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Simple Summary: The ability to identify individual animals has gained great interest in beef feedlots
to allow for animal tracking and all applications for precision management of individuals. This
study assessed the feasibility and performance of a total of 59 deep learning models in identifying
individual cattle with muzzle images. The best identification accuracy was 98.7%, and the fastest
processing speed was 28.3 ms/image. A dataset containing 268 US feedlot cattle and 4923 muzzle
images was published along with this article. This study demonstrates the great potential of using
deep learning techniques to identify individual cattle using muzzle images and to support precision
beef cattle management.

Abstract: Individual feedlot beef cattle identification represents a critical component in cattle trace-
ability in the supply food chain. It also provides insights into tracking disease trajectories, ascertaining
ownership, and managing cattle production and distribution. Animal biometric solutions, e.g., identi-
fying cattle muzzle patterns (unique features comparable to human fingerprints), may offer noninva-
sive and unique methods for cattle identification and tracking, but need validation with advancement
in machine learning modeling. The objectives of this research were to (1) collect and publish a
high-quality dataset for beef cattle muzzle images, and (2) evaluate and benchmark the performance
of recognizing individual beef cattle with a variety of deep learning models. A total of 4923 muzzle
images for 268 US feedlot finishing cattle (>12 images per animal on average) were taken with a
mirrorless digital camera and processed to form the dataset. A total of 59 deep learning image
classification models were comparatively evaluated for identifying individual cattle. The best accu-
racy for identifying the 268 cattle was 98.7%, and the fastest processing speed was 28.3 ms/image.
Weighted cross-entropy loss function and data augmentation can increase the identification accuracy
of individual cattle with fewer muzzle images for model development. In conclusion, this study
demonstrates the great potential of deep learning applications for individual cattle identification and
is favorable for precision livestock management. Scholars are encouraged to utilize the published
dataset to develop better models tailored for the beef cattle industry.

Keywords: animal biometrics; cognitive science; computer vision; machine learning; precision
livestock management; pattern recognition

1. Introduction

Beef products are among the most consumed animal protein, and the beef cattle in-
dustry is critical for many rural communities. Numerous challenges face the beef industry
including needs for improved nutrition and production efficiency to feed a growing human
population [1,2]. The US is the largest beef producer, the second-largest importer, and
the third-largest exporter by volume, and it has the largest total consumption globally [3].
During 2021, the total US cattle inventory (including all cattle and calf operations) was
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93.6 million heads with an annual cash receipt of 66.0 billion USD, accounting for 16.9%
of the 391 billion USD in total cash receipts from all agricultural commodities [3,4]. As
a proportion of total beef produced, feedlots contribute approximately 77% of the cattle
marketed in the US [5–7], with the remainder as beef slaughtered from culled cows/bulls.
US feedlots with a capacity of more than 1000 heads market 80–85% of all fed cattle [3].
Maintaining and inspecting the intensive production systems daily to the individual animal
level is a continual challenge for feedlot producers [8,9]. The value of individual cattle can
vary but is significant, with prices of feeder cattle at 700–1000 USD per 227 kg calf [10]
and 1500–2000 USD for mature cattle at market. Identifying individual cattle accurately
and efficiently will increase the producer’s viability in establishing ownership, develop-
ing methods for individual tracking for health management and disease tracking, and
providing individual traceability throughout the production chain [11,12].

Cattle identification can be performed using contact and noncontact methods [11],
with branding commonly used to establish ownership. Common contact methods include
ear notching, ear marking, ear tagging, and branding. While these methods display clear
identification of individual cattle, human efforts are always required to recognize and
locate the cattle, which is laborious and time-consuming. Another commonly used method,
radiofrequency identification (RFID) systems, may overcome the drawback. To use an RFID
system, an RFID transponder needs to be attached to each cattle and is read automatically
and continuously by a reader. In some countries, RFID tags are extensively and mandatorily
used in modern beef production systems (e.g., Australia). However, like other contact
methods, in practice, such systems may cause cattle stress and are prone to damage once
attached to the animals. The sensors (e.g., tags, transponders) with animal identification
can fade, be damaged, and be lost due to cattle interference, movement, and environmental
exposure [13]. Contact methods may also lead to short- and long-term complications in the
integrity of cattle ears or other anatomical body parts [12].

Alternatively, contactless identification methods may eliminate human disturbance
to the animals and use unique animal biometric features. Means of identifying livestock
biometric markers include DNA pairing, autoimmune antibody matching, iris scanning,
retinal imaging, coat pattern recognition, muzzle identification, and facial recognition [14].
These biometric markers or modalities have phenome and genome characteristics that are
unique to the individual animal, tamperproof over time, invariant to transformation, and
welfare-friendly to animals [15]. Among them, muzzle identification is a relatively low-cost
and simple method and has recently received increasing research interest. Muzzle pattern
is a cattle dermatoglyphic trait equivalent to human fingerprints. The little round-, oval-, or
irregular-shaped protuberances on the nose area are defined as beads, while the elongated
grooves and valleys arranged in a particular manner are defined as ridges (Figure 1). These
uneven and distinct features make the muzzle identification for individual cattle possible.
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A reference summary of previous cattle muzzle identification studies was thoroughly
conducted to investigate the method development progress and determine the current
research gaps (Table 1). Petersen [16] was the first to explore the muzzle pattern recog-
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nition for dairy cattle. During the early stages [16–18], investigators manually observed
imprinted muzzle patterns and explored the muzzle uniqueness of healthy and ill cattle.
These studies contributed significantly to examining the possibility of muzzle recognition;
however, manual observation was laborious and not suitable for large-scale application.
Then, conventional digital image processing algorithms (e.g., scale-invariant feature trans-
form and box-counting fractal dimension models) were used to identify individual cattle
automatically [15,19]. These methods typically matched features, including color, texture,
shape, and edge, among different muzzle images and achieved high identification accuracy
(e.g., 98.3% [20] and 100% [21]) with small image sets and controlled conditions. However,
the method performance may be challenged by inconsistent illumination and background,
variable muzzle shapes and sizes, similar appearances of the same animal at different
times, missing parts or occlusions on a muzzle, and low resolution [22]. Machine learning
classification models (e.g., support vector machine, K-nearest neighbor, and decision tree)
were embedded with image processing-based feature extractors (e.g., Weber local descrip-
tor) to further boost the performance of muzzle identification [23–25]. Despite promising
results with an over 95% accuracy for beef cattle muzzle classification, the approaches
require sophisticated hand-crafted features and may be difficult to develop and optimize
for researchers from non-computer science backgrounds.

