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THEBIGGERPICTURE Artificial intelligence (AI) hasmade formidable progress in the interpretation of med-
ical images, but its application has largely been limited to the identification of a handful of individual pathol-
ogies. In contrast, the generation of complete narrative radiology reports more closely matches how radi-
ologists communicate diagnostic information. While recent progress on vision-language models has
enabled the possibility of generating radiology reports, the task remains far from solved. Our work aims
to tackle one of the most important bottlenecks for progress: the limited ability to meaningfully measure
progress on the report generation task. We quantitatively examine the correlation between automatedmet-
rics and the scoring of reports by radiologists and investigate the failuremodes ofmetrics.We also propose
a metric based on overlap in clinical entities and relations extracted from reports and a composite metric,
called RadCliQ, that is a combination of individual metrics.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Artificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the
potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness
of these reports requiresmetrics that can capture clinically pertinent differences. In this study, we investigate
the alignment between automated metrics and radiologists’ scoring of errors in report generation. We
address the limitations of existing metrics by proposing new metrics, RadGraph F1 and RadCliQ, which
demonstrate stronger correlation with radiologists’ evaluations. In addition, we analyze the failure modes
of the metrics to understand their limitations and provide guidance for metric selection and interpretation.
This study establishes RadGraph F1 and RadCliQ as meaningful metrics for guiding future research in radi-
ology report generation.
INTRODUCTION

Artificial intelligence (AI) hasbeenmakinggreat strides in tasks that

require expert knowledge,1–4 including the interpretation of medi-
This is an open access article under the CC BY-N
cal images.5 In recent years, medical AI models have been

demonstrated to achieve expert-level performance,6 generalize

to hospitals beyond which they were trained,3 and assist special-

ists in their interpretation.7 However, the application of AI to image
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Figure 1. Method overview

(A) Experimental design for selecting radiology reports and comparing metrics and radiologists in evaluating reports.

(B) Given a test report, selecting the report with the highest metric score from the training report corpus with respect to the test report and a particular metric.

(C) Conducting radiologist evaluation on the high metric score report relative to the test report, where radiologists identify the number of clinically significant and

insignificant errors in the high metric score report across six error categories.

(D) Determining the alignment between metric scores and radiologist scores assigned to the same reports using the Kendall rank correlation coefficient.
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interpretation tasks has often been limited to the identification of a

handful of individual pathologies,8–10 representing an over-simpli-

fication of the image interpretation task. In contrast, the generation

of complete narrative radiology reports11–21 moves past that

simplification and is consistent with how radiologists communi-

cate diagnostic information: the narrative report allows for highly

diverse and nuanced findings, including association of findings

with anatomic location, and expressions of uncertainty. Although

the generation of radiology reports from medical images in their

full complexity would signify a tremendous achievement for AI,

the task remains far from solved. Our work aims to tackle one of

the most important bottlenecks for progress: the limited ability to

meaningfully measure progress on the report generation task.

Automatically measuring the quality of generated radiology

reports is challenging. Most prior works have relied on a set of

metrics inspired by similar setups in natural language generation,

where radiology report text is treated as generic text.22 However,

unlike generic text, radiology reports involve complex, domain-

specific knowledge and critically depend on factual correctness.

Even metrics that were designed to evaluate the correctness of

radiology information by capturing domain-specific concepts

do not alignwith radiologists.23 Therefore, improvement on exist-

ing metrics may not produce clinically meaningful progress or

indicate the direction for further progress. This fundamental

bottleneck hinders understanding of the quality of report genera-

tion methods thereby impeding work toward improvement of ex-
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istingmethods.We seek to remove this bottleneck by developing

meaningful measures of progress in radiology report generation.

The answer to this question is imperative to understanding which

metrics can guide us toward generating reports that are clinically

indistinguishable from those generated by radiologists.

In this study, we quantitatively examine the correlation

between automatedmetrics and the scoring of reports by radiol-

ogists. We propose a new automatic metric that computes the

overlap in clinical entities and relations between a machine-

generated report and a radiologist-generated report, called

RadGraph24 F1. We develop a methodology to predict a radiolo-

gist-determined error score from a combination of automated

metrics, calledRadCliQ.Weanalyze failuremodes of themetrics,

namely the types of information themetrics do not capture, to un-

derstand when to choose particular metrics and how to interpret

metric scores. Finally, we measure the performance of state-of-

the-art report generation models using the investigated metrics.

The result is a quantitative understanding of radiology report gen-

eration metrics and clear guidance for metric selection to guide

future research on radiology report generation.

RESULTS

Alignment between automated metrics and radiologists
We study whether there is alignment between automated metric

and radiologist scores assigned to radiology reports. An



A

B

Figure 2. Example study of reports, and error

types and categories

(A) Example study of a test report and four metric-

oracle reports corresponding to BLEU, BERTScore,

CheXbert vector similarity, and RadGraph F1 that

radiologists evaluate to identify errors.

