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Abstract
Background Gestational weight gain (GWG) is a critical factor influencing maternal and fetal health. Excessive or 
insufficient GWG can lead to various complications, including gestational diabetes, hypertension, cesarean delivery, 
low birth weight, and preterm birth. This study aims to develop and evaluate machine learning models to predict 
GWG categories: below, within, or above recommended guidelines.

Methods We analyzed data from the Araraquara Cohort, Brazil, which comprised 1557 pregnant women with 
a gestational age of 19 weeks or less. Predictors included socioeconomic, demographic, lifestyle, morbidity, and 
anthropometric factors. Five machine learning algorithms (Random Forest, LightGBM, AdaBoost, CatBoost, and 
XGBoost) were employed for model development. The models were trained and evaluated using a multiclass 
classification approach. Model performance was assessed using metrics such as area under the ROC curve (AUC-ROC), 
F1 score and Matthew’s correlation coefficient (MCC).

Results The outcomes were categorized as follows: GWG within recommendations (28.7%), GWG below (32.5%), 
and GWG above recommendations (38.7%). The XGBoost presented the best overall model, achieving an AUC-ROC of 
0.79 for GWG within, 0.76 for GWG below, and 0.65 for GWG above. The LightGBM also performed well with an AUC-
ROC of 0.79 for predicting GWG within recommendations, 0.76 for GWG below, and 0.624 for GWG above. The most 
important predictors of GWG were pre-gestational BMI, maternal age, glycemic profile, hemoglobin levels, and arm 
circumference.

Conclusion Machine learning models can effectively predict GWG categories, offering a valuable tool for early 
identification of at-risk pregnancies. This approach can enhance personalized prenatal care and interventions to 
promote optimal pregnancy outcomes.
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Introduction
Gestational weight gain (GWG) has been shown to 
directly influence maternal and infant health outcomes 
[1–3]. Excessive GWG is associated with gestational 
complications, such as gestational diabetes and hyperten-
sion, as well as long-term risks like metabolic and car-
diometabolic diseases in childhood [4, 5]. On the other 
hand, insufficient GWG increases the risk of low birth 
weight, preterm birth, and perinatal mortality [6–8]. On 
the other hand, insufficient GWG increases the risk of 
low birth weight, preterm birth, and perinatal mortal-
ity. These outcomes are further affected by factors such 
as pre-pregnancy body mass index (BMI), maternal age, 
sociodemographic conditions, and race [9, 10].

Machine learning (ML), a subfield of artificial intelli-
gence (AI), offers new opportunities for analyzing large 
volumes of data (big data) and identifying complex pat-
terns that traditional statistical methods may not cap-
ture [11–13]. The application of ML techniques in public 
health has rapidly expanded, providing powerful tools for 
prediction, diagnosis, and monitoring of health condi-
tions [14–17]. In the context of perinatal health, accurate 
prediction of GWG can enable the early identification of 
at-risk pregnant women and the implementation of tar-
geted interventions.

Despite the promising potential of ML, the literature 
remains scarce in basic or translational research that uses 
AI to predict maternal and infant outcomes, especially 
in low-income regions and with limited sample sizes [16, 
18–20]. Recent data indicate that a significant propor-
tion of pregnant women do not meet the recommended 
parameters set by the Institute of Medicine (IOM), high-
lighting the need for personalized and early interventions 
to improve pregnancy outcomes [21, 22]. This study aims 
to fill this gap by applying advanced ML techniques to 
predict categories of GWG. The objective of this study 
is to identify women at higher risk of inadequate weight 
gain during pregnancy, enabling preventive interventions 
that promote healthy pregnancy outcomes. Using longi-
tudinal data from the Araraquara Cohort, we tested and 
compared the performance of ML algorithms in a multi-
class classification approach. Our results aim to contrib-
ute to the improvement of personalized prenatal care and 
the reduction of disparities in maternal and infant health 
outcomes.

