Journal of Pharmaceutical Analysis 13 (2023) 483—493

Contents lists available at ScienceDirect sournalof )
Pharmaceutical
Analysis e

Journal of Pharmaceutical Analysis

journal homepage: www.elsevier.com/locate/jpa i

Original article

Spatiotemporal pharmacometabolomics based on ambient mass N
spectrometry imaging to evaluate the metabolism and hepatotoxicity |
of amiodarone in HepG2 spheroids

Limei Li ', Qingce Zang * ', Xinzhu Li ¢, Ying Zhu ¢, Shanjing Wen ¢, Jiuming He ¢,
. . * . sk
Ruiping Zhang **, Zeper Abliz *> ¢
2 State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and
Peking Union Medical College, Beijing, 100050, China

b Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
€ Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China

ARTICLE INFO ABSTRACT

Article history:

Received 10 January 2023
Received in revised form

26 March 2023

Accepted 12 April 2023
Available online 14 April 2023

Three-dimensional (3D) cell spheroid models combined with mass spectrometry imaging (MSI) enables
innovative investigation of in vivo-like biological processes under different physiological and patho-
logical conditions. Herein, airflow-assisted desorption electrospray ionization-MSI (AFADESI-MSI) was
coupled with 3D HepG2 spheroids to assess the metabolism and hepatotoxicity of amiodarone
(AMI). High-coverage imaging of >1100 endogenous metabolites in hepatocyte spheroids was achieved
using AFADESI-MSI. Following AMI treatment at different times, 15 metabolites of AMI involved in N-
desethylation, hydroxylation, deiodination, and desaturation metabolic reactions were identified, and
according to their spatiotemporal dynamics features, the metabolic pathways of AMI were proposed.
Subsequently, the temporal and spatial changes in metabolic disturbance within spheroids caused by
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Hepatotoxicity drug exposure were obtained via metabolomic analysis. The main dysregulated metabolic pathways
Drug metabolism included arachidonic acid and glycerophospholipid metabolism, providing considerable evidence for the
Amiodarone mechanism of AMI hepatotoxicity. In addition, a biomarker group of eight fatty acids was selected that

provided improved indication of cell viability and could characterize the hepatotoxicity of AMI. The

combination of AFADESI-MSI and HepG2 spheroids can simultaneously obtain spatiotemporal infor-

mation for drugs, drug metabolites, and endogenous metabolites after AMI treatment, providing an

effective tool for in vitro drug hepatotoxicity evaluation.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction hepatotoxicity or investigate the underlying molecular mecha-
nisms as these systems are amenable to the rapid screening of large
numbers of compounds [4]. However, mounting evidence indicates

that the biochemical cues and cell-to-cell communication neces-

Evaluation of potential hepatotoxicity is a critical step during
initial drug development. In vitro experimental systems are vital

components for selecting the most promising drug candidates that
show high efficacy and have minimal safety concerns for use in
clinical trials [1-3]. Currently, several forms of hepatocyte mono-
layers are commonly used to screen for drug-induced

Peer review under responsibility of Xi'an Jiaotong University.
* Corresponding author.
** Corresponding author. State Key Laboratory of Bioactive Substance and Func-
tion of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, 100050, China.
E-mail addresses: rpzhang@imm.ac.cn (R. Zhang), zeper@muc.edu.cn, zeper@
imm.ac.cn (Z. Abliz).
1 Both authors contributed equally to this work.

https://doi.org/10.1016/j.jpha.2023.04.007

sary to maintain the physiological phenotypes and liver-specific
functions of cells are lost in two-dimensional monolayer cultures
and these may thus be poor predictors for drug-induced liver
injury-implicated compounds [2,5]. In contrast, three-dimensional
(3D) cell-culture systems have recently attracted considerable
attention in drug development. These 3D systems offer unprece-
dented insights into hepatotoxicity as they more closely reproduce
liver biology. Thus, drug effects can be studied in more controllable
microenvironments, which is expected to generate more robust
data on the potential risks of pharmaceuticals [6,7].

The most commonly used toxicity assessment method in 3D
spheroid models is the cell viability assay based on the reactions
catalyzed by cellular metabolic enzymes, which indirectly reflect
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cellular metabolic activity. However, this has been limited by the
inability to measure multiple mechanistic parameters that capture
a wide spectrum of potential cytopathological changes [8].
Currently developed methods based on high-content imaging
[9,10] and flow cytometry [11] can simultaneously perform high-
throughput determination of multiple toxicological endpoints,
such as cell death, intracellular lipid accumulation, mitochondrial
membrane changes, and reactive oxygen species. However, these
methods require fluorescent labeling, affording limited detection
coverage. Metabolomics can generate large amounts of data that
represent the complex regulations involved in endogenous meta-
bolism and thereby reveal information on the precise metabolic
pathways and processes when hepatotoxicity occurs [12—16].

