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Integrative analyses reveal signaling pathways
underlying familial breast cancer susceptibility
Stephen R Piccolo1,2,3, Laura M Hoffman4,5, Thomas Conner4, Gajendra Shrestha1, Adam L Cohen4,6,

Jeffrey R Marks7, Leigh A Neumayer8, Cori A Agarwal8, Mary C Beckerle4,5,9, Irene L Andrulis10,

Avrum E Spira2, Philip J Moos1, Saundra S Buys4,6, William Evan Johnson2,9 & Andrea H Bild1,9,*

Abstract

The signaling events that drive familial breast cancer (FBC) risk
remain poorly understood. While the majority of genomic studies
have focused on genetic risk variants, known risk variants account
for at most 30% of FBC cases. Considering that multiple genes may
influence FBC risk, we hypothesized that a pathway-based strategy
examining different data types from multiple tissues could
elucidate the biological basis for FBC. In this study, we performed
integrated analyses of gene expression and exome-sequencing
data from peripheral blood mononuclear cells and showed that cell
adhesion pathways are significantly and consistently dysregulated
in women who develop FBC. The dysregulation of cell adhesion
pathways in high-risk women was also identified by pathway-
based profiling applied to normal breast tissue data from two
independent cohorts. The results of our genomic analyses were
validated in normal primary mammary epithelial cells from high-
risk and control women, using cell-based functional assays,
drug-response assays, fluorescence microscopy, and Western blot-
ting assays. Both genomic and cell-based experiments indicate
that cell–cell and cell–extracellular matrix adhesion processes
seem to be disrupted in non-malignant cells of women at high risk
for FBC and suggest a potential role for these processes in FBC
development.
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Introduction

The biological basis for breast cancer has been clarified by studies

that have described risk factors that influence tumor development.

Such risk factors include genetic risk alleles and expression levels

for individual genes (Miki et al, 1994; Wooster et al, 1994).

However, breast tumorigenesis arises from a complex interplay

among genes within signaling pathways. When one or more compo-

nents of a given network are disrupted, cells may have a greater

propensity to transform, proliferate, and invade surrounding tissue

(Hanahan & Weinberg, 2011). Importantly, dysregulation of dif-

ferent genes within the same pathway may have a similar impact on

downstream pathway function (Yarden & Sliwkowski, 2001; Wood

et al, 2007). Accordingly, to gain a broader perspective of the

molecular aberrations that contribute to tumor development, it is

valuable to evaluate data at the pathway level rather than evaluat-

ing single genes. Furthermore, by evaluating pathway activity using

multiple types of “omic” data—including both DNA variation and

gene expression changes—it is possible to develop a more complete

picture of disease mechanisms. In addition, by examining pathway

dysregulation in normal cells, one can better understand the

processes by which germline variation leads to tumorigenesis; such

effects should be observable not only in normal mammary epithelial

cells but also in peripheral blood cells, which can be obtained less

invasively (Liew et al, 2006; Mohr & Liew, 2007).

We hypothesized that by comparing molecular profiles for

women from high-risk families who have developed breast cancer

against women from high-risk families who have not developed

breast cancer, we might identify biological pathways that play a role

in development of familial breast cancer (FBC). In addition, we

hypothesized that transcriptomic profiling—summarized at the

pathway level—would enable us to account for common down-

stream effects of different germline variants across many women
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who develop FBC. In other words, even though individuals who

develop FBC may differ in the specific germline variants that they

carry, those variants may affect similar signaling networks and have

similar downstream transcriptional consequences.

Transcriptional profiling has been used widely to improve our

understanding of the molecular basis of cancer phenotypes (Miller

et al, 2005; Bild et al, 2006; Huang et al, 2007; Langenau et al,

2007; Rhodes et al, 2007; Liu et al, 2008; Waddell et al, 2008; Wong

et al, 2008; Barbie et al, 2009; Ooi et al, 2009; Singh et al, 2009;

Zhang et al, 2009). In normal cells, gene expression levels reflect

functional germline genetic (and epigenomic) variation and thus

may be useful as a surrogate for germline variation. Associations

between genetic and transcriptomic variation were initially mapped

in yeast where it was shown that genetic variants in parental yeast

influence expression traits in progeny (Steinmetz et al, 2002).

Subsequent studies have identified thousands of expression

quantitative trait loci in the human genome (Morley et al, 2004;

Schadt et al, 2008), and additional research has demonstrated that

global mRNA expression patterns can reflect heritable disease

susceptibility (Mohr & Liew, 2007; Cookson et al, 2009). For exam-

ple, in individuals who carry BRCA1/2 mutations, expression

patterns in lymphoblastoid cells are distinct from those in individu-

als who do not carry these mutations (Waddell et al, 2008). Such

downstream effects have also been observed in tumors (Hedenfalk

et al, 2001), suggesting that gene expression levels can reflect

germline variation.

We performed a gene expression analysis to profile peripheral

blood mononuclear cells (PBMCs) in two patient cohorts that

included women who had a family history of breast cancer; approxi-

mately half of these women had developed breast cancer, while the

others had not. We also examined germline DNA variation in a

subset of these samples to test for consistency of pathway dysregu-

lation across these genomic data types. To study the biological

mechanisms of FBC, we mapped the data to 932 canonical signaling

pathways (Subramanian et al, 2005; Kanehisa et al, 2006; Taube

et al, 2010; Byers et al, 2013) and used these data to discover

pathway-specific patterns that differed between individuals who

developed FBC and those who did not. Multiple pathways related to

cell–cell and cell–extracellular matrix (ECM) adhesion showed

significant differences in gene expression and germline variation.

Next, to verify whether these observations generalize to breast

tissue, we performed a pathway analysis on two gene expression

data sets that profiled normal breast tissue from women who had a

family history of breast cancer and/or carried a mutation in BRCA1/

2 and compared them against control women from the same studies.

Again, various cell adhesion pathways attained statistical

significance in these data sets. Based on these findings, we used

cell-based functional assays and fluorescence microscopy to

compare cell adhesion properties of normal mammary epithelial

cells between women who had undergone prophylactic mastectomy

due to a breast cancer family history and women who had under-

gone a breast reduction surgery for reasons unrelated to breast

cancer risk (these served as controls).