Materials and methods
Dataset description
We analyzed data from a population-based cohort study 
conducted in Araraquara, São Paulo, Brazil (Araraquara 
Cohort). The sample included women with a gesta-
tional age less than or equal to 19 weeks, who received 
prenatal care at Basic Health Units in Araraquara. Par-
ticipants were followed quarterly throughout prenatal 

care until the birth of their children from 2017 to 2022. 
Excluded from the study were women with twin preg-
nancies and those who had a pre-viable abortion. In cases 
of fetal death and stillbirths, only pregnancy data were 
considered.

Several characteristics were considered for predict-
ing GWG as shown in Fig. 1. Socioeconomic and demo-
graphic factors included age (≤ 19, 20–35, or > 35 years), 
educational level (< 4, 5–11, or ≥ 12 years of schooling), 
per capita income in Brazilian reais (1 US$ = 4.9 R$), 
race (white or non-white), marital status (married/stable 
union or single/separated/widowed), and the number 
of previous pregnancies (0, 1, or ≥ 2). Lifestyle factors 
included physical activity (was assessed using the Inter-
national Physical Activity Questionnaire, a widely vali-
dated tool that measures the frequency, intensity, and 
duration of physical activity), smoking, and alcohol con-
sumption. Morbidity factors included pre-pregnancy 
conditions such as diabetes and hypertension, as well as 
urinary tract infection and cervicitis/vaginitis. Anthro-
pometric data of the pregnant women were evaluated 
based on height (cm) categorized into tertiles; BMI (kg/
m²); arm circumference (cm); and body fat percentage. 
Other relevant data included gestational age at birth, gly-
cemic profile (fasting glucose [mg/dL], insulin [μUI/mL], 
HOMA [μUI/mL], glycated hemoglobin [%]), high-sensi-
tivity C-reactive protein (hs-CRP [ng/mL]), hemoglobin 
[g/dL], and lipid profile (total cholesterol, LDL-c, HDL-c, 
and triglycerides [mg/dL]). Additionally, the number of 
family members per room was categorized into tertiles, 
and the number of previous pregnancies was categorized 
as 0, 1, and ≥ 2.

Outcome definition
GWG was calculated as the difference between weight 
at delivery and pre-pregnancy weight. GWG was then 
classified into three categories according to the recom-
mendations of the Institute of Medicine (IOM): (a) GWG 
below IOM, (b) GWG within IOM, and (c) GWG above 
IOM [22].

Statistical analysis
Descriptive statistics were used to summarize the char-
acteristics of the study population. Continuous Predic-
tors were presented as median and interquartile range 
(IQR), while categorical Predictors were presented as 
frequencies and percentages. Differences between GWG 
categories were tested using the Kruskal-Wallis test for 
continuous Predictors and the Chi-square test or Fisher’s 
exact test for categorical Predictors.

Machine learning model design
Considering the different outcomes related to GWG, we 
employed a multiclass classification approach to evaluate 
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whether changing strategies could enhance model per-
formance. Separate models were developed for each 
GWG category: below IOM recommendations, within 
IOM recommendations, and above IOM recommenda-
tions. The models were evaluated independently without 
sharing any information during the process, as shown in 
Fig. 1.

ML techniques
Data preprocessing
For quantitative predictors, standardization was per-
formed using the z-score, separately in the training and 
test sets. All qualitative predictors were handled through 
one-hot encoding, where each category was consid-
ered separately for this procedure. Additionally, predic-
tors with a percentage of missing values above 20% were 
removed, while those with less than 20% missing values 
were imputed using the mean, as recommended by previ-
ous studies in healthcare [23, 24].

Algorithm selection
We tested five different ML algorithms: CatBoost [25], 
XGBoost [26], LightGBM [27], and Random Forest. 
For CatBoost, XGBoost, and LightGBM, we used their 
respective Python packages. For the other algorithms, 
we used the scikit-learn library [28]. Additionally, we 
employed the bootstrapping technique to further ensure 
the robustness and reliability of the model’s performance.