(B) Two error types and six error categories that

radiologists identify for each pair of test report and

metric-oracle report.
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overview of our methodology is shown in Figure 1. Figure 1A

shows the experimental design for determining alignment. Given

a test report from MIMIC-CXR,25–27 we select a series of candi-

date reports from the MIMIC-CXR training set that score highly

according to various metrics, including BLEU,28 BERTScore,29

CheXbert vector similarity (s_emb),9 and a novel metric

RadGraph24 F1. Specifically, we select a candidate report by

finding the test report’smetric-oracle: the highest-scoring report

from the MIMIC-CXR training set with respect to a particular

metric (Figure 1B). We choose this set of reasonably accurate re-

ports so we can study their quality with more precision. An

example study with a reference report and candidate metric-

oracle reports is shown in Figure 2A.

Next,wehavesix board-certified radiologists scorehowwell the

candidates match the test report (Figure 1C). Radiologists scored

the number of errors that various candidate reports make

compared with the test report, and errors are categorized as clin-

ically significant or insignificant. Radiologists subtyped every error

into the following six categories: (1) false prediction of finding (i.e.,

false positive), (2) omission of finding (i.e., false negative), (3) incor-

rect location/position of finding, (4) incorrect severity of finding, (5)

mention of comparison that is not present in the reference impres-

sion, and (6) omission of comparison describing a change from a

previous study. The error types and error categories are summa-

rized in Figure 2B. The instructions and interface presented to ra-

diologists can be seen in Figures S1 and S2. The radiologist error

scores on the 50 studies are shown in Figure S3.

We quantify metric-radiologist alignment using the Kendall

rank correlation coefficient (tau b) between metric scores and
number of radiologist-reported errors in

the reports (Figure 1D). We determine the

metric-radiologist alignment from metric-

oracle generations from 50 chosen studies

on both a total error and significant error

level. The coverage of pathologies, as

determined by the CheXpert8 labels in

MIMIC-CXR, for the 50 randomly sampled

reports is shown in Table S1. The per-radi-

ologist Kendall rank correlation coeffi-

cients are listed in Table S2.

We find that RadGraph F1 and

BERTScore are the metrics with the two

highest alignments with radiologists. Spe-

cifically, RadGraph has a tau value of

0.515 (95% CI, 0.449 0.578) for total num-

ber of clinically significant and insignificant

errors and 0.531 (95% CI, 0.465 0.584) for

significant errors. BERTScore has a tau
value of 0.511 (95%CI, 0.429 0.584)] for total number of clinically

significant and insignificant errors and 0.518 (95% CI, 0.440

0.586) for significant errors. We find that CheXbert vector similar-

ity is the third best metric under this evaluation with a 0.499 (95%

CI, 0.417 0.576) tau value for total number of clinically significant

and insignificant errors and 0.457 (95% CI, 0.370 0.538) for sig-

nificant errors. Finally, BLEU has the worst alignment with a tau

value of 0.462 (95% CI, 0.368 0.539) for total number of clinically

significant and insignificant errors and 0.441 (95% CI, 0.350

0.521) for significant errors. From these results, we see that

RadGraph and BERTScore are the metrics with closest align-

ment to radiologists. For the total number of clinically significant

and insignificant errors, BERTScore has a significantly higher

alignment than BLEU. Looking at significant errors, BERTScore

and RadGraph have a significantly higher alignment than BLEU

and, additionally, RadGraph has a significantly higher alignment

than CheXbert. CheXbert, and BLEU have alignment with radiol-

ogists but are less concordant than the other two metrics. The

metric-radiologist alignment graphs are shown in Figure 3.

Failure modes of metrics
In addition to evaluating the clinical relevance of metrics in terms

of the total number of clinically significant and insignificant

errors, we also examine the particular error categories of

metric-oracles to develop a granular understanding of the failure

modes of different metrics, as shown in Figure 4. We use the

following six error categories as described earlier:

1. false prediction of finding
Patterns 4, 100802, September 8, 2023 3



Figure 3. Correlations between metric scores and radiologist scores

Scatterplots and correlations between metric scores and radiologist scores of four metric-oracle generations from 50 studies, where radiologist scores are

represented by the total number of clinically significant and insignificant errors (top row) and number of clinically significant errors (bottom row) identified by the

radiologists. The translucent bands around the regression line represent 95% confidence intervals.
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2. omission of finding

3. incorrect location/position of finding

4. incorrect severity of finding

5. mention of comparison that is not present in the reference

impression

6. omission of comparison describing a change from a previ-

ous study and analyze the total number of errors and the

number of clinically significant errors within each error

category

BLEU exhibits a prominent failure mode in identifying false

predictions of finding in reports. Metric-oracle reports with

respect to BLEU produce more false predictions of finding

than BERTScore and RadGraph in terms of both the total

number of clinically significant and insignificant errors (0.807

average number of errors per report versus 0.477 and 0.427

for BERTScore and RadGraph) and the number of clinically

significant errors (0.607 average number of errors per report

versus 0.363 and 0.300 for BERTScore and RadGraph).