Deep learning is a data-driven method and has been researched for computer vision
applications in animal production [22]. Deep learning models can capture spatial and
temporal dependencies of images/videos through the use of shared-weight filters and can
be trained end-to-end without strenuous hand-crafted design of feature extractors [26],
empowering the models to adaptively discover the underlying class-specific patterns and
the most discriminative features automatically. Kumar et al. [27], Bello et al. [28], and
Shojaeipour et al. [29] tried deep learning models (e.g., convolutional neural network,
deep belief neural network, You Only Look Once, and residual network) in large sets
(over 2900 images in total) of dairy and beef cattle muzzle images and obtained great
accuracies of over 98.9%. The US beef cattle industry is quite unique from the dairy sector,
in terms of both animal genetics and housing environment [3], which may result in different
bioinformatic markers between dairy and beef cattle that influence model classification
performance. Shojaeipour et al. [29] investigated the muzzle pattern of beef cattle, but
the cattle were constrained in a crush restraint (i.e., hydraulic squeeze chute) with their
heads placed in head scoops for data collection, which may cause extra distress to the cattle.
Moreover, except for the study of Shojaeipour et al. [29], the muzzle image datasets were
not publicly available in most studies, limiting the progress of developing models tailored
for beef cattle applications.

Model processing speed was only reported in a limited number of publications [15,23,30]
but not reported in the three recent deep learning studies mentioned above (Table 1).
Processing speed is a critical metric to estimate the overall identification duration in a farm
when classification models are incorporated into computer platforms or robots for use.
During conventional data collection [16], cattle were constrained with ropes or other tools,
snot and grass on the nose was wiped clean with tissues, thin ink was smeared on the nose
area, the paper was rolled upward or downward to obtain the printed muzzle pattern,
and the imprinted muzzle was scanned or photographed to digitalize the muzzle pattern
for further data analysis. Such procedures may acquire clear muzzle patterns but are also
complicated and inefficient to apply in modern feedlots. Grayscale images were applied in
some studies but only provided one-channel information, whereas RGB (red, green, and
blue) images contain richer information for processing and were applied more frequently,
as indicated in Table 1.

The objectives of this study were to (1) collect high-resolution RGB muzzle images of
feedlot cattle without any restraint or contact with the animals to develop a high-quality
dataset to train deep learning models for individual cattle identification, and (2) benchmark
classification performance and processing speed of muzzle identification optimized with
various deep learning techniques.
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Table 1. Reference summary from previous cattle muzzle identification studies.

Cattle
Type

Image Size
(Pixels)

Image
Type Restrained Cattle

Counts
Images

per Cattle
Total

Images
Identification

Method
Accuracy

(%)

Processing
Time

(ms/Image)
Reference

Dairy − Printed Y − − 6 Manual − − [16]
− − Printed Y − − 200 Manual − − [17]
− − Printed Y 65 − − Manual − − [18]

Beef 256 × 256 Grayscale Y − − 43 DIP 46.5 − [31]
Beef 320 × 240 Printed Y 29 10 290 ML 98.9 − [12]
Beef 200 × 200 Grayscale − 8 10 80 DIP 90.0 − [32]
− − Grayscale − 15 7 105 DIP 93.3 37–879 [15]

Beef − Printed Y 20 8 160 DIP 98.3 − [20]
− − Grayscale − 53 20 1060 DIP − − [19]

Beef 300 × 400 Grayscale − 31 7 217 ML 99.5 − [33]
− − RGB − 28 20 560 ML 100.0 − [25]
− − RGB − 52 20 1040 ML 96.0 − [24]

Beef − RGB N 14 5 70 DIP 100.0 − [21]
Beef 300 × 400 Grayscale − 31 7 217 ML 99.5 − [34]
Beef 300 × 400 Grayscale − 31 7 217 ML 99.5 48–1362 [23]
Beef − RGB − 52 6 312 ML 96.4 − [35]

Dairy 400 × 400 RGB − 500 10 5000 DIP 93.9 − [36]
Dairy 200 × 200 RGB − 500 10 5000 ML 94.9 − [37]
Dairy 200 × 200 RGB − 500 10 5000 DL 98.9 − [27]
Dairy 200 × 200 RGB − 500 10 5000 ML 93.9 − [38]
Dairy − RGB N 15 7 105 ML 93.0 368–1193 [30]
Beef − RGB Y 60 5–10 460 DIP 98.1 − [39]
Beef − RGB − 45 20 900 ML 96.5 − [40]
Beef − RGB Y 431 − 1600 ML 95.0 − [41]

Dairy 200 × 200 RGB − 400 10 4000 DL 98.9 − [28]
Beef 1024 × 1024 RGB Y 300 − 2900 DL 99.1 − [29]

Dairy 64 × 64 RGB − 186 5 930 ML 83.4 − [13]

Note: ‘−’ indicates that information was not provided. DIP, digital image processing; ML, machine learning;
DL, deep learning. Cattle species include beef cattle and dairy cattle. Image type is categorized as printed (samples
are obtained from a direct compress with cattle noses and then scanned or photographed to form electronic images),
grayscale with one-channel data captured directly from cameras, and RGB with three-channel (red, green, and blue)
data. ‘Y’ indicates that the animal was restrained during data collection, while ‘N’ indicates that it was not.

2. Materials and Methods
2.1. Image Collection and Dataset Curation

This research was conducted at the University of Nebraska-Lincoln (UNL) Eastern
Nebraska Research Extension and Education Center (ENREEC) research farm located near
Mead, NE, USA. All animals were cared for under approval of the UNL Institution of
Animal Care and Use Committee protocol 1785 (approved 4 December 2019), and no direct
contact with animals was made throughout the course of data collection.

The RGB images of beef cattle were collected using a mirrorless digital camera (X-
T4, FUJIFILM, Tokyo, Japan) and a 70–300 mm F4-5.6 focal lens (XF70-300 mm F4-5.6 R
LM OIS WR, FUJINON, Tokyo, Japan), from 11 March to 31 July 2021. All images were
collected from various distances outside the pens, while cattle were free to express their
natural behaviors. A total of 4531 raw images from 400 US mixed-breed finishing cattle
(Angus, Angus × Hereford, and Continental × British cross) were collected, of which the
muzzle areas were the focus of the images. The ear tag information of each animal was
recorded for verifying individual beef cattle. Because all images were taken under natural
outdoor feedlot conditions, these images were presented with different angles of view and
lighting conditions.