Hyperparameter selection
Hyperparameter selection in the training set was per-
formed through 10-fold cross-validation, using Bayesian 
optimization and RandomSearch strategies [29]. In cases 
of significant class imbalance, where the minority class 
represented less than 25% of the total outcomes, the Syn-
thetic Minority Over-sampling Technique (SMOTE) was 
applied. Additionally, in the training set, the BORUTA 
method was employed for feature selection [30].

Fig. 1 Workflow diagram for classifying GWG adequacy
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Model evaluation
The models with the best performance in the train-
ing set (which corresponded to 70% of the data) were 
selected for evaluation in the test set (30%). The evalu-
ation of machine learning algorithms was conducted in 
the test set, based on metrics such as area under the ROC 
curve (AUC-ROC), area under the precision-recall curve 
(AUC-PR), precision, recall, positive predictive value, 
negative predictive value, Matthew’s correlation coeffi-
cient (MCC) and F1 score. Finally, the interpretation and 
evaluation of each predictors contribution to the out-
come were obtained through the calculation of Shapley 
values [31–33] in the test set. We adhered to the Trans-
parent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) guidelines 
[34].

Results
Maternal characteristics and GWG
The study included 1557 pregnant women, with 28.7% 
having GWG within the Institute of Medicine (IOM) rec-
ommendation, 32.5% below, and 38.7% above, as shown 
in Fig.  2. The majority of the women, 76.4%, were aged 
between 20 and 35 years. Additionally, 53.6% were pre-
dominantly non-white. Key characteristics associated 
with GWG categories included pre-gestational BMI, 
maternal age, glycemic profile, hemoglobin levels, and 
arm circumference. The prevalence of diabetes and 
hypertension was significantly higher among women 
with GWG above the recommendations (P < 0.001) 
(Table 1).

Fig. 2 Selection of the study population according to IOM recommendations
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Table 1 Maternal characteristics associated with GWG according to IOM recommendations
Predictors Overall

1557
Gestational Weight Gain (IOM-2009) P value
Within
447(28.7)

Below
506(32.5)

Above
604(38.7)