BLEU exhibits a less prominent failure mode in identifying

incorrect locations/positions of finding compared with

CheXbert vector similarity. Metric-oracle reports with respect

to BLEU have fewer incorrect locations/positions of finding

than CheXbert in terms of both the total number of clinically

significant and insignificant errors (0.113 average number of

errors per report versus 0.227 for CheXbert) and the number

of clinically significant errors (0.087 average number of errors

per report versus 0.193 for CheXbert). These differences are

statistically significant after accounting for multiple-hypothe-

sis testing. Metric-oracle reports of the four metrics exhibit

similar behavior in the other error categories, as the differ-

ences in number of errors are not statistically significant.

The raw error counts and the statistics testing results for

two-sample t tests and the Benjamini-Hochberg procedure
4 Patterns 4, 100802, September 8, 2023
for accounting for multiple-hypothesis testing are shown in

Tables S3 and S4.
Measuring progress of prior methods in report
generation
Using the four metrics, we evaluated the following state-of-the-

art radiology report generation methods: M2 Trans,11 R2Gen,12

CXR-RePaiR,13 WCL,14 and CvT2DistilGPT2.15 As a baseline,

we also implemented a random radiology report generation

model, which retrieves a random report from the training set

for each test report. The prior methods were trained to generate

different sections of radiology reports: CXR-RePaiR generates

the impression section, M2 Trans the findings section, and

R2Gen, WCL, and CvT2DistilGPT2 jointly the findings and

impression sections. For each method, we compute metric

values using the corresponding section(s) of radiology reports

it generates as the ground-truth report to ensure accurate eval-

uation of the method. We also generated three versions of

random baselines that retrieved different sections of the reports

and compared each method with its corresponding random

baseline. Because the impression section of radiology reports

is an interpretation of the findings section, we can assume that

both sections use the samemedical vocabulary and style, which

the report metrics evaluate. Conclusions about the report met-

rics drawn from the radiologist experiment and associated ana-

lyses, which used the impression section, can carry over to the

evaluation of different report sections.

The performances of metric-oracle selection models, prior

models, and random retrieval baselines on the MIMIC-

CXR test set are shown in Tables 1, 2, and 3, grouped by the

report sections they generate. Note that the results are compa-

rable within each table, but not across. With respect to

the most radiologist-aligned metric RadGraph F1, among



Figure 4. Distribution of errors across error

categories for metric-oracle reports

Distribution of errors across six error categories for

metric-oracle reports corresponding to BERTScore,

BLEU, CheXbert vector similarity, and RadGraph

F1, in terms of the number of clinically significant

errors (left) and the total number of clinically signif-

icant and insignificant errors (right). Statistical sig-

nificance is determined using the Benjamini-Hoch-

berg procedure with a false discovery rate (FDR) of

1% to correct for multiple-hypothesis testing.
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impression-generating models, metric-oracle models signifi-

cantly outperform real report generation models, achieving a

maximum score of 0.677. Among findings-generating models,

M2 Trans performs the best (0.244). Among models that jointly

generate the findings and impression sections, CvT2DistilGPT2

performs the best (0.154).

Composite metric RadCliQ
To improve upon individual metrics, we propose a novel com-

posite metric RadCliQ (radiology report clinical quality) that

combines the four investigated metrics. We trained a model

to predict the total number of clinically significant and insignif-

icant errors that radiologists would assign to a report. The

model input consisted of the four metric scores computed for

each report. We applied zero-mean unit-variance normalization

on the scores of each type of metric before passing the scores

as model input. Prediction of the trained model therefore com-

bines evaluations of BLEU, BERTScore, CheXbert vector simi-

larity, and RadGraph F1.

Wehad 200metric-oracle reports thatwere evaluated by radiol-

ogists, containing 50metric-oracle reports corresponding to each

of the four investigatedmetrics. These training data correspond to

a subset of 50 studies from the MIMIC-CXR test set. We split our

dataset by 8:2 into a development set (160 data points) and a

test set (40 data points). On the development set, we conducted

a cross-validation of 10-fold with 16 data points per validation

fold to experiment with different model formulations for RadCliQ

andbuild a fair comparisonbetweenRadCliQandexistingmetrics.

Specifically, for each cross-validation setup, we built a normal-

izer with zero-mean and unit-variance and a linear regression

model that took in the normalizedmetric values, on the cross-vali-

dation training set (144 data points). We then used the normalizer

and regression model to normalize and generate predictions on

the held-out validation set (16 data points). Finally, we computed

the Kendall tau b correlation on the held-out set predictions with

respect to the held-out set ground-truth radiologist total number
of errors. We also computed the Kendall

tau b correlation for each existing metric.

Across the 10 cross-validation setups, we

computed the mean Kendall tau b correla-

tions for the composite metric and existing

metrics, and verified that the composite

metric had stronger alignment with

radiologists.

Our proposed model builds upon the

standard linear regression by introducing
constraints that improve its performance. Specifically, we

require the negative of the coefficients to be non-negative

and sum up to 1, resulting in a well-defined and interpretable

convex function. Thus, we ensure that, when one metric score

increases, while the others remain constant, the predicted

number of errors will decrease. This property makes our model

more sensitive to changes in individual metrics and thus more

accurate in predicting error rates. Furthermore, the constraint

makes the coefficients interpretable as weights, providing in-

sights into the relative importance of each metric in predicting

errors. To obtain the constrained coefficients, we use the

convex optimization solver CVXPY, which guarantees global

optimality and fast convergence. With this approach, we can

effectively balance the trade-off between accuracy and inter-

pretability, and obtain a robust and reliable model for error

prediction.