Raw images contained unnecessary anatomical parts (e.g., face, eye, and body), partic-
ularly for classification purposes. To reduce classification interference and highlight muzzle
visual features, the cattle face area was rotated so that the muzzle area aligned horizontally,
after which the muzzle area was manually cropped. Extremely blurry, incomplete, or feed-
covered muzzle images were removed to maintain dataset quality. Small sets of images per
animal (≤3) were also discarded to obtain sufficient data for model training, validation, and
testing. At the end, a total of 4923 muzzle images (multiple muzzles could be cropped from
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a single raw image) from 268 beef cattle were selected to form the dataset. Nine sample
images from nine cattle are presented in Figure 2. Although colors and textures could
be similar among individuals, the patterns of beads, grooves, and ridges were visually
different, which were favorable to individual identification. The cropped muzzle images
are published in an open-access science community [42].
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A frequency distribution of the normalized width/length of cropped images is de-
picted in Figure 3. Inconsistent image sizes may lead to biased detection performance,
while high-resolution (large-size) images can downgrade the processing efficiency [43].
Therefore, the cropped images were resized to the same dimensions before being supplied
into classification models. The dimensions should be determined on the basis of the follow-
ing criteria: (1) with similar dimensions to those reported in the previous studies (Table 1);
(2) with greater frequency of normalized width/length of the cropped muzzle images in
the dataset, as indicated in Figure 3; (3) compliance with the input size requirement of most
deep learning image classification models. In the end, dimensions of 300 × 300 pixels were
selected in this study to normalize the cropped images.
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2.2. Deep Learning Image Classification Models

A total of 59 deep learning image classification models were comparatively evaluated
to determine the optimal models for identifying individual beef cattle with the cropped and
resized muzzle images (Table 2). These models came from 14 major image classification
model families, which were AlexNet [44], DenseNet [45], DPN [46], EfficientNet [47],
Inception [48–51], MnasNet [52], MobileNet [53,54], RegNet [55], ResNet [56], ResNeXt [57],
ShuffleNet [58], SqueezeNet [59], VGG [60], and Wide ResNet [61]. Total parameters and
model sizes of these models ranged from 1.2 to 145 million and from 2.5 to 543.7 MB,
respectively. These models were from the PyTorch (a popular deep learning platform
accelerating big data analytics)-based libraries, TORCHVISION (https://pytorch.org/
vision/stable/models.html, accessed on 10 March 2022), and PRETRAINEDMODELS
(https://pypi.org/project/pretrainedmodels, accessed on 10 March 2022). Other models, if
available or newer, were either incompatible with the PyTorch operation environment or
unsuitable for the resized muzzle images (300 × 300 pixels). All models were expected to
be evaluated with the same operation environment to reduce environment interference;
therefore, these models were not considered in this study.

Table 2. Summary of deep learning image classification models evaluated in this study.

Model Name
and Reference Model Version Highlighted Features Total Parameters

(Million) Model Size (MB)

AlexNet [44] AlexNet First parallelization and distributed
training with multiple GPUs. 61.1 221.6

DenseNet [45]

DenseNet121 Connections between each layer and
every other layer in a feed-forward

fashion. Numbers indicate that the model
contains 121, 161, 169, and 201 layers in

the networks.

8.1 28.2

DenseNet161 29.0 104.4

DenseNet169 14.3 50.3

DenseNet201 20.2 72.3

DPN [46] DPN68
Dual-path architecture; feature re-usage;

new feature exploration;
contains 68 layers.

13.0 46.2

EfficientNet [47]

EfficientNet_b0

Model scaling and balancing network
depth, width, and resolution; neural

architecture search; b0 to b7 correspond to
input sizes of (256, 224), (256, 240), (288,

288), (320, 300), (384, 380), (489, 456), (561,
528), and (633, 600) pixels, respectively.

5.3 16.9

EfficientNet_b1 7.8 26.6

EfficientNet_b2 9.1 31.3

EfficientNet_b3 12.2 42.9

EfficientNet_b4 19.3 69.5

EfficientNet_b5 30.4 111.2

EfficientNet_b6 43.0 159.0

EfficientNet_b7 66.3 247.6

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pypi.org/project/pretrainedmodels
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Table 2. Cont.

Model Name
and Reference Model Version Highlighted Features Total Parameters

(Million) Model Size (MB)

Inception [48–51]

GoogleNet
Increasing the depth and width of the

network while keeping the computational
budget constant.

13.0 22.6

InceptionV3 Factorized convolutions and
aggressive regularization. 27.2 96.1

InceptionV4 Combination of Inception architectures
with residual connections.

42.7 159.1

InceptionResNetV2 55.8 209.5

Xception Depth-wise separable convolutions;
dubbed Xception. 22.9 81.8

MnasNet [52]

MnasNet_0.5 Automated mobile neural architecture
search approach, model latency, mobile

phones, and factorized hierarchical search
space; 0.5 and 1.0 indicate the network
with depth multipliers of 0.5 and 1.0.

2.2 5.1

MnasNet_1.0 4.4 13.4

MobileNet [53,54]

MobileNetV2
Inverted residual structure, lightweight

depth-wise convolutions, and
maintaining representational power.

3.5 10.0

MobileNetV3_Large Hardware-aware network architecture
search complemented by the NetAdapt

algorithm. MobileNetV3-Large and
MobileNetV3-Small target high- and

low-resource use cases.

2.5 17.6

MobileNetV3_Small 5.5 7.0

RegNet [55]

RegNetY_400MF

Parametrizing populations of networks,
elevated design space level, quantized

linear function, and a wide range of flop
regimes; RegNetX indicates the network

with the X block (a standard residual
bottleneck block), and RegNetY indicates

the network with the X block and
Squeeze-and-Excitation networks; 400MF,

800MF, 1.6GF, 3.2GF, 8.0GF, 16GF, and
32GF represent networks with flop

regimes of 400 MB, 800 MB, 1.6 GB, 3.2 GB,
8.0 GB, 16 GB, and 32 GB, respectively.