Age (years) σ
 ≤ 19 154(9.9) 47(3.02) 51(3.28) 56(3.6) 0.531
 20–35 1189(76.4) 346(22.22) 389(25) 454(29.16)
 > 35 214(13.7) 54(3.47) 66(4.24) 94(6.04)
Height(cm) σ
 1º tercil 534(34.34) 167(10.73) 187(12.03) 180(11.57) 0.003
 2º tercil 505(32.48) 146(9.39) 170(10.93) 189(12.15)
 3º tercil 516(33.18) 134(8.62) 147(9.45) 235(15.11)
Pre-gestational BMI (kg /m²) τ 25.6(22.2–30.2) 25(21.3–28.6) 24.8(21.8–30.2) 26.8(23.2–31.2) < 0.001
Arm circumference(cm) σ
 < 23 67(4.37) 23(1.50) 29(1.90 15(0.89) < 0.001
 23–28 474(31) 147(9.61) 190(12.42) 137(8.95)
 > 28 989(64.640 264(17.25) 283(18.50) 442(28.89)
Body fat (%) τ 33.3(28.3–37.8) 32.3(26.9–36.6) 32.3(26.6–37) 34.7(30.3–39.1) < 0.001
Gestational age (weeks) τ 39.4(38.5–40.3) 39.4(38.7–40.3) 39.2(38.1–40.1) 39.7(38.9–40.4)
Maternal education (years) σ
 ≤ 4 10(0.6) 1(0.06) 5(0.32) 4(0.26) < 0.001
 5–11 1181(75.9) 342(21.97) 389(24.98) 450(28.9)
 ≥ 12 365(23.5) 104(6.68) 111(7.13) 150(9.63)
Per capita income (R$) τ 666.7(400–1000) 665.9(400–970) 600(382.4–1000) 668(466.6–1000) 0.002
Race σ
 White 722(46.3) 208(13.36) 223(14.32) 291(18.69) 0.392
 Non-white 835(53.6) 239(15.35) 283(18.18) 313(20.1)
Marital status σ
 Married or in a stable relationship 1359(87.3) 388(24.93) 441(28.32) 530(34.04) 0.896
 Single, separated, or widowed 198(12.7) 59(3.79) 65(4.17) 74(4.75)
Physical activity σ
 Adequate 175(11.2) 50(3.21) 59(3.794) 66(4.24) 0.951
 Inadequate 524(33.7) 156(10.02) 172(11.05) 196(12.59)
Smoking σ
 No 1434(92.1) 409(26.27) 449(28.84) 576(36.99) < 0.001
 Yes 123(7.9) 38(2.44) 57(3.66) 28(1.8)
Alcohol consumption σ
 No 1238(79.5) 353(22.67) 401(25.75) 482(30.96) 0.885
 Yes 319(20.5) 94(6.04) 105(6.74) 120(7.71)
Diabetes σ
 No 1479(95,0) 429(27.55) 459(29.48) 591(37.96) < 0.001
 Yes 78(5) 18(1.16) 47(3.02) 13(0.83)
Hypertension σ
 No 1448(93) 420(26.97) 470(30.19) 558(35.84) 0.608
 Yes 109(7) 27(1.73) 36(2.31) 46(2.95)
hs-CRP (ng/mL) τ 5.9(3.1–11.7) 5.1(3–10) 6.1(3.2–11.9) 6.5(3.0-12.6) 0.137
HOMA (uUI/mL) τ 1.36(0.9–2.1) 1.4(0.9–2.1) 1.3(0.99–2.1) 1.42(1-2.2) 0.094
Hemoglobin (g/dL) τ 12.5(12-13.1) 12.6(11.9–13.1) 12.4(11.8–13) 12.6(121 − 13.2) 0.002
Glycated hemoglobin %τ 5.1(4.9–5.3) 5.1(4.9–5.3) 5.1(4.9–5.3) 5(4.8–5.3) 0.059
Cholesterol (mg/dL) τ 173(151–196) 172(152–196) 172(149–194) 174(152–198) 0.526
HDL-c (mg/dL) τ 56(48–64) 56(49–64) 55(47–62) 56(49–65) 0.012
LDL-c(mg/dL) τ 95(77–113) 94(79–111) 94(76–112) 96(77–115) 0.639
Triglycerides (mg/dL) τ 104(81–133) 104(80–134) 106(85–137) 100(80–129) 0.13
Data are presented as number (percentage) and median and interquartile range (percentile 25 - percentile 75)

Statistical differences among gestational weight gain groups were tested with: Kruskal-Wallis test for continuous predictors and χ2 test, Fisher’s test for categorical 
predictors. Predictor Type: Continuous - τ and Categorical-σ
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Performance of predictive models
The XGBoost presented the best overall model, achiev-
ing an AUC-ROC of 0.79 for GWG within, 0.76 for 
GWG below, and 0.65 for GWG above. The LightGBM 
also performed well with an AUC-ROC of 0.79 for pre-
dicting GWG within recommendations, 0.76 for GWG 
below, and 0.624 for GWG above. Other algorithms, such 
as CatBoost, Random Forest, AdaBoost, and Logistic 
Regression, were also evaluated. (Table 2; Figs. 3, 4 and 5)

SHAP values and predictor importance
The use of SHAP values provided insight into the impor-
tance of various predictors for each GWG category. 
Pre-gestational BMI, maternal age, glycemic profile, 

hemoglobin levels, and arm circumference were identi-
fied as the most significant predictors. These variables 
were crucial in determining the likelihood of a pregnant 
woman falling into one of the GWG categories (below, 
within, or above IOM recommendations (Fig. 6).