After finalizing the model formulation, we fit the normalizer and

composite metric model on the full development set and obtain

RadCliQ. The coefficients were 0.000 for BLEU, �0.370 for

BERTScore, �0.253 for CheXbert, and �0.377 for RadGraph

F1. The intercept value for the regression model was 0.000.

Finally, on the held-out test set, the composite metric

(RadCliQ) has higher Kendall tau b correlations than the other

metrics, as shown in Table 4. This result indicates that RadCliQ

has the strongest alignment with radiologists than any individual

metric.

We used RadCliQ to evaluate all generations of metric-

oracle models, prior models, and random retrieval baselines

for the MIMIC-CXR test set. The metric scores are shown in

Tables 5, 6, and 7. Among impression-generating models,

the BERTScore metric-oracle model performs the best

(�0.095). CXR-RePaiR (1.642) outperforms the random

retrieval baseline (1.755). Among findings-generating models,

M2 Trans performs the best (1.059). Among models that jointly

generate findings and impression sections, CvT2DistilGPT2

performs the best (1.463).
Patterns 4, 100802, September 8, 2023 5



Table 1. Metric scores of impression-generating models, including metric-oracle models, CXR-RePaiR, and the random retrieval

baseline model

BLEU BERTScore CheXbert vector similarity RadGraph F1

BLEU metric-oracle 0.557* 0.661 0.689 0.476

BERTScore metric-oracle 0.491 0.721* 0.738 0.498

CheXbert metric-oracle 0.381 0.573 0.954* 0.403

RadGraph metric-oracle 0.366 0.541 0.739 0.677*

CXR-RePaiR 0.055 0.193 0.379 0.090

Random retrieval of impression 0.048 0.222 0.269 0.050

The 95% confidence interval and range of metric scores are available in Table S5.

*indicates the best-performing model.
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DISCUSSION

The purpose of this study was to investigate how to meaningfully

measure progress in radiology report generation. We studied

popular existing automated metrics and designed novel metrics,

the RadGraph graph overlap metric and the composite metric

RadCliQ, for report evaluation. We quantitatively determined

the alignment of metrics with clinical radiologists and the reli-

ability of metrics against specific failure modes, clarifying

whether metrics meaningfully evaluate radiology reports and

therefore can guide future research in report generation. We

also showed that selecting the best-match report from a large

corpus performs better on most metrics that the current state-

of-the-art radiology report generation methods. Although the

best-match method is unlikely to be clinically viable, it served

as a useful tool to derive the RadCliQ composite metric devel-

oped in this study and could serve as a useful benchmark against

which to evaluate report generation algorithms developed in the

future.

The design of automated evaluation metrics that are aligned

with manual expert evaluation has been a challenge for research

in radiology report generation as well as medical report genera-

tion as a whole. Prior works have used metrics designed to

improve upon n-gram matching28–32 or include clinical

awareness,8,9,11,13,24 such aswith BLEU28 and CheXpert labels.8

However, these evaluations nevertheless poorly approximate ra-

diologists’ evaluation of reports. The expressivity of prior metrics

is often restricted to a curated set of medical conditions. There-

fore, the quantitative investigation of metric-radiologist align-

ment conducted in this study is necessary for understanding

whether thesemetricsmeaningfully evaluate reports. Prior works

have investigated the alignment between metrics and human

judgment.23,33 However, to the best of our knowledge, these

works pose one of two limitations for radiology report evaluation:

(1) they study metric alignment with humans for general image

captioning, which does not involve radiology-specific terminol-

ogy, a high prevalence of negation, or expert human evaluators,
Table 2. Metric scores of findings-generating models, including M2

BLEU BERTScore

M2 Trans 0.220* 0.386*

Random retrieval of findings 0.123 0.323

The 95% confidence interval and range of metric scores are available in Ta

*indicates the best-performing model.
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and (2) they do not create a leveled comparison betweenmetrics

and radiologists, wheremetrics and radiologists assign scores to

reports in identical experimental settings, or a granular under-

standing of metric behavior beyond the overall metric score.

Our work builds a fair comparison between general natural lan-

guage and clinically aware metrics and radiologists by providing

them with the same set of information that is the reports and

goes beyond metric scores to examine six granular failure

modes of each metric. In addition, our work proposes a novel

composite metric, RadCliQ, that aligns more strongly than any

individual metric. We also show that current radiology report

generation algorithms exhibit relatively low performance by all

of these metrics.

To study metric-radiologist alignment, we designedmetric-or-

acles: the reports selected from a large corpus with the highest

metric score with respect to test reports. We hadmetrics and ra-

diologists assign scores to the metric-oracles based on howwell

the metric-oracles match their respective test reports, and

computed the alignment between metric and radiologist scores

on the same reports. Pairingmetric-oracles with test reports pro-

duces a narrower distribution of scores than using random re-

ports. However, metric-oracles are necessary because compar-

isons with test reports are only reliable when the differences are

small. If a random report, rather than a high-scoring report, was

paired with the test report, the two reports could diverge to the

extent that they were difficult to compare directly. In contrast,

metric-oracles are comparable with test reports and therefore

allow a meaningful evaluation of errors.