In support of our genomic findings, we observed significant dif-

ferences in cell–cell and cell–ECM phenotypes for the prophylactic

mastectomy cells compared with the controls. Specifically, normal

cells from FBC women showed: (i) decreased cell adhesion abilities,

(ii) increased cell death when treated with drugs that modulate cell

adhesion capacity, and (iii) aberrant morphological features. Taken

together, these findings, derived from multiple computational and

experimental analyses on multiple tissue types, implicate dysregu-

lated cell adhesion pathways in FBC development.

Results

Overview of approach to identify familial breast cancer
susceptibility pathways by multi-omic profiling

Our initial analyses aimed to identify pathways that differed

between women who developed FBC and those who did not, across

multiple types of omic data. Because germline variation drives tran-

scriptional changes that should be observable in both peripheral

blood cells and breast cells, we obtained gene expression data for

PBMCs and normal breast cells across four independent cohorts

(Fig 1B and C). We also obtained exome-sequencing data for a

subset of the PBMC samples to identify pathway-level germline

DNA variation associated with FBC development. We analyzed the

omic data using pathway-based approaches, identifying pathways

that consistently showed dysregulation between women who were

or were not affected by FBC (Fig 1A). In this sense, our genomic

data enabled us to generate and filter hypotheses regarding biologi-

cal processes that play a role in FBC development; we then validated

these findings in the laboratory using cell-based assays (Fig 1C).

Pathway-level evaluations of peripheral blood cells for women
from breast cancer families

For patients from Utah (USA) and Ontario (Canada), we used gene

expression profiles of peripheral blood mononuclear cells to identify

signaling pathways differentially expressed between women who

developed FBC and women who had a family history of breast

cancer but who did not develop cancer by at least age 55. We also

sequenced the exomes of 35 Utah patients and assessed whether

pathway-level germline variation differed between these patient

groups. For the expression data, we mapped gene-level values to

932 curated signaling pathways and used the Support Vector Machi-

nes algorithm (Vapnik, 1998) to test how well a multigene classifier

—based only upon genes from a given pathway—could differentiate

between women who developed FBC and women who did not.

Pathways were ranked according to their accuracy at distinguishing

FBC women versus controls (Fig 1A). For mutation data, we

compared the number of FBC samples that contained a variant in a

given pathway against the number of control samples with a

pathway variant (see Materials and Methods).

Using the Utah data as a training set and the Ontario data as

a test set, we focused on the 45 pathways that consistently and

significantly discriminated between affected FBC women and

controls for both cohorts and for both types of omic data (rank

P-value < 0.05; Dataset EV1). Because many canonical pathways

reflect similar biological functions, we manually categorized the

pathways according to biological themes that describe their

activity (Appendix Table S2). As shown in Fig 2A, the most

significant cancer-related biological themes were cell adhesion,

MAPK signaling, and cell cycle regulation (Hanahan & Weinberg,

2011). Figure 2B and C shows gene expression and DNA mutation
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Figure 1. Flow chart illustrating the experimental design of this study.

A We used pathway-based analytic approaches to identify biological processes that may be disrupted in women who develop familial breast cancer (FBC). Having
collected genomewide data, we filtered the data to include only genes associated with a given pathway. For each pathway, we identified differences between
individuals who developed FBC and those who did not, using either the Support Vector Machines algorithm (gene expression data) or Barnard’s exact test (DNA
variant data). We considered the most statistically significant pathways to be candidates for further investigation.

B We profiled peripheral blood mononuclear cells using gene expression microarrays and exome sequencing and identified pathways that were consistently significant
across these data sets. To reduce the chance that our findings were influenced by treatment effects, we excluded pathways that showed significant differences
between familial and non-familial controls.

C For the remaining pathways, we identified those that showed significant differences in two gene expression data sets representing primary mammary epithelial cells.
To validate these findings, we used cell-based assays and fluorescence microscopy to profile an additional collection of normal breast cells.
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Figure 2. Overview of top pathways for which gene expression levels andmutation status differed significantly between FBCwomen and controls in the Utah
and Ontario cohorts.

A Biological processes associated with pathways that attained a rank P-value < 0.05.
B Heatmaps show median expression levels for Utah and Ontario women, respectively, who developed FBC and for women who did not. Only genes that exhibited a

consistent fold change across the cohorts are shown.
C Per-sample DNA variants observed in these pathways are shown. Black dots indicate samples that carried a likely pathogenic in the genes that are shown. Only genes

for which at least one variant was observed are shown.

Molecular Systems Biology 12: 860 | 2016 ª 2016 The Authors

Molecular Systems Biology Breast cancer susceptibility pathways Stephen R Piccolo et al

4



patterns for the two pathways that performed best overall in these

analyses (Datasets EV2–EV4). The REACTOME Integrin Cell Surface

Interactions pathway (P = 0.004) characterizes interactions that

occur between ECM macromolecules and cell surface proteins to

provide a substrate for epithelial cells (Faull & Ginsberg, 1996).

The KEGG Small Cell Lung Cancer pathway (P = 0.005) character-

izes various biological processes that can influence tumorigenesis—

including cell–ECM interactions, cell proliferation, and cell cycle

regulation. Various other pathways related to cell adhesion—

including KEGG Focal Adhesion (P = 0.012) and REACTOME Cell

Surface Interactions at the Vascular Wall (P = 0.007)—also

performed well in our analyses. Together, these findings suggest

that perturbation of normal cell adhesion activity may lead to an

increased risk of breast tumors in FBC women.

To assess the robustness of these results, we repeated the path-

way-filtering steps using three alternative methods for combining

P-values across data sets (see Materials and Methods) and then

corrected for multiple tests using Storey’s q-value method (Storey,

2003). Each of these approaches resulted in a larger number of

candidate pathways, and the same pathways that we had identified

using the rank-based approach were among the top pathways identi-

fied with these approaches (Datasets EV5–EV7). Lastly, to further

interrogate whether cell adhesion pathways were significant in

specific patient subsets independently, we repeated the analyses but

separated the data according to whether each patient carried a

BRCA1/2 mutation or did not (BRCAX) (Appendix Figs S4 and S5).

Comparing cancer vs. no cancer samples within each of these

groups, we found that a variety of cell adhesion-related pathways

attained statistical significance (Datasets EV8 and EV9). Accord-

ingly, although samples sizes are relatively small for these subgroup

comparisons, these results suggest that cell adhesion processes may

play a role in breast cancer risk for both groups. Because our overar-

ching goal was to identify pathways that are common to and not

specific to either BRCA1/2 or BRCAX carriers alone, we excluded

any pathway that showed significant (P < 0.05) differences between

BRCA1/2 and BRCAX individuals (Datasets EV10 and EV11) from

further analysis.