4.3 15.6

RegNetY_800MF 6.4 22.6

RegNetY_1.6GF 11.2 40.7

RegNetY_3.2GF 19.4 70.4

RegNetY_8.0GF 39.4 145.1

RegNetY_16GF 83.6 311.1

RegNetY_32GF 145.0 543.7

RegNetX_400MF 5.5 20.2

RegNetX_800MF 7.3 26.1

RegNetX_1.6GF 9.2 32.8

RegNetX_3.2GF 15.3 56.0

RegNetX_8.0GF 39.6 146.1

RegNetX_16GF 54.3 201.9

RegNetX_32GF 107.8 405

ResNet [56]

ResNet18 Residual learning framework, shortcut
connections, avoiding feature vanishing,
and achieving decent accuracy in deeper

neural networks; 18, 34, 50, 101, and
152 indicate networks with 18, 34, 50, 101,

and 152 layers, respectively.

11.7 43.2

ResNet34 21.8 81.9

ResNet50 25.6 92.1

ResNet101 44.5 164.8

ResNet152 60.2 224.8
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Table 2. Cont.

Model Name
and Reference Model Version Highlighted Features Total Parameters

(Million) Model Size (MB)

ResNeXt [57]

ResNeXt50_32×4d Highly modularized network architecture,
aggregating a set of transformations with
the same topology, and cardinality; 50 and

101 refer to networks with 50 and
101 layers, respectively; 32 refers to

networks with 32 paths/cardinalities in
the widthwise direction; 4d and 8d refer

to networks with 4 and 8 stages/depths of
residual blocks.

25.0 90.1

ResNeXt101_32×8d 88.8 334

ShuffleNet [58]

ShuffleNetV2_×0.5 Direct metric of computation complexity
on the target platform, FLOPs; ×0.5 and
×1.0 refer to networks with 0.5× and

1.0× output channels, respectively.

1.4 2.5

ShuffleNetV2_×1.0 2.3 6.0

SqueezeNet [59]

SqueezeNet_1.0 50× fewer parameters, and <0.5 MB
model sizes; SqueezeNet_1.0 is the

original network, while SqueezeNet_1.1
has 2.4× less computation and slightly

fewer parameters than the
original version.

1.2 3.4

SqueezeNet_1.1 1.2 3.3

VGG [60]

VGG11

Increasing depth using an architecture
with very small (3 × 3) convolution filters;
11, 13, 16, and 19 indicate networks with

11, 13, 16, and 19 layers, respectively;
BN represents networks with

batch normalization.

132.9 495.4

VGG11_BN 132.9 495.5

VGG13 133.0 496.1

VGG13_BN 133.0 496.2

VGG16 138.4 516.4

VGG16_BN 138.4 516.5

VGG19 143.7 536.6

VGG19_BN 143.7 536.7

Wide ResNet [61]

Wide_ResNet50_2 Decreasing depth and increasing width
of residual networks, and bottleneck

network; 50 and 101 refer to networks
with 50 and 101 layers, respectively;
2 is used to differentiate the network

from ResNet.

68.9 257.4

Wide_ResNet101_2 126.9 479.1

Note: GPU, graphical processing unit; DenseNet, densely connected network; DPN, dual-path network; Efficient-
Net, efficient network; MnasNet, mobile neural architecture search network; MobileNet, mobile network; RegNet,
regular network; ResNet, residual network; ResNeXt, combination of residual network and next dimension;
ShuffleNet, a highly efficient architecture with a novel channel shuffle operation; SqueezeNet, squeezed network;
VGG very deep convolutional network developed by the Visual Geometry Group.

2.3. General Model Evaluation and Development Strategies

Transfer learning was deployed during training, with which models were pre-trained
with a large dataset, ImageNet [62], whereas only the fully connected layers of the models
were fine-tuned with the current dataset for custom classification. This strategy improves
training efficiency without compromising inference performance. The cattle muzzle dataset
was randomly partitioned and reshuffled into three subsets: 65% for training, 15% for
validation, and 20% for testing. Image pixel intensities per color channel were normalized
to the range of [0,1] for enhanced image recognition performance [63]. Each model was
trained with five replications assigned the same random seeds, and the mean accuracy on
the testing dataset was computed to evaluate model performance and reduce the random
effects resulting from data reshuffling. All models were trained for 50 epochs (in which
training typically converged for muzzle data), using a stochastic gradient descent optimizer
and momentum of 0.9. The learning rate was initially set to 0.001 and dynamically decayed
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by a factor of 0.1 every seven epochs for stabilizing the model training. Models were
trained and validated in a cloud-based service, Google Colab Pro, allocated with a Tesla
P100-PCIE-16GB GPU, 12.69 GB of RAM, and a disk space of 166.83 GB. The working space
and ethernet speed of cloud services can vary, resulting in inconsistent processing speeds
among different models. Therefore, a local machine with an Intel® Core™ i7-8700K CPU
@ 3.70 GHz processor, 16.0 GB of RAM, and Windows 10® 64 bit operation system was
also used for model testing. Utilization of multiple machines allowed accelerating training
speed with the cloud-allocated GPU and examining standard model performance without
the GPU for mobile applications.

The cross-entropy (CE) loss function was used to evaluate the training and validating
model performance during the training process (Equation (1)).

CEloss = −
C

∑
i=1

wti log(pi), (1)

where pi ∈ R268 (R268 indicates a 268-dimensional vector) is the vector of a Softmax output
layer and indicates the probability of predicting the 268 individual cattle, C is the number of
cattle (=268), w (=1) indicates that equal weights were assigned to all cattle, and ti denotes
the true probability for the i-th cattle, is defined as follows:

ti =

{
1, i f i = true
0, otherwise

. (2)

Accuracy was calculated for each model during each epoch of training using the vali-
dation dataset and after training using the testing dataset to determine model performance
for overall classification. It was also calculated for each class to determine individual iden-
tification performance. Processing speed was computed using the reported time in Python
divided by total number of processed images. Higher values suggest better model accuracy
but lower processing speed. We proposed a comprehensive index (CI, Equation (3)) to
balance the two opposite evaluation metrics to determine comprehensive performance for
each model. The accuracy and processing speed computed from the testing dataset was
firstly ranked, where high accuracy values and low processing speeds had high orders.
Because accuracy was considered more important than processing speed in this study, 80%
of the ranked results were weighed for accuracy while 20% were weighed for the process-
ing speed. The proportion can be changed on the basis of the specific metric importance
determined by developers. Overall, a lower CI indicates that the model provides better
comprehensive performance.

CI = 80%×Order accuracy + 20%×Orderproessing speed, (3)

where the variable Orderi represents integers ranging from 1 to 59, and the subscripts refer
to the appropriate metric of interest.