To generate metric-oracles, any report generation model is

theoretically feasible. There are three main categories: the first

generates free text based on semantics extracted from input

chest X-ray images,16,34,35 the second retrieves existing text

that best matches input images from a report corpus,13,36 and

the third selects curated templates corresponding to a prede-

fined set of abnormalities.10,37 We chose to use retrieval-based

models to generate metric-oracles because retrieval from a

training report corpus produces a controlled output space,
Trans, and the random retrieval baseline model

CheXbert vector similarity RadGraph F1

0.452* 0.244*

0.235 0.105

ble S6.



Table 3. Metric scores of models that jointly generate findings and impression sections, including R2Gen, WCL, CvT2DistilGPT2, and

the random retrieval baseline model

BLEU BERTScore CheXbert vector similarity RadGraph F1

R2Gen 0.137 0.271 0.286 0.134

WCL 0.144* 0.275 0.309 0.143

CvT2DistilGPT2 0.143 0.280* 0.335* 0.154*

Random retrieval of jointly the

findings and impression

0.100 0.256 0.190 0.090

The 95% confidence interval and range of metric scores are available in Table S7.

*indicates the best-performing model.
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instead of an unpredictable one produced by models that

generate free text. Retrieval-based models also improve upon

templating-based models in terms of flexibility and generaliz-

ability because the report corpus better captures real-world

occurring conditions, combinations of conditions, and uncer-

tainty. Furthermore, retrieval-based metric-oracle models out-

performed existing report generation methods by a largemargin.

By investigating the different categories of errors that radiolo-

gists identified in metric-oracle reports, we also uncovered spe-

cificmetric failuremodes that valuably inform the choiceofmetrics

and interpretation of metric scores for evaluating generated re-

ports. We find that BLEU performs worse than BERTScore

and RadGraph in evaluating false prediction of finding. Yet,

BLEUperformsbetter thanCheXbert vector similarity in evaluating

incorrect position/location of finding. Therefore, RadGraph and

BERTScore, which offer the strongest radiologist-alignment, also

have better overall reliability against failure modes.

Using the individual metrics and RadCliQ, we also measured

the progress of prior state-of-the-art models. Among impres-

sion-generating models, we find a significant performance gap

between real report generation models and metric-oracle

models, which represent the theoretical performance ceiling of

retrieval-based methods on MIMIC-CXR for a given metric.

This gap suggests that prior models in report generation still

have significant room for improvement in creating high-quality

reports that are useful to radiologists. We identify M2 Trans to

be the best findings-generating model and CvT2DistilGPT2 to

be the best model that jointly generates findings and impression

sections. Overall, RadGraph is the best individual metric to use

for its strong alignment with radiologists and reliability across

failure modes. RadCliQ, a composite metric, offers the strongest

alignment with radiologists.

This study has several important limitations. A main limitation

is the inter-observer variability in radiologist evaluation.
Table 4. Kendall tau b correlations of individual metrics and the

composite metric (RadCliQ) on the held-out test set of 40 data

points with radiologist error annotations

Kendall tau b correlation

BLEU 0.414 (95% CI, 0.156 0.635)

BERTScore 0.505 (95% CI, 0.273 0.671)

CheXbert vector similarity 0.537 (95% CI, 0.330 0.717)

RadGraph F1 0.528 (95% CI, 0.357 0.687)

Composite metric (RadCliQ) 0.615 (95% CI, 0.450 0.749)*

*indicates the best-aligned metric.
Although the evaluation scheme—the separation of clinically

significant and insignificant errors, and the six error cate-

gories—was designed to be objective and consistent across

radiologist evaluation, the same report often received varying

scores between radiologists, a common occurrence in experi-

ments that employ subjective ratings from clinicians. This sug-

gests a potential limitation of the evaluation scheme used, but

may also present an intrinsic problem with objective evaluation

of radiology reports. Another limitation is the coverage of met-

rics. Although a variety of general and clinical natural language

metrics are investigated, there exist other metrics in these two

categories that may have different behaviors than the four

investigated metrics. For instance, other text overlap-based

metrics are commonly used in natural language generation

beyond BLEU, such as CIDEr,31 METEOR,30 and ROUGE,32

which may have better or worse radiologist-alignment and reli-

ability than BLEU in report generation.

In this study, we determined that the novel metrics RadGraph

F1 and RadCliQ meaningfully measure progress in radiology

report generation and hence can guide future report generation

models in becoming clinically indistinguishable from radiolo-

gists.We have open-sourced the code for computing the individ-

ual metrics and RadCliQ on reports in the hope of facilitating

future research in radiology report generation.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Pranav Rajpurkar (pranav_rajpurkar@hms.

harvard.edu).

Materials availability

Does not apply.