Evaluation of familial breast cancer susceptibility pathways via
profiling of normal breast tissue

We next applied our pathway analysis approach to two additional

gene expression data sets to evaluate which pathways showed

significant dysregulation in normal breast tissue (Lim et al, 2009;

Bellacosa et al, 2010). Dataset EV12 lists pathways that showed an

ability to discriminate between (i) women who had a family history

of breast cancer and/or carried a BRCA1/2 mutation and (ii)

controls in these data sets. Of the 45 pathways identified in the

previous analysis, 9 showed significant differences for these two

data sets as well as when combining evidence across all 5 data

sets (P-value < 0.05). Again, the highest ranking pathways were

REACTOME Integrin Cell Surface Interactions (P = 0.038 for Lim

et al and P = 0.030 for Bellacosa et al) and KEGG Small Cell

Lung Cancer (P = 0.007 and 0.003, respectively) (Fig 3; Datasets

EV13–EV16). Thus, expression patterns in these pathways for both

peripheral blood and normal breast cells were remarkably consis-

tent, again highlighting the potential role of cell adhesion signaling

in FBC susceptibility. Although pathway perturbation mechanisms

may vary from one individual to the next, our results consistently

point to disrupted cell adhesion mechanisms as an indicator of

breast cancer risk.

To further evaluate the relationship between gene expression

and protein levels, we performed a Western blotting analysis using

snap-frozen tissue from an independent cohort of breast epithelial

tissues that consisted of women undergoing prophylactic surgeries

for BRCA1/2 mutation and/or high-risk status and for controls who

underwent breast reduction surgeries for non-cancer-related reasons

(n = 27). Similar to the gene expression data, vitronectin (VTN)

showed a significant increase in protein levels, while F-actin showed

a significant decrease for FBC women compared to controls

(P-value < 0.05), indicating that gene and protein expression for a

subset of genes highlighted in the genomic analyses described above

are concordantly dysregulated. Furthermore, FAK/PTK2 and PTEN

protein levels trended lower in FBC patient samples compared to

controls (Fig EV1, Appendix Table S3).

Aberrant cell morphology in normal mammary epithelial cells of
women from FBC families

As our gene expression and DNA mutation analyses consistently

indicated cell adhesion pathways as a candidate mechanism contri-

buting to FBC, we investigated whether differences in cell adhesion

phenotypes would be observable in normal breast tissue. Previous

studies have associated cell adhesion perturbations and dysregulation

of ECM components with breast tumorigenesis (Schor et al, 1985;

Weaver et al, 1996, 1997, 2002; Schor & Schor, 2001; Wang et al,

2002; Paszek et al, 2005; Kass et al, 2007; Levental et al, 2009;

Tanner et al, 2012); however, these pathways have not previously

been linked to breast cancer susceptibility. Accordingly, we used

normal mammary epithelial cells—obtained after prophylactic

mastectomies from women who had a family history of breast cancer

—and compared them to cells from control women who underwent

breast reduction surgeries. We tested whether cell–cell and cell–ECM

phenotypes differed between the groups. Irrespective of surgery type,

all patient samples were processed using similar procedures. Cold

ischemia times were on average < 30 min, and growth conditions for

these viable tissues were the same for both surgical procedures.

First, we asked whether we could detect qualitative differences in

cytoskeletal cell–cell adhesion phenotypes. Normal primary

mammary epithelial cells from 24 patient cultures were seeded onto

glass slides, grown for 3–5 days, then fixed, stained, and imaged using

fluorescence microscopy. Figure 4A shows cells stained for F-actin,

focal adhesions, and nuclei from ten of the patients, which had been

assessed in a blinded manner for having distinctive cell phenotypes.

Cell morphology ranged from compact clusters of tightly bunched

cells to dispersed single cells with well-developed actin cytoskeletons

and adhesion sites. After unblinding, we found that the control cell

cultures more frequently clustered together and displayed actin

filaments and focal adhesions that resemble typical observations for

normal mammary epithelial cell cultures; however, many of the FBC

cultures exhibited larger, well-spread cells with more visible actin

cytoskeletons and fewer cell–cell contacts. We quantified these

observations (see Materials and Methods) for all microscope fields

(n = ~10) from the 10 patients identified above and observed signifi-

cant differences (P < 0.05) between the groups in estimated cell size,

F-actin staining, and focal adhesion staining (Fig 4B).
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Aberrant cell adhesion properties in normal mammary epithelial
cells of women from FBC families

To further evaluate the functional role of cell adhesion in FBC, we

used an in vitro assay to assess the cells’ ability to adhere. We

allowed the mammary epithelial cell cultures to adhere to laminin-

coated plates for three hours to test for cell–ECM interaction and

adherence. We then quantified the number of cells that adhered to

the plates and observed a modest but significant decrease in

adherent cells for FBC samples compared to controls (Fig 5A,

P-value = 0.02), again supporting the findings from our genomic

studies. Of note, the adhesion phenotype observed within the

primary cultures may be time-in-culture dependent, as we did not

see a difference in focal adhesions for FBC cells grown longer term

in culture, which is consistent with our fluorescence microscopy

observations. This subtle variance suggests that differences in cell–

ECM adherence may be observable in short-term culture acute

settings but may be compensated for, and lost, in longer term

culture experiments.

Pharmacological evidence for aberrant cell adhesion properties
in normal breast epithelial cells of FBC women

We treated breast epithelial cells with PF573228, a focal adhesion

kinase (FAK) inhibitor (Slack-Davis et al, 2007), as FAK (PTK2) is

critical in focal adhesions that form among cells attaching to the

extracellular matrix, as well as in cell migration. If normal epithelial

cells from FBC women are “primed” with decreased cell adhesion,

then inhibiting FAK in these cells would potentially have increased

potency when compared to control cells. We found that cells from

FBC patients were significantly more sensitive than controls to this

drug (Fig 5B), suggesting that there are deficits in adhesion proper-

ties in FBC patient cells and indicating a role of FAK-related signal-

ing and the actin cytoskeleton in FBC development.

As a control experiment, we assessed cell proliferation when

cells from the same cultures were treated with gefitinib and afatinib,

which target growth factor-related pathways but are not closely

related to cell adhesion, but we saw no difference in response for

these growth control drugs (Fig EV2).
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Figure 3. Summary of pathway-level results that included non-FBC controls and normal breast gene expression data.