Pearson’s correlation analysis was conducted to understand the correlation effects among
model total parameters, model size, accuracy, and processing speed. Larger absolute values of
the Pearson correlation coefficient (R) indicate a higher correlation between parameters.

2.4. Optimization for Class Imbalance

Class imbalance was observed in the cropped muzzle image dataset with a range
of images per cattle from four to 70 (Table 3). Because fewer images were fed to the
dataset, a minority class (cattle with fewer images) may be prone to misidentification. Two
commonly used deep learning strategies, weighted cross-entropy (WCE) loss function [64]
and data augmentation [22], were adopted to mitigate this issue during model training.
Both optimization strategies were evaluated by 20 models, which were determined using
the optimal accuracy, processing speed, and CI among the 59 models. Accuracy was the
primary metric to optimize class imbalance.
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Table 3. Model performance parameters (testing accuracy, processing speed, and comprehensive
index (Equation (3))) of individual beef cattle classification. The outperformed models for each
parameter were highlighted in bold fonts.

Model Accuracy (%) Processing Speed
(ms/Image) CI Model Accuracy (%) Processing Speed

(ms/Image) CI

AlexNet 96.5 36.0 7.8 RegNetY_32GF 94.7 564.0 22.6
DenseNet121 93.0 153.5 25.6 RegNetX_400MF 86.6 53.1 32.6
DenseNet161 94.7 278.6 21.6 RegNetX_800MF 84.6 70.0 36.2
DenseNet169 94.7 183.8 19.4 RegNetX_1.6GF 84.8 99.5 36.4
DenseNet201 94.6 224.4 21.6 RegNetX_3.2GF 86.6 142.0 35.2

DPN68 94.4 153.1 19.8 RegNetX_8.0GF 88.0 208.6 37.0
EfficientNet_b0 49.4 122.4 48.2 RegNetX_16GF 89.8 360.4 37.4
EfficientNet_b1 55.1 159.3 45.8 RegNetX_32GF 92.3 574.3 32.4
EfficientNet_b2 54.7 171.3 46.8 ResNet18 90.5 60.3 27.6
EfficientNet_b3 60.0 221.3 44.6 ResNet34 93.7 86.2 19.4
EfficientNet_b4 51.2 283.1 52.2 ResNet50 91.3 153.0 29.2
EfficientNet_b5 51.0 425.6 54.2 ResNet101 94.2 228.7 23.4
EfficientNet_b6 47.3 468.2 56.0 ResNet152 93.7 319.1 26.8
EfficientNet_b7 54.1 678.2 53.4 ResNeXt50_32×4d 93.0 180.4 25.6

GoogleNet 59.4 78.3 40.8 ResNeXt101_32×8d 96.1 419.6 18.8
InceptionV3 81.7 112.9 38.4 ShuffleNetV2_×0.5 1.2 32.3 47.4
InceptionV4 80.6 187.0 42.0 ShuffleNetV2_×1.0 1.3 43.3 47.2

InceptionResNetV2 66.9 244.7 44.8 SqueezeNet_1.0 95.0 62.1 12.6
Xception 58.3 207.0 45.6 SqueezeNet_1.1 95.9 45.3 9.8

MnasNet_0.5 2.9 46.2 46.8 VGG11 96.7 127.0 10.8
MnasNet_1.0 57.6 66.1 41.6 VGG11_BN 98.1 141.0 6.2
MobileNetV2 91.3 77.4 26.2 VGG13 98.0 175.9 9.4

MobileNetV3_Large 95.9 60.2 11.4 VGG13_BN 97.7 196.0 11.0
MobileNetV3_Small 93.2 35.6 18.8 VGG16 97.7 211.0 12.4

RegNetY_400MF 90.7 59.6 26.4 VGG16_BN 98.4 239.1 9.2
RegNetY_800MF 86.5 75.2 34.8 VGG19 97.1 248.0 14.6
RegNetY_1.6GF 88.8 103.8 32.6 VGG19_BN 98.1 276.6 11.8
RegNetY_3.2GF 91.6 150.5 27.4 Wide_ResNet50_2 89.6 243.7 36.6
RegNetY_8.0GF 92.1 269.8 30.8 Wide_ResNet101_2 90.4 404.4 37.0
RegNetY_16GF 93.6 370.3 28.0

Note: CI, comprehensive index. Descriptions of the models are provided in Table 2.

The WCE loss function assigned heavier weights for cattle with fewer cropped muzzle
images, as defined in Equation (4).

WCEloss = −
C

∑
i=1

witi log(pi) (4)

where wi is the individualized weight assigned to the i-th cattle, which can be calculated
as follows:

wi =
Nmax

Ni
, (5)

where Ni denotes the image number for the i-th cattle, and Nmax is the maximum image
counts per head (=70 in this case). The assigned weight in the WCE loss function for each
cattle is provided in Table A1 in Appendix A.

Data augmentation is a technique to create synthesized images and increase limited
datasets for training deep learning models. The augmentation was implemented as a
preprocessing step in an end-to-end training or interference process. Four augmentation
strategies were adopted on the basis of raw image limitations, namely, horizontal flipping,
brightness modification, randomized rotation, and blurring. The horizontal flipping was to
mimic events when cattle were photographed in different locations due to their natural
behaviors. The brightness modification was to mimic varying outdoor lighting conditions,
and the brightness factor was set from 0.2 to 0.5 (minimum = 0, maximum = 1). Rotation
was randomized from −15◦ to 15◦, simulating natural cattle head movements. Blurring
was applied to simulate the cases of overexposure and motion blur, and a Gaussian function
with kernel sizes of 1–5 was used to create blurred muzzle images.
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3. Results and Discussion
3.1. Examples of Validation Performance

Figure 4 provides representative results of the validation accuracy of the 59 deep
learning image classification models assessed. Most models converged before the 50th
epoch, and various models achieved the best validation accuracy at an epoch between 13
to 49. Each model took 20 to 302 min to finish the training of 50 epochs, using the cloud ser-
vice. MnasNet_0.5, ShuffleNetV2_×0.5, and ShuffleNetV2_×1.0 consistently showed a low
validation accuracy (<5%) across all training epochs. Valley points were observed for vali-
dation accuracy curves of RegNetY_16GF and RegNetX_800MF, probably because of data
randomness after data reshuffling. In sum, the 50 epochs were reasonable configurations
for model training, and validation accuracy was observed for all model training, including
the training of 20 selected models for optimizing the accuracy of individual identification.
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3.2. Testing Performance of the Selected Deep Learning Image Classification Models