Discussion
This study highlights the feasibility and utility of ML 
models in predicting GWG, thus providing a novel 
approach to enhancing prenatal care. The XGBoost and 
LightGBM models, in particular, exhibited strong pre-
dictive capabilities, with LightGBM achieving the high-
est AUC-ROC values across all GWG categories. These 
results align with existing literature that highlights the 

Table 2 Predictive performance on test data of the best algorithm for each outcome with hyperparameter tuning
Model Class Hyperparameter Tuning AUC-ROC Acuracy Recall Specificity Precision F1 MCC
LightGBM GWG Within {‘num_leaves’: 31, ‘learning_rate’: 0.1} 0.79 0.75 0.58 0.83 0.62 0.60 0.42
XGBoost GWG Within {‘n_estimators’: 200, ‘max_depth’: 3, ‘learning_rate’: 0.1} 0.79 0.74 0.59 0.82 0.60 0.60 0.41
Random Forest GWG Within {‘n_estimators’: 100, ‘max_depth’: 10} 0.77 0.76 0.58 0.82 0.60 0.59 0.41
CatBoost GWG Within {‘learning_rate’: 0.1, ‘iterations’: 100, ‘depth’: 6} 0.77 0.75 0.60 0.82 0.61 0.61 0.42
LightGBM GWG Below {‘num_leaves’: 31, ‘learning_rate’: 0.1} 0.76 0.68 0.74 0.64 0.57 0.64 0.37
XGBoost GWG Below {‘n_estimators’: 200, ‘max_depth’: 3, ‘learning_rate’: 0.1} 0.76 0.68 0.69 0.68 0.58 0.63 0.36
CatBoost GWG Below {‘learning_rate’: 0.1, ‘iterations’: 100, ‘depth’: 6} 0.75 0.68 0.69 0.67 0.58 0.63 0.36
Random Forest GWG Below {‘n_estimators’: 100, ‘max_depth’: 10} 0.73 0.68 0.77 0.59 0.55 0.64 0.35
AdaBoost GWG Below {‘n_estimators’: 200, ‘learning_rate’: 0.1} 0.71 0.66 0.77 0.60 0.55 0.64 0.36
AdaBoost GWG Within {‘n_estimators’: 200, ‘learning_rate’: 0.1} 0.71 0.72 0.55 0.80 0.57 0.56 0.35
CatBoost GWG Above {‘learning_rate’: 0.1, ‘iterations’: 100, ‘depth’: 6} 0.61 0.69 0.36 0.85 0.49 0.42 0.23
XGBoost GWG Above {‘n_estimators’: 200, ‘max_depth’: 3, ‘learning_rate’: 0.1} 0.65 0.65 0.36 0.84 0.47 0.40 0.21
LightGBM GWG Above {‘num_leaves’: 31, ‘learning_rate’: 0.1} 0.62 0.62 0.30 0.85 0.44 0.36 0.17
AdaBoost GWG Above {‘n_estimators’: 200, ‘learning_rate’: 0.1} 0.57 0.57 0.22 0.89 0.43 0.29 0.13
Random Forest GWG Above {‘n_estimators’: 100, ‘max_depth’: 10} 0.60 0.59 0.24 0.89 0.47 0.32 0.17

Fig. 3 Model performance metrics on test data ordered by AUC-ROC
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superiority of gradient boosting algorithms for han-
dling complex, non-linear relationships in large datasets  
. Recent studies indicate that boosting algorithms repre-
sent the state-of-the-art for tabular data demonstrating 

high performance across a wide range of tasks, including 
classification [35, 36].

The performance metrics, while robust, also indicate 
areas for improvement. For instance, the AUC-ROC 

Fig. 4 Predictive performance on test data of algorithms for each model in Terms of Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
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values for predicting GWG above were lower compared 
to the other categories, suggesting a need for further 
refinement of the models to enhance their sensitivity to 
this particular outcome. Furthermore, integrating these 
ML models into clinical practice requires careful consid-
eration of practical and ethical implications. Clinicians 
must be adequately trained to interpret and act on model 
predictions, and safeguards should be in place to ensure 
data privacy and security. The development of user-
friendly interfaces and decision-support systems will be 
essential for the seamless integration of these tools into 
routine prenatal care.