A Cross-validated estimates that each patient from the Lim et al and Bellacosa et al cohorts had a family history of breast cancer and/or carried a BRCA1/2 mutation.
These estimates were derived from genes in the REACTOME Integrin Cell Surface Interactions pathway.

B Estimates for the same patients using genes from the KEGG Small cell lung cancer pathway.

Data information: The boxes represent the the interquartile range of the “Genomic model score” values. The whiskers extend the the most extreme data points.
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Figure 4. Fluorescence microscopy images of primary breast epithelial cultures for FBC women and controls.

A Primary (non-malignant) mammary epithelial cells from breast reduction patients with no known family history of breast cancer and from prophylactic mastectomy
patients who had a breast cancer family history (“high risk”) were cultured on glass slides for 3–5 days and subsequently fixed and stained for F-actin (red,
phalloidin), focal adhesions (green, vinculin) and nuclei (blue, Dapi). Shown are five cell populations (two fields each) from each group that had been identified in a
blinded manner as having distinctive cell phenotypes. Scale bar = 50 lm.

B Box plots showing the results of quantitative comparisons for all microscope fields (n = ~10) from each of the samples shown. Samples from high-risk patients were
more spread apart and expressed higher levels of F-actin. See Materials and Methods for details about how quantitative metrics were derived. The boxes represent
the the interquartile range of the respective values. The whiskers extend the the most extreme data points.
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In sum, our in silico and in vitro observations suggest that alter-

ations to cell adhesion regulatory pathways may lead to distinct cell

phenotypes in women with a family history of breast cancer, that

these alterations may lead to decreased cell–cell contact disposition

in response to growth and that this functional mechanism may play

a role in FBC development.

Discussion

Since the discovery of BRCA1 and BRCA2 as breast cancer suscepti-

bility genes (Miki et al, 1994; Wooster et al, 1994), much focus has

been placed on discovering additional DNA variants that are associ-

ated with FBC development. Ongoing efforts to genotype ever-larger

cohorts have also yielded common susceptibility variants

(Michailidou et al, 2013); however, in total, known susceptibility

variants explain < 30% of familial risk (Stratton & Rahman, 2008).

Accordingly, new complimentary approaches are needed to identify

genomic factors that drive FBC risk. In our study, we took a multi-

omic approach and searched for multigene patterns associated with

FBC development, irrespective of BRCA1/2 mutation status. Our

approach is based on the premise that germline genetic and epige-

nomic variations cause gene expression changes in normal cells that

reflect a person’s risk for eventual tumor development. Upon exam-

ining gene expression levels and protein-coding variants for women

who did or did not develop FBC, we identified signaling pathways

with consistent differences between the groups, including pathways

related to cell adhesion, integrin signaling, and growth signaling.

We also evaluated normal breast cells using fluorescence micro-

scopy, functional assays, and pharmacologic assays; each provided

additional evidence that cell adhesion pathways are dysregulated in

high-risk women. These findings complement prior research, which

has shown that blood-derived molecular signatures reflect dysregu-

lated molecular processes in breast tissue (Sharma et al, 2005;

Aarøe et al, 2010; Tudoran et al, 2014), that dysregulation of cell

adhesion genes can be identified in blood cells from breast cancer

patients (Tudoran et al, 2014), and that germline variants in cell

adhesion pathway genes contribute to breast cancer risk (Ayala

et al, 2003; Langsenlehner et al, 2006; Liu et al, 2013). Our analysis

extends these observations by aggregating pathway-level genomic

data from four independent patient populations (five data sets total)

—including two that characterized expression within normal breast

cells. Importantly, we also used our genomic findings to guide

laboratory-based experiments that together provide a detailed

characterization of how dysregulation of cell adhesion pathways in

high-risk women may modulate cell–cell and cell–ECM properties,

as well as differential responses to changes in these interactions.

Such integrative approaches are imperative for deciphering mecha-

nisms that influence disease risk.

Summarizing genomic data at the pathway level allows data to

be placed in biological context and facilitates experimental follow-

up. However, one challenge with pathway-based bioinformatics

analyses is that many candidate pathways typically emerge. We

addressed this issue by examining five genomic data sets to identify

A B

Figure 5. Cell-based assays show aberrant cell adhesion in normal breast epithelial cells for women with a high risk of breast cancer.

A A cell adhesion assay was used to compare extracellular matrix adhesiveness in normal, primary breast cells in women who did or did not have a family history of
breast cancer. Cells from women who had a family history of breast cancer were significantly less adherent than cells from women who did not have a family history
of breast cancer.

B A drug-response assay was used to evaluate responsiveness to PF573228, a FAK inhibitor in lm concentrations. Normal, breast epithelial cells were obtained from
high-risk women who had undergone prophylactic surgery and compared against cells from women who had undergone non-risk-related, breast reduction surgery.
The prophylactic samples were significantly more sensitive to PF573228 than breast reduction samples. Response values indicate the drug concentration that induces
a response that reaches half of its maximal effect.

Data information: The boxes represent the the interquartile range of the respective values. The whiskers extend the the most extreme data points.
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themes that were common across them. Importantly, many of the

pathways we identified reflect similar biological processes. Subse-

quent laboratory-based assays supported our genomic findings and

further implicated cell adhesion pathways as being dysregulated in

high-risk patient tissues. These findings demonstrate the value of

leveraging multiple pathways, cohorts, tissue types, and data types

in studies with small or moderate sample size to identify functional

dysregulation associated with a given phenotype—in this case,

familial breast cancer.

Although we focused primarily on cell adhesion as a candidate

susceptibility mechanism, additional biological processes performed

consistently well across our genomic analyses—in particular, path-

ways that are known to play diverse roles in tumor development

(Fig 2A and Appendix Table S2). These pathways regulate processes

such as cellular proliferation, differentiation, and the cell cycle and

include well-known cancer genes such as ERBB2, EGFR, PIK3CA,

and JUN. These observations also are consistent with a recent

prospective study that showed enrichment of cancer (and cell adhe-

sion) pathways in blood-derived DNA methylation profiles for

women who developed familial breast cancer (Xu et al, 2013).

Together, our findings suggest that aberrant signaling within cancer

pathways in peripheral blood may be a sign of eventual tumor

development in general.

In this study, we focused on women who had at least two-first-

degree relatives who had been diagnosed with cancer. Such women

have a considerably higher risk of developing breast cancer than

women who have only a single affected first-degree relative.