Data and code availability

d Original data for the radiologist error annotations have been deposited

to the Radiology Report Expert Evaluation (ReXVal) Dataset38 with

credentialed access at https://physionet.org/content/rexval-dataset/1.

0.0/ (https://doi.org/10.13026/2fp8-qr71). The radiology report data

used in the study are available with credentialed access at: https://

physionet.org/content/mimic-cxr-jpg/2.0.0/ (https://doi.org/10.13026/

8360-t248). Credentialed access can be obtained via an application to

PhysioNet.

d The code for computing the composite metric RadCliQ and individual

metrics is made publicly available at: https://doi.org/10.5281/zenodo.

7579952.39
Datasets

We used theMIMIC-CXR dataset to conduct our study. TheMIMIC-CXR data-

set25–27 is a de-identified and publicly available dataset containing chest X-ray
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Table 5. RadCliQ scores of impression-generating models,

including metric-oracle models, CXR-RePaiR, and the random

retrieval baseline model

RadCliQ

BLEU metric-oracle 0.081

BERTScore metric-oracle �0.095*

CheXbert metric-oracle 0.052

RadGraph metric-oracle �0.020

CXR-RePaiR 1.642

Random retrieval of impression 1.755

Lower is better. The 95% confidence interval and range of metric scores

are available in Table S5.

*indicates the best-performing model.
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images and semi-structured radiology reports from the Beth Israel Deaconess

Medical Center Emergency Department. There are 227,835 studies with

177,110 images conducted on 65,379 patients. We used the recommended

train/validation/test split. We pooled the train and validation splits as the

training report corpus from which metric-oracles are retrieved and used the

test split as the set of ground-truth reports. We preprocessed the reports by

filtering nan reports and extracting the impression and findings sections of re-

ports, which contain key observations and conclusions drawn by radiologists.

We follow the section extraction code provided in the MIMIC-CXR repository.

In the training set, 187,383 impression reports, 153,415 findings reports, and

214,344 findings and impression joint reports are available. In the test set,

2,191 impression reports, 1,597 findings reports, and 2,192 findings and

impression joint reports are available. We refer to the impression section

when discussing reports for the metric-oracle reports and failure modes.

When evaluating prior models, we use either the impression section, the find-

ings section, or jointly the findings and impression sections based on what the

prior model generates.
Metric-oracle reports

We constructed metric-oracle reports for four metrics. These include BLEU,28

BERTScore,29 CheXbert vector similarity (s_emb),9 and a novel metric

RadGraph24 F1. BLEU and BERTScore are general natural language metrics

for measuring the similarity between machine-generated and human-gener-

ated texts. BLEU computes n-gram overlap and is representative for the family

of text overlap-based natural language generation metrics such as CIDEr,31

METEOR,30 and ROUGE.32 BERTScore has been proposed for capturing

contextual similarity beyond exact textual matches. CheXbert vector similarity

and RadGraph F1 are metrics designed to measure the correctness of clinical

information. CheXbert vector similarity computes the cosine similarity between

the CheXbert model embeddings for machine-generated and human-gener-

ated radiology reports. The CheXbert model is designed to evaluate

radiology-specific information but its training supervision was limited to 14 pa-

thologies. To address this limitation, we propose the use of the knowledge

graph of the report to represent arbitrarily diverse radiology-specific informa-

tion. We design a novel metric, RadGraph F1, that computes the overlap in

clinical entities and relations that RadGraph extracts from machine- and hu-

man-generated reports. The four metrics are detailed in the ‘‘textual based
Table 6. RadCliQ scores of findings-generating models,

including M2 Trans and the random retrieval baseline model

RadCliQ

M2 Trans 1.059*

Random retrieval of findings 1.553

Lower is better. The 95% confidence interval and range of metric scores

are available in Table S6.

*indicates the best-performing model.
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and natural language generation performance metrics’’ subsection and

the ‘‘clinically aware performance metrics’’ subsection.

For every test report, we generated thematching metric-oracle report by se-

lecting the highest scoring report according to each of the four investigated

metrics from the training set. We specifically used the impression section of

the report. As an example of our setup, for the test report of ‘‘No acute cardio-

pulmonary process. Bilateral low lung volumes with crowding of bronchovas-

cular markings and bibasilar atelectasis,’’ the metric-oracle retrieved with

respect to BERTScore was: ‘‘No acute cardiopulmonary process. Low lung

volumes and bibasilar atelectasis,’’ while the metric-oracle retrieved with

respect to RadGraph F1 was: ‘‘No acute cardiopulmonary process. Bilateral

low lung volumes.’’

Using metric-oracles as the candidate reports as opposed to using other

strategies such as randomly sampling reports offers two primary advantages:

(1) metric-oracles are sufficiently accurate for radiologists to pinpoint specific

errors and not be bogged down by candidate reports that are not remotely

similar to the test reports, and (2) metric-oracles allow us to analyze where

certain metrics fail since the reports are the hypothetical top retrievals.