Table 3 shows the testing accuracies and processing speeds of the 59 deep learning
image classification models. Accuracy ranged from 1.2% to 98.4% with ShuffleNetV2_×0.5
being the worst and VGG16_BN being the best. Each model took 32.3 to 678.2 ms to
process a muzzle image, with the ShuffleNetV2_×0.5 being the fastest model and Efficient-
Net_b7 being the slowest model. Twenty models were selected and organized on the basis
of the CI ranking, namely, VGG11_BN, AlexNet, VGG16_BN, VGG13, SqueezeNet_1.1,
VGG11, VGG13_BN, MobileNetV3_Large, VGG19_BN, VGG16, SqueezeNet_1.0, VGG19,
MobileNetV3_Small, ResNeXt101_32×8 d, ResNet34, DenseNet169, DPN68, DenseNet161,
DenseNet201, and RegNetY_32GF. The 20 models were further used to evaluate the opti-
mization of class imbalance.

The processing speed was computed by Google Colab (with GPU) for all 59 models,
and the average ± standard deviation was 60.5 ± 93.4 ms/image, much lower than the
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speed 197.8 ± 145.1 ms/image computed by the local computer with CPU only (Table 3),
presumably due to the cloud-based service. For example, the processing speed using the
cloud was 103.6 ms/image for DenseNet121 but 20.9 ms/image for DenseNet161, 182.4
ms/image for EfficientNet_b3 but 12.4 ms/image for EfficientNet_b4, 379.0 ms/image for
MnasNet_0.5 but 10.0 ms/image for MnasNet_1.0, and 186.2 ms/image for VGG13 but
18.8 ms/image for VGG16. The internet speed inconsistency may have led to the abnormal
data trends where simpler architectures in the same model family processed images more
slowly. Therefore, although the current processing speed provided with CPU only was not
optimal, it was at least reliable for building the benchmark performance for some mobile
computing machines without GPU.

Table 4 presents a Pearson correlation coefficient (R) matrix to better understand the
relationships among model performance parameters. Accuracy had a low and positive
correlation with model parameters (total parameter and size), while processing speed
was moderately and positively correlated with model parameters. This result matched
with our original hypothesis of correlation direction (a complicated model with more
model parameters should have greater accuracy but longer processing time), although we
expected greater correlation magnitudes. More factors may also affect model performance,
such as connection schemes and network depth. For example, both ShuffleNet [58] and
SqueezeNet [59] were lightweight models with 1.2–2.3 million total parameters, a 2.5–6.0 MB
model size, and a fast processing speed of 32.3–62.1 ms/image. However, SqueezeNet
achieved much better accuracies (95.0–95.9%) than that of ShuffleNet (1.2–1.3%). SqueezeNet
introduced the Fire module (a squeezed convolution filters) to build CNN architecture and
achieved AlexNet-level accuracy with fewer total parameters and smaller model sizes [59].
ShuffleNet used a direct measure of processing speed rather than an indirect measure of
FLOPs to efficiently design and optimize CNN architecture, although the method was not
beneficial in improving accuracy (the top-1 error rate was up to 39.7% [58]).

Table 4. Pearson correlation coefficient (R) matrix among model total parameter and size, accuracy,
and processing speed.

Accuracy Processing Speed

Total parameter 0.389 0.517
Model size 0.391 0.521

Interestingly, a few earlier models, such as AlexNet [44] and VGG [60], outperformed
some newer models (e.g., EfficientNet [47], MnasNet [52], and RegNet [55]). One plausible
explanation is that the connection scheme greatly impacted the model performance for this
muzzle image dataset. AlexNet and VGG were operated in a feed-forward manner and
could improve model performance by increasing architecture depth, while other models
increased architecture width, introduced shortcut connection, and scaled up architecture
width and depth. Our results indicate that a simple and feed-forward network architecture
is sufficient in identifying individual beef cattle using muzzle images.

3.3. Optimization Peformance for Class Imbalance

The highest accuracy of the 20 selected models increased by 0.1% with the weighted
cross-entropy loss function and 0.3% with data augmentation, compared with that of the
development without any class imbalance optimization (98.4%, Table 5). The average
accuracy increased by 0.6% with weighted cross-entropy but decreased by 0.2% with
data augmentation, compared with the development without any class imbalance opti-
mization (96.1%, Table 5). It turned out that the accuracy was not consistently improved
for every model by the class imbalance optimization (e.g., AlexNet, MobileNetV3_Small,
SqueezeNet_1.0, SqueezeNet_1.1, and VGG13). Therefore, only the models that performed
best in both strategies, VGG16_BN (with cross-entropy loss function and data augmenta-
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tion) and VGG19_BN (with weighted cross-entropy loss function), were selected to evaluate
the accuracy of individual cattle identification.

Table 5. Accuracy and processing speed for the 20 selected models before and after optimization for
class imbalance. The outperformed models for each parameter were highlighted in bold fonts.

Model

Cross Entropy Weighted cross Entropy Data Augmentation
Model Loading

Time (ms)Accuracy (%)
Processing

Speed
(ms/Image)

Accuracy (%)
Processing

Speed
(ms/Image)

Accuracy (%)
Processing

Speed
(ms/Image)

AlexNet 96.5 36.0 95.8 36.3 95.7 29.7 95.7
DenseNet161 93.0 153.5 97.3 286.2 98.3 139.1 133.0
DenseNet169 94.7 278.6 97.6 176.1 97.9 90.2 807.2
DenseNet201 94.7 183.8 97.1 221.5 98.2 110.5 963.3

DPN68 94.6 224.4 97.8 151.8 98.6 80.5 1183.2
MobileNetV3_Large 94.4 153.1 97.4 61.6 95.2 39.8 261.2
MobileNetV3_Small 96.5 36.0 95.8 35.9 86.6 28.3 186.3

RegNetY_32GF 94.7 564.0 97.1 553.7 95.1 297.5 244.3
ResNet34 93.7 86.2 97.0 88.3 97.6 54.7 767.4

ResNeXt101_32×8d 96.1 419.6 98.0 419.1 98.5 210.7 2539.9
SqueezeNet_1.0 95.0 62.1 92.6 62.0 78.3 39.6 120.0
SqueezeNet_1.1 95.9 45.3 94.1 44.7 93.9 32.4 127.7