However, our findings may also have relevance for the latter group.

Future studies will be valuable in assessing whether our findings

are relevant mainly to women who have a relatively strong family

history of breast cancer or to a broader population.

Overall, our results suggest that cell adhesion-related pathways

may exhibit different behavior between individuals who develop

FBC and those who do not. Our evaluations of gene expression

levels and germline variants across multiple cohorts identify an

association between aberrant activity within these pathways and

breast cancer susceptibility. The use of multi-omic data linked to

functional and biological studies complements conventional

approaches, such as genomewide association studies, to aid in iden-

tifying signaling networks that influence disease development.

These findings may lead to improved methods of predicting the

development of familial breast cancer, which could have significant

implications for risk management.

Materials and Methods

Patient cohorts and ethics approval

As summarized in Tables 1 and 2 and Appendix Table S1, we

acquired blood samples for a cohort of 124 women from Utah, USA.

Additionally, we recruited an independent cohort of 73 women from

Ontario, Canada. Our objective was to determine whether pathway

dysregulation in non-malignant cells correlates with the develop-

ment of breast cancer in individuals who had a family history of

breast cancer, with or without a BRCA1/2 mutation. Individuals

who had a family history of breast cancer but had not developed

cancer, or who did not have a family history but either had, or had

not, developed cancer, served as controls. Accordingly, both the

Utah and Ontario cohorts included women who (i) had a family

history of breast cancer or did not, (ii) carried a pathogenic germline

variant in BRCA1 or BRCA2 or did not, and (iii) had developed

breast cancer or had not. Our definition of “family history of cancer”

was limited to women who had at least two-first-degree relatives

who had been diagnosed with cancer. Where possible, patients were

matched according to age at which blood was drawn (see Table 1

and Appendix Fig S1). For individuals who had developed breast

cancer, blood samples were collected at least 6 months after

completing therapy.

Pathogenic mutation status in BRCA1/2 was identified via

commercial, PCR-based genetic testing (Myriad Genetics). Techni-

cal specifications for these tests can be found here: https://

www.myriad.com/lib/technical-specifications/BRACAnalysis-Technical-

Specifications.pdf. Across our two cohorts, 30% of participants

carried a known pathogenic mutation in BRCA1 or BRCA2. We

labeled the remaining participants who had a family history of

breast cancer but who did not carry a known pathogenic mutation

in BRCA1 or BRCA2 as “BRCAX”. Across the cohorts, 47% of

participants had developed breast cancer, whereas the remaining

participants had not developed breast cancer by at least 55 years of

age; the median age among these women was 60 years. The

samples showed no statistical difference in age at blood draw.

To control for confounding effects due to previous cancer treat-

ments, our control group included 41 women from Utah and 13

women from Ontario who had no family history of breast cancer.

Over half of these women had developed non-familial (sporadic)

breast cancer (Tables 1 and 2). We included these cases to provide

Table 1. Overview of patients from Utah (USA) who provided a PBMC
sample.

Family
history of
breast
cancer

BRCA1/2
mutation

Developed
tumor

#
Patients

Median
age

Yes Yes Yes 16 59

Yes No Yes 23 59

Yes Yes No 18 60

Yes No No 26 63

No No Yes 22 66

No No No 19 58

The median age indicates the age in years at which blood was drawn.

Table 2. Overview of patients from Ontario (CA) who provided a
PBMC sample.

Family history of
breast cancer

BRCA1/2
mutation

Developed
tumor # Patients

Yes Yes Yes 11

Yes No Yes 17

Yes Yes No 14

Yes No No 18

No No Yes 8

No No No 5
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confidence that gene expression differences were specific to FBC

and driven primarily by germline susceptibility factors and not prior

cancer treatment.

The Utah women were recruited via Huntsman Cancer Institute

(High Risk Breast Cancer Clinic) under Institutional Review Board

protocols (#00022886 and #00004965). We selected these women

from among a larger pool of eligible participants who had a strong

family history of breast cancer, based on whether we could obtain

fresh blood cells at the time of recruitment. The Ontario women

were recruited through the Breast Cancer Family Registry at Mt.

Sinai Hospital. Informed consent was obtained from all participants.

Gene expression data

In accordance with manufacturer (Becton-Dickinson) protocol,

PBMCs were isolated from blood samples in cell preparation tubes.

RNA was isolated using the RNAeasy Kit (Qiagen, Valencia, CA,

USA) and hybridized to Affymetrix GeneChip Human Exon 1.0 ST

microarrays.

We normalized the microarray data using the Single-channel

Array Normalization method (Piccolo et al, 2012). Next, we

excluded any microarray probe that overlapped with a known DNA

variant or that was not classified as “green” in PLANdbAffy

(Nurtdinov et al, 2010). We used a 10% trimmed mean to summa-

rize the remaining probes at the gene level and excluded genes with

four probes or fewer. We used ComBat (Johnson et al, 2007) to

correct for any batch effects; because some Ontario samples were

processed at two different facilities, we treated these samples as two

separate batches.

We also excluded any gene whose expression might be

confounded by immune activity or demographic/clinical variables

associated with the patients. We applied a total lymphocyte enumer-

ation test to whole blood cells for 22 samples from the Utah cohort

to estimate the number of B cells, CD3-positive T cells, CD4-positive

T cells, CD8-positive T cells, and NK cells. In addition, 63 patients

from the Utah cohort responded to a health assessment survey that

collected the following variables for each participant: age at diagno-

sis, age of first menstrual cycle, time since last menstrual cycle, age

when menstruation ceased, level of education, religious preference,

overall health status, marital status, level of physical activity, use of

contraceptives, total number of pregnancies, first live birth age, last

live birth age, number of live births, breastfeeding status, use of

chemopreventive/hypertension/ anti-inflammatory drugs, tobacco

use, alcohol use, occupational history, and history of immunological

disorders. We used a multifactor ANCOVA test to identify genes

(n = 334) for which gene expression levels correlated strongly with

any of these factors (P < 0.01).

We used normal breast tissue expression data from Lim et al

(Lim et al, 2009) (GSE17072) and Bellacosa et al (2010)

(GSE19383). Using data preprocessed by the original authors, we

compared gene expression levels between women who had a family

history of breast cancer and/or who carried a pathogenic mutation

in BRCA1/2 and control patients who did not meet these criteria.

