHz.
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However, since two oscillators sharing a common oscillating platform are able to synchronize after certain 
time duration according to classical mechanics, we expect the qubits sharing the cavity resonator would behave 
similarly. To precisely describe the transition process from asynchronous regime to synchronous regime, we 
extend the quantum synchronization measure introduced in Ref.24 for continuous variable systems to discrete 
systems. We consider instead the measure of asynchronicity

that compares the difference between two density matrices for two two-level systems.
To consider the scenario where the sychronization is initiated from the cavity field as the medium, 

we let the initial state be only populated in the first and second excited state of the cavity mode, i.e. 

(23)A(t) =
∣

∣

∣
det(ρA(t)− ρB(t))

∣

∣

∣
.

Figure 4.   Comparison of the time evolutions of the tripartite concurrences between the symmetric 
(red curve) and the asymmetric (green curve) scenarios. For the symmetric case, both qubits are set to 
�A/2π = �B/2π = 6.1 GHz . For the asymmetric case, the right qubit is adjusted to �B/2π = 7.1GHz. 
Coupling strengths are retained at ηA/2π = ηB/2π = 500MHz throughout.

Figure 5.   The time delay τD is plotted as a function of the dimensionless coupling strength η/� in a semilog 
scale. Symmetric setting is assumed: the qubit level spacings �/2π = �A,B/2π = 6.1 GHz and the coupling 
strength η = ηA,B . The circles indicate the data points in the simulation runnings.
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|ψ(0)� = 3|g , 1, g�/
√
10+ |g , 2, g�/

√
10 . In a superconducting circuit where the cavity mode corresponds to 

the photonic number state of the stripline resonator, the population is controlled through a resonant microwave 
pulse, which has a time duration commensurate with the cavity Rabi period, to be fed into the waveguide input46. 
For example, a π-pulse sends half of the population from |0� to |1� . If imaginary phases in the coefficients of the 
eigenstates are desired, they can be fine-tuned with the assistance of an auxiliary qubit43. |2� is here partially popu-
lated to emulate the resonance process where the equally spaced levels of the cavity mode has |1� resonant with 
|2� simultaneously with |0� . Given the initial condition, we find that a symmetric setting �A = �B would always 
lead to a zero asynchronicity throughout independent of the coupling strengths ηA and ηB . When �A  = �B , the 
asymmetry leads to coupling-dependent asynchronicity, as shown by the plots given in Fig. 6 for five settings 
of coupling strengths.

No matter the coupling strength, there exists a transition point after which the asynchronicity remains at a 
stable value. This transition point is identical to the transition point shown in Fig. 4 (green curves) where the 
tripartite concurrence reaches a maximal value. The coincidence verifies our expectation that the synchronization 
is maximized when the asynchronicity is minimized. Therefore, synchronization between two qubits reflects the 
dynamic identity of the two qubits.

Before reaching the stable minimal value, the asynchronicity increases from a non-zero value for a certain 
duration, which are spent on the cooperation by the qubits. When the coupling is sufficiently weak (below 
η ≈ 200 MHz), the minimal stable value is almost vanishing (below 10−5 ). When the coupling becomes stronger, 
the feedback from the cavity mode to each of the qubits becomes adverse to the synchronizing motion. How-
ever, the feedback effect is not linear. Plotted as a function of the dimensionless coupling strength η/�A at 
�A/2π = 6.1 GHz and �B/2π = 7.1 GHz in Fig. 7, the stable minimal value Ā of asynchronicity first retains a 
negligible value in the weak coupling regime. At about η/�A = 0.04 , Ā starts to increase slowly until it reaches 
a turning point at η/�A = 0.2 . The region between η/�A = 0.04 and η/�A = 0.2 can be regarded as a strong 
coupling regime for synchronization. After that, Ā enters the ultra-strong coupling regime and increases with 
the coupling again until η/�A ≈ 0.33 , where stable minimal value of A is no longer discernible.

Discussion
In conclusion, we have studied the synchronization between the two cavity-coupled qubits using multiple con-
currence measures and asynchronicity. These real-valued measures are computed as functionals of dressed state 
vectors that evolve in time as they are driven by an external field. In all these measures acting as time functions, 
we obtain consistent features of transitions from an arbitrary initial system state to a final synchronized state. The 
transition in time reveals a synchronization delay that the qubits use to initiate superfluorescent pulse radiation, 
which explains the cooperation origin of the collective effect of superradiance.

The characteristics of the synchronization process, including the delay and the value of the stabilized asyn-
chronicity, are highly dependent on the coupling strengths of the qubits relative to the their level spacings. They 
demonstrate from the entanglement perspective the different behaviors that the circuit QED systems adopt 
when operating in weak, strong, and ultra-strong coupling regimes. In general, synchronization occurs only 

Figure 6.   Asynchronization A of two cavity-coupled qubits under five different coupling strengths: 
ηA/2π = ηB/2π = 200MHz (pink), 300MHz (yellow), 400MHz (purple), 500MHz (green), and 600MHz 
(blue). The qubit level spacings are kept at the asymmetric setting �A/2π = 6.1 GHz and �B/2π = 7.1 GHz.
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in the strong- and ultrastrong-coupling regimes whereas its level of synchronization at the final state increases 
exponentially with the qubit-cavity coupling strength.

Methods
For each 3× 3 block submatrix of the LHS of Eq. (4), we first split it into the sum of two matrices, one being 
the identity matrix nωcI . The other matrix is the one to be diagonalized, the determinant equation of which is

where � denotes the eigenvalue to be determined, i.e. E(n)k = �+ nωc.
This determinant equation is equivalent to the cubic equation

whose roots can be derived by absorbing the quadratic term through the transform � = x + δ/3 . The transformed 
equation becomes x3 + px + q = 0 , where

In the close cavity-qubit resonance region δ ≈ 0 , the discriminant D is simplified to

To let the cubic equation admit three non-degenerate real roots, we consider the range

that makes D < 0 . Applying the Vieta’s formula, the roots x can be found with a parametric angle θ given by 
Eq. (6).

Using the eigenvalues given in Eq. (5) and expanding the eigenvector 
∣

∣

∣
u
(n)
k

〉

 in the bare state space given by 
Eq. (7), we have the column matrix equation

(24)

∣

∣

∣

∣

∣
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Figure 7.   The stable value Ā is plotted as a function of the coupling strength η = ηA = ηB in the 
logarithmic dimensionless scale of η/�A , where the qubit level spacings are kept at the asymmetric setting 
�A/2π = 6.1 GHz and �B/2π = 7.1 GHz . The circles indicate the data points from the simulation runnings.
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Letting αC be the proportional constant, we find αA = −ηAαC

/

(�− �) and αB = ηBαC

/

(�+ �) . Then nor-
malizing the coefficients, their expressions are given by Eqs. (8)–(10) for the k-th energy level within the n-th 
cluster.
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