Radiologist scoring criteria

In this work, we develop a scoring system for radiologists to evaluate the qual-

ity of candidate reports. The goals of our scoring system are to be objective,

limit radiologist bias, and change linearly with report quality. To this end,

scores are determined by counting the number of errors that candidate reports

make where types of errors are broken down into six different categories. By

explicitly defining each error category, we clarify what should be classified

as an error. Following ACR’s RADPEER40 program for peer review, we differ-

entiate between clinically significant and clinically insignificant errors. The

detailed scoring criteria allow us to analyze report quality based on the accu-

racy of its findings and the clinical impact of its mistakes.

Textual-based and natural language generation performance

metrics

In this study we make use of two natural language generation metrics: BLEU

and BERTScore. The BLEU scores were computed as BLEU-2 bigrams with

the fast_bleu library for parallel scoring. BERTScore uses the contextual em-

beddings from a BERT model to compute similarity of two text sequences.

We used the bert_score library directly and used the ‘‘distilroberta-base’’

version of the model. We used the unscaled scores for metric-oracle retrieval

and the baseline-scaled scores for all other analyses.

Clinically aware performance metrics

In addition to traditional natural language generation metrics, we also investi-

gated metrics that were designed to capture clinical information in radiology

reports. Since radiology reports are a special form of structured text that

communicate diagnostics information, their quality depends highly on the cor-

rectness of clinical objects and descriptions, which is not a focus of traditional

natural language metrics. To address this gap, the CheXbert labeler (which is

improved from the CheXpert labeler)8,9 and RadGraph,24 were developed to

parse radiology reports. We investigated whether they could be used as clin-

ically aware metrics. We defined a metric as the cosine similarity between

CheXbert model embeddings of the generated report and test report. We ex-

tracted the CLS token output embeddings before the final dropout layer and

prediction heads. We used the implementation here: https://github.com/

stanfordmlgroup/CheXbert. In prior literature, a common way of comparing

generated reports against ground-truth reports is to compute the micro-

and/or macro-F1/precision/recall scores averaged over 14 observation labels

outputted by CheXpert/CheXbert. For instance, CXR-RePaiR computes the

macro-average F1 over 14 observations to evaluate generations. Positive

observation labels are treated as positive, while other labels, including nega-

tive, uncertain, and blank labels, are treated as negative. However, this

approach limits the evaluation of generated reports to 14 observations and

discrete outputs. Because radiology reports can reference diverse observa-

tions beyond the 14 and contain more nuanced semantics about the observa-

tions, we decided to use the CheXbert model embedding before the final clas-

sifiers, which produce 14 outputs to capture amore accurate representation of

the report. Our design is supported by a prior work that uses the same

CheXbert model embeddings as deep representations of radiology reports

https://github.com/stanfordmlgroup/CheXbert
https://github.com/stanfordmlgroup/CheXbert


Table 7. RadCliQ scores of models that jointly generate findings

and impression sections, including R2Gen, WCL,

CvT2DistilGPT2, and the random retrieval baseline model

RadCliQ

R2Gen 1.552

WCL 1.511

CvT2DistilGPT2 1.463*

Random retrieval of jointly the findings and

impression

1.726

Lower is better. The 95% confidence interval and range of metric scores

are available in Table S7.

*indicates the best-performing model.
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for heart failure patient mortality prediction.41 In their experiments, they also

found that these hidden features led to better prediction performance than

the features of 14 observations extracted by CheXpert. This suggests that

the model embeddings may preserve more information about the reports

than the final model output of observation labels. CXR-RePaiR also adopts

the same formulation of CheXbert vector similarity as a report evaluation

metric. We propose a novel metric as the overlap in parsed RadGraph graph

structures: the RadGraph entity and relation F1 score. RadGraph is an

approach for parsing radiology reports into knowledge graphs containing

entities (nodes) and relations (edges), which can capture radiology concept

dependencies and semantic meaning. We used the model checkpoint as pro-

vided here: https://physionet.org/content/radgraph/1.0.0/,27 and inference

code as provided here: https://github.com/dwadden/dygiepp,42 to generate

RadGraph entities and relations on generated and test reports.

Retrieval-based metric-oracle models

To generate metric-oracle reports, the most immediate attempt is to adopt

methods akin to those for multi-label classification tasks. Namely, we can

curate a set of medical conditions and obtain radiologist annotations for

each condition over a training set of reports. Then, we can train a classifier

that outputs the likelihood of having each condition given an X-ray image,

and proceed to select the corresponding report templates for conditions

with high likelihood.10 Some more nuanced approaches paraphrase the

curated templates after selection.37 The attempt at templating for report gen-

eration is well-grounded in abundant experience in multi-label image classifi-

cation as well as its highly controlled output space. However, its flaw is also

prominent, in that it is restricted to a manually curated predefined set of med-

ical conditions and report templates. It does not generalize to unseen or com-

plex conditions, express combinations of conditions, or capture uncertainty in

diagnoses. The CheXbert labeler, for instance, can classify 13 conditions and

the no-finding observation.9 This set is representative of common medical ob-

servations but not comprehensive. Therefore, while we may define a larger set

of conditions with the help of radiologists, manual curation and templating are

nevertheless too inflexible for optimizing with respect to automated metrics.