This study highlights the feasibility and utility of ML 
models in predicting GWG, offering a valuable tool for 
early identification and management of at-risk pregnan-
cies. By leveraging advanced analytics, healthcare provid-
ers can deliver more personalized and effective prenatal 
care, ultimately contributing to better health outcomes 
for mothers and their babies. Future research and clinical 

efforts should focus on refining these models, validating 
their applicability in diverse settings, and addressing the 
practical challenges associated with their implementa-
tion. The timely prediction and intervention, particu-
larly starting in the second trimester, could significantly 
enhance pregnancy management and outcomes, support-
ing the findings of previous research on the importance 
of early GWG control [37, 38]. The ease of data collection 
for key predictors makes these models especially valuable 
for deployment in remote areas, broadening the impact 
and accessibility of advanced prenatal care solutions.

The significant predictors identified in this study, such 
as: pre-gestational BMI, maternal age, glycemic profile, 
hemoglobin levels, and arm circumference are consistent 
with known risk factors for GWG. These predictors col-
lectively capture the multifaceted influences on GWG, 
encompassing physiological, demographic, and lifestyle 
factors. Importantly, these predictors are relatively easy 
to collect, even in remote or resource-limited settings, 

Fig. 5 ROC curve on test data for GWG prediction according to each class
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enhancing the feasibility of deploying these ML models in 
diverse clinical environments. The inclusion of these pre-
dictors enhances the model’s ability to accurately stratify 
women based on their risk of inadequate or excessive 
GWG, thereby facilitating targeted interventions. Our 
results are consistent with other studies that have utilized 
ML to predict perinatal outcomes. For example, a study 
by Lee and Ahn (2020) demonstrated the effectiveness 
of models in predicting preterm birth, highlighting the 

importance of early and accurate predictions for timely 
intervention [12]. Similarly, Ramakrishnan, Rao, and 
He (2021) emphasized the potential of ML in identify-
ing high-risk pregnancies and improving maternal-fetal 
health outcomes through early detection and personal-
ized care [14].

The ease of collecting the significant predictors identi-
fied in this study makes these models particularly valu-
able for deployment in remote and resource-limited 

Fig. 6 Contributions of predictors to GWG SHAP summary plot for all classes
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areas. In such settings, where access to advanced medical 
infrastructure may be limited, the ability to gather basic 
anthropometric and clinical data can still enable effective 
risk stratification and intervention. Despite the promis-
ing results, several limitations must be acknowledged. 
The study’s cohort is limited to a single geographic region 
(Araraquara, Brazil), which may affect the generalizabil-
ity of the findings. Future research should aim to validate 
these models in diverse populations to ensure broader 
applicability. Additionally, the use of mean imputation to 
handle missing data, while standard in machine learning, 
may reduce the variability and precision of predictions. 
Future studies should explore more advanced imputation 
techniques to improve the robustness of the model.

Conclusion
This study demonstrates that machine learning models, 
particularly LightGBM and XGBoost, can effectively pre-
dict GWG categories. However, we acknowledge that the 
model’s performance in predicting weight gain above the 
guidelines was limited and requires improvement. Inte-
grating these models into clinical practice allows for the 
early identification of pregnant women at risk of inade-
quate or excessive weight gain, enabling timely and per-
sonalized interventions. While early detection can help 
reduce maternal and fetal complications, it is important 
to note that the applicability of these models depends on 
the availability of data, such as laboratory tests. Incor-
porating predictive models into clinical decision sup-
port systems can enhance prenatal care by offering more 
effective and individualized monitoring. However, in 
resource-limited settings where access to laboratory tests 
is restricted, the model’s utility may be reduced. Future 
studies should consider adjusting and simplifying the 
variables to improve the model’s applicability in different 
contexts, especially in low-resource regions.
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