Exome-sequencing data

We used exome-capture DNA sequencing to profile peripheral blood

cells from 35 of the Utah participants. Genomic DNA was hybridized

using Agilent SureSelect Human All Exon v4 + UTRs kits. Captured

libraries were sequenced on an Illumina Hi-Seq 2000 instrument,

and bar coding was used for multiplexing (seven lanes, five samples

per lane). This process resulted in 101-bp paired-end reads

(58,032,900 unique reads per sample).

We aligned raw sequencing reads to the hg19 reference genome

using the Burrows-Wheeler Aligner software (BWA, version 0.6.1)

(Li & Durbin, 2009). We marked duplicate reads using Picard tools

(v. 1.82, http://broadinstitute.github.io/picard) and sorted and

indexed reads using samtools (v. 0.1.18) (Li et al, 2009). Using the

Genome Analysis Toolkit (GATK, v. 2.3.4) (Depristo et al, 2011), we

passed the data through various processing steps to realign and

recalibrate the reads and to detect SNVs and short InDels;

we followed the relevant GATK Best Practice Variant Detection

guide.

On average per sample, 5,848,610,129 bases aligned to the refer-

ence genome, and 88.24% of bases fell within exome-capture target

regions, resulting in a mean target coverage of 58.10. This level of

coverage was considerably higher, for example, than the 20× cover-

age required for quality control in the TCGA breast cancer study

(Koboldt et al, 2012).

Across all samples, we observed DNA variants at 941,507 unique

loci (830,317 single nucleotide variants [SNVs] and 111,190 short

insertion/deletion variants [InDels]). We used multiple criteria to

filter the initial variants (Fig EV3). We excluded any variant for

which a minor allele frequency greater than one percent (Cirulli &

Goldstein, 2010) had been reported in any ethnic population in

either the 1000 Genomes (phase 1, release 3) (Abecasis et al, 2012)

or Exome Sequencing Project 6500 data (http://evs.gs.washington.

edu/EVS).

Because variant calls are often discordant across sequencing

technologies and analytical pipelines (O’Rawe et al, 2013), we used

our variant-calling pipeline to process 611 germline DNA samples

from The Cancer Genome Atlas (TCGA) that had been profiled via

exome sequencing, and we excluded samples that had a minor allele

frequency greater than 3%—a higher threshold was used for TCGA

because this population may be enriched for susceptibility variants.

Additionally, we excluded variants that occurred in more than 15%

of the Utah samples but had not been excluded in prior steps. The

preceding two steps reduced the number of SNVs and InDels by

18.4% and 90.8%, respectively.

Next, we excluded variants that fell outside exons (plus/minus

two bases to allow for splice site mutations) used in each gene’s

primary transcript; gene/transcript definitions were extracted

from Entrez Gene. The remaining variants were annotated for

protein-coding effect using snpEff (Cingolani et al, 2012). We

excluded variants that were assigned a severity level of “MODIFIER”

or “LOW.” We retained any variant that was assigned a “HIGH”

severity; these consisted primarily of truncating, frameshift, and

splice site variants. We also retained “MODERATE” InDels. We

examined nonsynonymous coding SNVs for evolutionary

conservation and functional effect using the SIFT (Kumar et al,

2009), Polyphen-2 (Adzhubei et al, 2013), and MutationAssessor

(Reva et al, 2011) algorithms (obtained via dbNSFP (Liu et al,

2011) and aggregated them using Condel (Gonzalez-Perez et al,

2012)). We excluded any missense SNV called as “neutral.” The

remaining variants constituted our final set of “potentially

pathogenic” variants. For simplicity, heterozygous variants and
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homozygous rare variants were considered to have an equivalent

effect; 99.5% of these variants were heterozygous.

After filtering, we observed 6,908 variants (average of 182.1

SNVs and 15.3 InDels per sample) at 5,551 loci. Most variants were

non-synonymous substitutions (Appendix Fig S2). The most

frequent substitutions were G-to-A and C-to-T transitions

(Appendix Fig S3). The average transition/transversion ratio was

2.20. Most InDels resulted in a net gain/loss of three nucleotides or

fewer; however, some were larger.

To assess the validity of our variant calls, we compared against

the PCR-based, commercial genetic test results for BRCA1 and

BRCA2. We observed only one false-negative variant (rs80358061),

which resides in a BRCA1 intronic region outside the splice site junc-

tion points. Our pipeline identified this variant, but it was filtered

out due to its intronic location. Five false-positive variants occurred,

but in all cases except one, the false-positive variant coincided with

another BRCA1/2 variant in the same patient. Thus, for 94.2% of

the samples, BRCA1/2 mutation status was identified correctly via

exome sequencing.

Although processing the TCGA data required substantial compu-

tational resources, we emphasize its importance. By processing

these samples using the same pipeline that we used to process our

own samples, we avoided systematic biases that can arise due to

differences in variant-calling pipelines. Consequently, we identified

variants/genes that were mutated frequently but that had not been

identified in other databases we queried.

Pathway-based analytic approaches

Using the PBMC gene expression data, we identified biological path-

ways that showed the greatest differences in expression between

women who developed FBC and women who had a family history

of breast cancer but who did not develop a tumor (Fig 1A). We

obtained gene lists for 932 biological pathways from: (i) KEGG

(Kanehisa et al, 2006) (accessed on June 16, 2011), (ii) the Molecu-

lar Signatures Database (v3.0) (Subramanian et al, 2005), and (iii)

two research articles (Taube et al, 2010; Byers et al, 2013). For a

given pathway, we made predictions in two successive steps: (i) we

identified the most discriminatory genes from that pathway using

the Support Vector Machines-Recursive Feature Elimination

(SVM-RFE) algorithm (Guyon et al, 2002) and then (ii) used the

SVM classification algorithm (Vapnik, 1998) to derive a probability

that each patient had developed FBC. For the Utah individuals with

a family history of breast cancer, we derived a probability for each

sample in a ten-fold cross-validated design. We repeated this

process for each pathway and ranked the pathways according to

how accurately the SVM algorithm could distinguish women who

developed FBC from women who had a family history of breast

cancer but did not develop FBC (n = 83, see Table 1). We consid-

ered the pathways for which we attained the highest classification

accuracy to be most likely to play a role in FBC development (Pang

et al, 2006; MacNeil et al, 2015).

For the remaining samples, we estimated FBC status in a train-

ing/testing design. We trained an SVM model solely on the original

83 samples and predicted FBC status for the remaining samples,

which included 60 Ontario women who had a family history of

breast cancer, 28 of whom had developed breast cancer (Table 2).