VGG11 96.7 127.0 96.5 128.2 97.2 77.8 3391.3
VGG11_BN 98.1 141.0 98.2 141.8 98.0 83.3 3237.8

VGG13 98.0 175.9 95.6 176.2 98.2 99.3 3227.4
VGG13_BN 97.7 196.0 97.9 199.6 98.5 109.5 3279.0

VGG16 97.7 211.0 96.9 213.4 97.4 117.9 3435.4
VGG16_BN 98.4 239.1 97.7 238.5 98.7 125.2 3414.0

VGG19 97.1 248.0 95.7 249.5 97.8 137.3 3525.2
VGG19_BN 98.1 276.6 98.5 274.8 97.8 159.6 3554.4

Average ± SD 96.1 ± 1.6 192.9 ± 129.8 96.7 ± 1.5 188.0 ± 131.5 95.9 ± 5.0 103.2 ± 66.5 1724.7 ± 1494.2

Note: ‘Cross-entropy’ indicates models developed with the cross-entropy loss function and without any class
imbalance optimization. Descriptions of the models are provided in Table 2.

There was no significant difference in processing speed between the developments
conducted with cross-entropy and with weighted cross-entropy. However, the processing
speeds of the 20 models with data augmentation were faster compared to those without
any class imbalance optimization. The processing time was the sum of model loading
time and total image processing time divided by the total number of processed images
(Equation (6)). The model loading time was the duration of loading models to the CPU
machine and ranged from 95.7 to 3554.4 ms. The terms ‘ Total image processing time

Total number o f processed images ’ and
model loading time in Equation (6) were constant for the same model, whereas the term
‘ Model loading time

Total number o f processed images ’ was smaller with more images generated by the data aug-
mentation, resulting in a faster processing speed with data augmentation. The model
loading time should be part of model processing and cannot be excluded when processing
speed evaluation.

Processing speed =
Model loading time + Total image processing time

Total number o f processed images

=
Model loading time

Total number o f processed images
+

Total image processing time
Total number o f processed images

.
(6)

A best model classification accuracy of 98.7% was achieved in this study (Tables 3 and 5)
and was comparable to that of other deep learning studies for cattle muzzle recognition, in
which the accuracy was 98.9% [27,28] and 99.1% [29]. Despite the discrepancies of cattle
breeds, rearing environments, data acquisition conditions, and network architecture, all
these studies achieved the desired accuracy (>90%), which again proves the empowering
object recognition ability of deep learning and suggests a suitable application of the deep
learning technique for individual cattle identification.
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The processing speed ranged from 28.3 to 678.2 ms/image (Tables 3 and 5) and
was also comparable to or faster than some previous studies: 32.0–738.0 ms/image [15],
77.5–1361.9 ms/image [23], and 368.3–1193.3 ms/image [30]. Interestingly, these studies
used machine learning or digital image processing algorithms as indicated in Table 1, and
these models were supposed to be relatively lightweight compared to the deep learning
models, with a faster processing speed, but our study suggested the opposite. In addition
to programming language and platform, computing hardware explained the processing
speed performance, particularly for configurations that were less advanced than those
listed in Section 2.3.

3.4. Identification Accuracy of Each Cattle

A probability chart demonstrating the identification accuracy of individual cattle is
presented in Figure 5 and summarized in Table 6. In general, 92.5–95.1% cattle were 100%
accurately identified, suggesting a great potential of using deep learning techniques to
identify individual cattle. The results are also in agreement with Table 5. Despite different
models, the development with weighted cross-entropy and data augmentation indeed
outperformed that with cross-entropy loss function only. Worst-case scenarios (with 0%
identification accuracy) developed from models without class imbalance optimization were
reduced from four to three with data augmentation. Best-case scenarios (100% identified)
increased by 6–7 after class imbalance optimization. Accuracy, excluding best-case or
worst-case scenarios, was improved by 1.3–1.5% after class imbalance optimization.
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Table 6. Accuracy and processing speed before and after optimization for class imbalance.

Development Strategy Number of Cattle with 0%
Identification Accuracy

Number of Cattle 100%
Accurately Identified

Accuracy (%, Excluding
100% and 0%)

Cross-entropy 4 248 96.2 ± 15.1
Weighted cross-entropy 4 254 97.5 ± 13.3

Data augmentation 3 255 97.7 ± 12.3

Note: The model used was VGG16_BN for cross-entropy and data augmentation and VGG19_BN for weighted
cross-entropy.

The ID numbers of cattle with 0% identification accuracy were 2100, 4549, 5355, and
5925, with only four cropped images per head (Table A1). Although more images per
cattle may result in higher accuracy for identifying individual cattle [22], multiple factors
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should be considered for data collection, such as access to animals, resource availability,
and labeling workload. An optimal threshold of images per head is favorable in balancing
identification accuracy and difficulties associated with data collection. The commonly
used per head image rate is 5–20, as suggested in Table 1. Our results also indicated
that an animal with over four muzzle images for model development could be identified
successfully (with over 90% accuracy) by deep learning models. These data suggest that
five images per animal could be an appropriate threshold.

This project aims to initiate the very first step of an individual cattle identification
system. Coupled with computer engineer and software development capacity, the optimal
model, VGG16_BN, can be installed into a computer vision system to livestream cattle
muzzles. In the future, such computer vision systems have the potential to be integrated into
commercial beef cattle feedlot facilities via other facilities or technologies (e.g., hydraulic
chute, mobile robot systems, drones, smartphones) that allow for individual cattle muzzle
capture and maintain the consistency of data collection.

4. Conclusions

Individual beef cattle were identified with muzzle images and deep learning tech-
niques. A dataset containing 268 US feedlot cattle and 4923 muzzle images was published
along with this article, forming the largest dataset for beef cattle to date. A total of 59 deep
learning models were comparatively evaluated for identifying muzzle patterns of individ-
ual cattle. The best identification accuracy was 98.7%, and the fastest processing speed was
28.3 ms/image. The VGG models performed better in terms of accuracy and processing
speed. Weighted cross-entropy loss function and data augmentation could improve the
identification accuracy for the cattle with fewer muzzle images. This study demonstrates
the great potential of using deep learning techniques to identify individual cattle using
muzzle images and to support precision beef cattle management.
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Appendix A

Table A1. Image counts and assigned weight in weighted cross-entropy loss function for each cattle.