To generate reports of higher quality, we consider matching reports more

closely onto test reports. We can do so by either generating new text from

scratch or retrieving free text from an existing corpus of reports written by ra-

diologists, given an X-ray image.34,36 Out of the two approaches, retrieval-

based methods have the advantage of a controlled output space that is the

set of training report corpus. Therefore, in this study, we use retrieval-based

methods to generate metric-oracle reports.

RadGraph metric-oracle model entities and relations match

The RadGraph F1 metric-oracle model retrieves reports with the highest F1

scorematch in terms of entities and relations. Specifically, we treat two entities

as matched if their tokens (words in the original report) and labels (entity type)

match. We treat two relations as matched if their start and end entities match

and the relation type matches. These criteria are consistent with what the

RadGraph authors have done. For combining entities and relations, we take

the average of F1 score of entity match and relation match, respectively. We

generated RadGraph entities and relations for each report in the training and
test corpora. We implemented the metric-oracle model by finding, for each

report in the test set, which report in the training set is the best match based

on the average of entity and relation F1 scores. For reports without nonzero

F1 score matches, we used the most frequent report in the training set, ‘‘No

acute cardiopulmonary process,’’ as the metric-oracle report in the radiologist

experiment.

Statistical analysis

Metric-radiologist alignment

The alignment of metrics with radiologists’ scoring was determined using the

Kendall tau b correlation coefficient. We construct 95% bootstrap confidence

intervals by creating 1,000 resamples with replacement where each resample

size is the number of studies (50). In this calculation, the number of errors is the

mean number across all raters. We additionally test for the difference in corre-

lations between twometrics by counting the number of positive correlation dif-

ferences computed on 1,000 resamples of metric scores. The fraction of pos-

itive correlation differences indicate the p value for the null hypothesis that

there is zero difference in correlation between the metrics.

Metric failure modes

We conduct one-sided two-sample t tests on pairs of metrics’ error counts for

total number of clinically significant and insignificant errors and clinically signif-

icant errors within each of the six error categories. We assume equal popula-

tion variances for the t tests. We take the error count of one radiologist and one

study as one data point. Because there are 6 radiologists and 50 studies, we

have 300 data points per metric for either total number of clinically significant

and insignificant errors or clinically significant errors and for 1 error category.

With 4 metrics, there are 12 unique pairs of 2 different metrics for one-sided

two-sample t tests with (300 + 300 – 2 = 598) degrees of freedom. We use

the Benjamini-Hochberg procedure with a false discovery rate of 1% to ac-

count for multiple-hypothesis testing on 12 tests within an error type and an

error category, and determine the significance of a metric having a more-/

less-prominent failure mode compared with other metrics.

Prior models evaluation

To evaluate performance of metric-oracle models and prior state-of-the-art

models, we construct 95% bootstrap confidence intervals by taking 5,000 re-

samples with replacement of metric scores assigned to generated reports.

Composite metric RadCliQ

The composite metric model used to predict the total number of errors was

evaluated using the Kendall tau b statistical test. This test produces a tau value

correlation coefficient and a corresponding p value, which was used to deter-

mine the significance of the result (p < 0.01). The same statistical comparison

procedure described in metric-radiologist alignment with 5,000 resmaples

was used to compare the correlation of RadCliQ with that of other metrics.

The analyses were performed using statsmodels, scikit-learn, and SciPy

packages in Python.

Implementation of prior report generation methods

Weused the following implementations of prior methods in radiology report gen-

eration: M2 Trans, https://github.com/ysmiura/ifcc11,42; R2Gen, https://github.

com/cuhksz-nlp/R2Gen12; CXR-RePaiR, https://github.com/rajpurkarlab/CXR-

RePaiR13; WCL, https://github.com/zzxslp/WCL14; CvT2DistilGPT2, https://

github.com/aehrc/cvt2distilgpt2.15 CXR-RePaiR was trained to generate the

impression section through retrieval. M2 Trans and CvT2DistilGPT2were trained

to generate the findings section, withmaximumsequence lengths of 128 and 60,

respectively. R2Gen and WCL were trained to jointly generate the findings and

impression sections, with maximum sequence lengths of 60 and 100, respec-

tively.We did not shorten or cut off any part of the actual reports when evaluating

our report generation method to avoid creating a problem in our evaluation pro-

cess. If we had shortened the reports, it could have allowed a generationmethod

to be trained to only produce very short reports that lack important information,

but still receive good evaluation scores. Thus, to ensure accurate evaluation, we

did not truncate the ground-truth reports. We used these prior methods to

generate reports for all available studies in the test set. For impression only

and findings only generations, there are fewer test reports and metric outputs.

This is considered acceptable, because there are still sufficiently large numbers

of reports for a reliable estimate of model performance. For each study ID, if

the model generated multiple reports corresponding to different X-ray images

for the same study, we used the generated report corresponding to the
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anterior-posterior or posterior-anterior views if any were present. If both were

present, we randomly chose a report out of the two. If neither was present, we

randomly chose a report out of the available reports corresponding to other

views. Among variations ofCXR-RePaiR, we choseCXR-RePaiR-2 to be consis-

tent with their original study.13
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