This set also included data for 54 women from Utah or Ontario who

did not have a family history of breast cancer, 30 of whom had

developed sporadic breast cancer. After ranking the genes via SVM-

RFE (using only the training data), we derived SVM classification

models for the top 25, 50, 75, 100, 125. . .300 ranked genes. The

number of genes that performed best within the Utah data was then

used for the training/testing analysis. The derived probabilities were

then compared against FBC status, and an AUC value was calculated

using the ROCR package (Sing et al, 2009). In this context, the AUC

quantifies the model’s ability to discriminate the groups at various

probability thresholds; it can be interpreted as the frequency that

the model would assign two randomly selected patients to the

correct group. Finally, we derived a P-value for each pathway by

comparing the AUC observed for that pathway against AUCs

observed after randomly shuffling the class labels (1,000 permuta-

tions); these empirical P-values represent the fraction of permuted

AUCs higher than the non-permuted AUCs.

We filtered these results further by excluding pathways for which

the SVM predictions differed significantly (two sample t-test,

P-value < 0.05) between (i) individuals who had a family history of

breast cancer but did not develop a tumor and (ii) individuals who

did not have a family history of breast cancer (irrespective of

whether they developed a tumor). This filtering step helped to

ensure that the pathway-level differences we observed were specific

to FBC development and were not merely a result of treatment

effects.

Subsequently, we applied the above approach to the Lim et al

and Bellacosa et al data except that we used leave-one-out cross-

validation within each data set. In addition, because we did not

know which patients would eventually develop breast cancer, we

compared patients with a family history of breast cancer and/or a

BRCA1/2 variant against those who did not have these

characteristics. Although it is not certain that individuals with a

family history of breast cancer and/or a highly penetrant variant will

eventually develop cancer, these individuals have a much higher risk

than the remaining population (Stratton & Rahman, 2008).

For the DNA variant data, we aggregated variants at the gene

and pathway levels. If a given sample carried any potentially patho-

genic variant in a given gene or pathway, we considered that gene

or pathway to be “mutated”; samples that contained a variant in a

given gene carried an average of 1.02 variants in that gene. Under

the assumption that frequently mutated genes are unlikely to drive

susceptibility due to selective pressure and thus constitute noise at

the pathway level, we excluded genes that are mutated relatively

frequently. For this step, we used the germline samples from TCGA.

Based on gene mutation frequencies in the TCGA data, we excluded

genes from our data set that were mutated in more than 1.8% of

TCGA germline samples (aside from BRCA1/2). We selected this

threshold based on the maximal difference in the number of

excluded genes for candidate thresholds that fell between 0.2% and

10% (Fig EV4). The number of “mutated” pathways was an average

of 31 per patient (Fig EV3). We used a one-way Barnard’s exact test

(Barnard, 1945) to compare pathway-level mutation rates between

individuals who developed FBC and those who did not. In cases

where we sought to identify pathways whose mutation rates differed

between BRCA1/2 and BRCAX individuals, we applied this test once

in each direction.

When combining evidence across these various data sets, we

used the rankPvalue function in the WGCNA package (Langfelder &
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Horvath, 2008) to determine which pathways had a consistently low

ranking, using P-value order within each data set for the rankings.

Accordingly, although the P-value distributions differed across the

analyses, the relative performance of each pathway was taken into

account. We tested three alternative methods for combining

P-values as implemented in the metap package (version 0.6; http://

CRAN.R-project.org/package=metap). These included Fisher’s

combined probability test, Wilkinson’s method, and the “sum p”

method (Fisher, 1932; Wilkinson, 1951; Edgington, 1972). For each

of these methods, we corrected for multiple tests using Storey’s

q-value method (version 2.0.0) (Storey, 2003).

Correlation between sequencing variants and gene expression

For 34 samples that were profiled using both gene expression

microarrays and DNA sequencing, we estimated the relationship

between gene mutation status and expression of the same gene

using Spearman’s rank correlation coefficient. Using a local false

discovery rate approach (Strimmer, 2008), we determined a

threshold at which to reject the null hypothesis that gene mutation

status was not correlated with expression levels of that gene.

Fig EV5 illustrates the relationship between germline variant status

and gene expression levels for 373 genes that showed the strongest

association between these data types.

Patient samples for in vitro assays

We collected additional primary mammary epithelial cells for 51

total patients from Utah. This cohort included reduction mammo-

plasty cells from women who lacked a family history of breast

cancer and normal cells obtained via prophylactic surgery for

women who had a family history of breast cancer. Family history

status was determined via examination of medical health records.

Different patients were used for each assay described below, due to

limited amounts of tissue available after surgeries. Informed consent

was obtained for all participants.

Fluorescence microscopy

We examined cell morphology using fluorescence microscopy in a

blinded manner. We seeded the first set of cells into multi-well slide

chambers (Lab-Tek II CC2 Slide, 8 chambers) and grew them in

MEBM basal media supplemented with a MEGM BulletKit (Lonza)

for 3–5 days. We grew the second set of cells in STEMGENT WIT-P

media for 1–2 days. Cells were fixed (3.7% formaldehyde, 15 min),

permeabilized (0.5% Triton X-100, 5 min), and stained for F-actin

(Alexa Fluor 568–phalloidin 1:150 [Molecular Probes]), focal adhe-

sions (vinculin mouse antibody V-9131 1:1,000 (Sigma) with

secondary antibodies Alexa Fluor 488–anti-mouse 1:200), and nuclei

(Dapi 0.3 lM). Coverslips were mounted in Mowiol (Sigma). Cell

images were captured with a Zeiss AxioCamMRm camera on a Zeiss

Axioskop2 mot plus microscope (40× dry objective, 0.75 NA) using

Zeiss AxioVision 4.8.1 software. Normal primary cells from each of

24 patient cell cultures were captured and analyzed in a blinded

manner. Microscope images were processed using Adobe Photoshop

v.8 and Illustrator CS v.11.

We used the Fiji (based on ImageJ from NIH) software (Schindelin

et al, 2012) to quantify features within the fluorescence images.