Cattle
ID

Image
Counts Weight Cattle

ID
Image
Counts Weight Cattle

ID
Image
Counts Weight Cattle

ID
Image
Counts Weight

0100 8 8.75 3812 12 5.83 4680 19 3.68 5143 9 7.78
0200 10 7.00 3814 13 5.38 4685 11 6.36 5153 5 14.00
0300 17 4.12 3819 19 3.68 4686 31 2.26 5164 32 2.19
0400 7 10.00 3832 42 1.67 4716 16 4.38 5165 10 7.00
0500 14 5.00 3842 14 5.00 4717 5 14.00 5170 40 1.75
0600 19 3.68 3844 15 4.67 4733 29 2.41 5171 20 3.50
0700 16 4.38 3847 21 3.33 4739 26 2.69 5197 14 5.00
0800 18 3.89 3852 29 2.41 4748 15 4.67 5207 18 3.89
0900 12 5.83 3856 16 4.38 4770 11 6.36 5208 4 17.50
1000 12 5.83 4208 18 3.89 4775 15 4.67 5215 48 1.46
1100 11 6.36 4259 6 11.67 4776 25 2.80 5224 28 2.50
1200 11 6.36 4323 19 3.68 4804 15 4.67 5234 8 8.75
1300 12 5.83 4326 10 7.00 4819 18 3.89 5235 24 2.92
1400 13 5.38 4330 28 2.50 4820 38 1.84 5249 24 2.92
1500 6 11.67 4339 20 3.50 4833 26 2.69 5273 18 3.89
1600 14 5.00 4347 19 3.68 4839 26 2.69 5275 14 5.00
1700 12 5.83 4363 21 3.33 4840 16 4.38 5282 6 11.67
1800 22 3.18 4369 16 4.38 4895 24 2.92 5283 14 5.00
1900 8 8.75 4381 24 2.92 4915 30 2.33 5297 32 2.19
2000 14 5.00 4385 23 3.04 4921 14 5.00 5298 25 2.80
2100 4 17.50 4399 7 10.00 4947 15 4.67 5307 10 7.00
2200 6 11.67 4421 32 2.19 4951 39 1.79 5314 13 5.38
2220 6 11.67 4422 22 3.18 4969 12 5.83 5325 36 1.94
2300 22 3.18 4451 7 10.00 4971 11 6.36 5355 4 17.50
2320 14 5.00 4454 26 2.69 4984 24 2.92 5359 10 7.00
2400 23 3.04 4456 29 2.41 4985 11 6.36 5360 35 2.00
2500 33 2.12 4479 25 2.80 4986 26 2.69 5362 18 3.89
2510 10 7.00 4488 11 6.36 4995 6 11.67 5373 27 2.59
2600 27 2.59 4499 29 2.41 5009 17 4.12 5374 27 2.59
2700 17 4.12 4537 12 5.83 5026 23 3.04 5403 26 2.69
2710 15 4.67 4539 18 3.89 5028 21 3.33 5404 22 3.18
2740 8 8.75 4545 29 2.41 5066 14 5.00 5407 40 1.75
2800 24 2.92 4549 4 17.50 5073 14 5.00 5408 18 3.89
2900 15 4.67 4551 28 2.50 5077 16 4.38 5410 20 3.50
2930 6 11.67 4568 23 3.04 5083 29 2.41 5411 31 2.26
3000 15 4.67 4607 34 2.06 5090 18 3.89 5425 26 2.69
3100 13 5.38 4613 70 1.00 5097 25 2.80 5427 13 5.38
3200 16 4.38 4614 25 2.80 5100 8 8.75 5432 19 3.68
3300 13 5.38 4649 34 2.06 5112 14 5.00 5477 9 7.78
3400 7 10.00 4668 21 3.33 5132 30 2.33 5507 25 2.80
3420 4 17.50 4678 19 3.68 5133 12 5.83 5508 25 2.80
3802 8 8.75 4679 16 4.38 5138 11 6.36 5509 22 3.18
5519 25 2.80 5781 27 2.59 6124 10 7.00 6295 10 7.00
5529 29 2.41 5784 16 4.38 6161 18 3.89 6313 34 2.06
5537 37 1.89 5803 15 4.67 6167 21 3.33 6331 32 2.19
5556 8 8.75 5804 26 2.69 6171 12 5.83 6333 54 1.30
5559 21 3.33 5806 14 5.00 6184 16 4.38 6442 13 5.38
5581 29 2.41 5809 24 2.92 6189 12 5.83 6446 8 8.75
5604 14 5.00 5815 14 5.00 6191 18 3.89 6458 10 7.00
5605 14 5.00 5816 9 7.78 6196 17 4.12 6479 15 4.67
5620 12 5.83 5836 22 3.18 6197 12 5.83 6499 9 7.78
5630 4 17.50 5844 30 2.33 6199 14 5.00 6505 14 5.00
5633 13 5.38 5886 25 2.80 6210 10 7.00 6506 18 3.89
5634 13 5.38 5925 4 17.50 6213 12 5.83 6530 10 7.00
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Table A1. Cont.

Cattle
ID

Image
Counts Weight Cattle

ID
Image
Counts Weight Cattle

ID
Image
Counts Weight Cattle

ID
Image
Counts Weight

5639 12 5.83 5932 38 1.84 6216 18 3.89 6606 12 5.83
5654 53 1.32 5953 30 2.33 6220 12 5.83 8050 4 17.50
5658 12 5.83 5971 45 1.56 6226 15 4.67 8094 10 7.00
5670 16 4.38 5986 5 14.00 6237 6 11.67 8095 8 8.75
5677 12 5.83 6011 32 2.19 6253 8 8.75 9021 10 7.00
5695 20 3.50 6012 19 3.68 6266 10 7.00 9029 29 2.41
5697 31 2.26 6017 12 5.83 6276 15 4.67 9634 31 2.26
5717 16 4.38 6022 8 8.75 6277 12 5.83 9635 8 8.75
5745 15 4.67 6038 22 3.18 6278 13 5.38 9736 18 3.89
5761 10 7.00 6066 50 1.40 6282 12 5.83 9742 19 3.68
5762 7 10.00 6071 26 2.69 6283 5 14.00 9773 10 7.00
5774 16 4.38 6084 36 1.94 6287 14 5.00 9798 42 1.67
5777 12 5.83 6098 20 3.50 6294 10 7.00 9801 10 7.00
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