First, we estimated cell size by calculating the percent of the field

area covered by cells and dividing by the estimate number of nuclei

per field. To identify the field area covered by cells, we converted

the layered images to an 8-bit format, enhanced the color contrast,

binarized, and then closed and filled features (see Computer Code

EV1 for macro commands). We estimated the number of nuclei in

Dapi fields using a similar approach but also applied the “Find

Edges”, “Watershed”, and “Find Particles” commands. As a

measure of cellular density, we calculated the Euclidean distance

between the centers of each nucleus pair and identified the three

shortest inter-nucleus distances in each field. Finally, we estimated

the proportion of cell area covered by phalloidin or vinculin by

subtracting background noise, enhancing, and binarizing the images

that reflect these stains; we then divided these values by the overall

estimated cell area per field. For each of the metrics, we evaluated

differences between all observations across the groups using

two-sided t-tests.

Cell adhesion assays

We assessed the cells’ adhesiveness to the extracellular membrane

in vitro. We pre-coated 96-well plates overnight with 1 lg/ml

human laminin (Millipore), which were washed in PBS prior to cell

plating. We plated 3,000 cells from single-cell suspensions per well,

and the average number of viable cells adhering to the plate after

three hours across the replicates was compared against total cell

counts of viable cells after 14 h, using the CellTiter-Glo Luminescent

Cell Viability Assay (Promega). We calculated all P-values using a

two-sided t-test.

Drug-response assays

The FAK inhibitor PF573228 was purchased from Selleckchem and

dissolved in 100% DMSO to generate 10 mM stock solutions of

each. Stock solutions were stored at �80°C in aliquots. Human

primary mammary epithelial cells were grown in MEBM basal

media supplemented with MEGM Bullet (Lonza, NJ, USA). We

seeded 4,000 cells per well for each patient sample in 100 ll of

media and in 96-well plates. Cells for a total of 31 patients (15 from

prophylactic surgeries and 16 from breast reduction patients) were

seeded. After 24 h, the cells were treated with PF573228 (0.16–

20 lM/ml), and viability was quantified after 96 h using MTT

(Sigma-Aldrich, MO, USA). We calculated EC50 values for each

patient sample using a nonlinear regression line fitted to drug

response in GraphPad. Negative values were converted to zero prior

to EC50 calculation.

Gefitinib and afatinib, both inhibitors of growth factor receptors,

were used in additional cell-based assays to test for differential

response between cells from women who had a family history of

breast cancer and those who did not. Specifically, we plated

1500 cells/well for each patient sample in 40 ll of MEBM basal

media supplemented with a MEGM Bulletkit (Lonza), in half-well

96-well plates (Nunc), in triplicate for each drug dose. After 24 h,

we added afatinib and gefitinib. We chose the indicated

doses within the average linear range of drug effect: afatinib

(10 nM–1 mM) and gefitinib (0.001–0.5 mM). We used a BIOMEK

3000 (Beckman Coulter, Brea, CA, USA) robot to seed the cells and

dispense the drugs. After 96 h, cell viability was quantified using

Molecular Systems Biology 12: 860 | 2016 ª 2016 The Authors

Molecular Systems Biology Breast cancer susceptibility pathways Stephen R Piccolo et al

12

http://CRAN.R-project.org/package=metap
http://CRAN.R-project.org/package=metap


the CellTiter-Glo Luminescent Cell Viability Assay (Promega). We

calculated the proportion of viable cells for each dosage by compar-

ing against cell counts for non-treated cells. We then calculated a

summary value for each cell line as the slope of a linear regression

line fitted to the cell count proportions.

Western blot assays

Protein was extracted from either breast tissue chunks or pleural

effusions. DEB lysis buffer (1% Triton X-100, 150 mM NaCl, 50 mM

Tris pH 8.0, 5 mM EDTA, 0.1%SDS) with protease (Roche Complete

Mini) and phosphatase inhibitor (PhosSTOP, Roche) was used for

cell/tissue lysis. A Bradford assay was performed to quantify protein

content in each sample. Thirty micrograms of protein was loaded

onto 4–12% gradient gels (Bio-Rad) for separation by SDS–PAGE.

As there was a large number of samples, three gels were run

containing both FBC and control patient samples. For an internal

control, two control patient samples were repeated in each gel.

Protein was transferred to PVDF membranes, blocked with Superb-

lock (Thermo scientific), and incubated with the following primary

antibodies: b-actin (Cell Signaling #3700, 1:2,000), F-actin (Abcam

#ab205, 1:500), vitronectin (Abcam #ab45139, 1:500), Integrin a4
(Cell Signaling #8440, 1:500), Integrin a5 (Cell Signaling #4705,

1:500), Integrin a6 (Cell Signaling #3750, 1:500), ICAM2 (Cell

Signaling #13355, 1:500), p53 (Cell Signaling #2527, 1:500), PTEN

(Cell Signaling #9552, 1:500), and FAK (Cell Signaling #13009,

1:1,000). Horseradish peroxidase that linked whole antibody from

donkey (GE Healthcare NA934V) and sheep (GE Healthcare

NXA931) was used as the secondary antibody. Prior to film

exposure, blots were incubated with Supersignal West Dura

Extended Duration Substrate (Thermo Scientific) for 5 min. Blots

were stripped using Restore PLUS Western Blot Stripping Buffer

(Thermo Scientific) for re-probing. Band quantification was done

using the ImageJ software. The expression of proteins was

compared with the expression of loading control (b-actin).

Software

We used the Weka software package (SVMAttributeEval module)

(Hall et al, 2009) to execute SVM-RFE. We configured it to remove

10% of genes in each iteration and to remove a single gene per

iteration when < 1% of genes remained. Otherwise, we used default

configuration settings. We used the e1071 R package (http://cran.

r-project.org/package=e1071) and LIBSVM library (Chang & Lin,

2011) for SVM classification. In deriving the models, we selected

the radial basis function kernel and used nested cross-validation

to tune the C parameter. We used ML-Flex (Piccolo & Frey,

2012) to execute these steps in parallel. We used the pROC

package to calculate 95% confidence intervals for AUC values

(Robin et al, 2011).

We used the Python programming language (http://www.python.

org) to parse and summarize data files, and a pre-release version of

the SCAN software for microarray normalization.

Software scripts and code that were used to preprocess data and

to filter and rank pathways can be accessed at https://github.com/

srp33/BCRiskPathways. Computer Code EV2 contains a Jupyter

notebook with code and data that were used to identify pathways of

interest and to create manuscript figures.

Data availability

Gene expression data are posted in Gene Expression Omnibus under

accession number GSE47862. DNA variants are posted in the

Database of Genotypes and Phenotypes under accession number

phs001044.v1.p1.

Expanded View for this article is available online.
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