Mass spectrometry imaging (MSI)-based spatially resolved
metabolomics can preserve the spatial location information of a
various known and unknown molecules in heterogeneous biological
samples without labeling [17—21] and has been used to spatially
resolve the distributions of endogenous and exogenous species in
micro-3D cell spheroids [22—24]. For instance, the penetration and
distribution of perifosine [25] and epidermal growth factor receptor
targeting antibody cetuximab [26] were successfully mapped to in-
crease understanding of the heterogeneous distribution of these
drugs in multicellular tumor spheroids (MCTS). Furthermore, the
spatial characteristics of endogenous metabolites in the glycolysis
and tricarboxylic acid (TCA) cycle pathways and of lipids in different
proliferating microregions in MCTSs have been mapped [23,27], of-
fering unprecedented opportunities for elucidating metabolic
mechanisms during cancer progression. Cai and co-
workers [28,29] applied matrix-assisted laser desorption/ionization
mass spectrometry (MS) imaging to successfully elucidate the dis-
tribution and metabolism of bisphenol S [28] and hydroxy-
chloroquine [29] as well as the effects of these on metabolite and lipid
alterations in MCTSs, which helped reveal the underlying molecular
mechanism of environmental pollutants and drug action. This work
provides a paradigm to simultaneously study exogenous compound
metabolism and the subsequent effects within in vitro models.

Although advancements in MSI technology, particularly
achievable spatial resolution, have enabled clearer visualization of
endogenous metabolites within a single heterogeneous cell
spheroid, the exact number and types of metabolites that can be
covered remains unclear. This limits the ability to assess the
applicability of these analytical approaches. In particularly, several
strongly polar endogenous small-molecule metabolites, such as
glutathione, glutathione disulfide, and nucleosides, can reflect the
cellular oxidative/redox state, which plays a crucial role in various
biological activities [30,31]. Currently, there remains an urgent
need for a wide-coverage MSI method to stratify the metabolic
detection of various cell states.

Amiodarone (AMI) is a widely used antiarrhythmic drug that can
cause the liver injury including steatohepatitis, liver fibrosis and
cirrhosis [32]. Several studies showed that AMI metabolism plays an
important role in drug induced hepatic toxicity [33,34], but the
molecular mechanisms remain largely unknown. In this study, we
propose a strategy to evaluate drug metabolism and hepatotoxicity
by coupling a 3D HepG2 model with spatiotemporal pharmacome-
tabolomics. A high-spatial-resolution and wide-coverage airflow-
assisted desorption electrospray ionization MSI (AFADESI-MSI)
method was developed to map metabolites within HepG2 spheroids.
Taking AMI as a model drug, the temporal and spatial features of
exogenous drug metabolism during AMI treatment were character-
ized to reveal potential drug metabolic pathways. Furthermore,
metabolic alterations after AMI treatment were analyzed to identify
progressive changes related to drug action. Finally, we screened
metabolic biomarkers related to cell viability and constructed
biomarker groups to characterize hepatotoxic effects. The
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spatiotemporal pharmacometabolomics approach combined with
HepG2 spheroids highlights a potential methodology for in vitro
applications of toxicology research and pharmaceutical
development.

2. Materials and methods
2.1. Chemicals and reagents

Amiodarone (>99%) and dimethyl sulfoxide (DMSO) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco's modi-
fied Eagle's medium (DMEM), fetal bovine serum (FBS), penicillin-
streptomycin, 0.25% trypsin-ethylenediaminetetra-acetic acid, and
phosphate-buffered saline were purchased from Gibco (Carlsbad,
CA, USA). Ultra-low attachment (ULA) 96-well plates were pur-
chased from Thermo Fisher Scientific Inc. (Waltham, MA, USA).
Acetonitrile (ACN, high performance liquid chromatography grade)
was purchased from Thermo Fisher Scientific Inc.. Pure water was
purchased from Wahaha Co., Ltd. (Hangzhou, China). 0.9% NaCl was
purchased from Shijiazhuang Pharmaceutical Co., Ltd. (Shi-
jiazhuang, China). Other materials used for cell culturing were
purchased from Corning (North Carolina, NY, USA), unless other-
wise noted.

2.2. HepG2 spheroid cultivation and drug treatment

Human HepG2 liver cell line was purchased from American Type
Culture Collection (Manassas, VA, USA). Cells were cultured in
DMEM containing 15% FBS and 1% penicillin-streptomycin (V/V),
maintained in 5% CO; at 37 °C, and passaged every two days as
adherent monolayers. For 3D spheroid generation, cells were
seeded into ULA 96-well plates at 5000 cells/well. Uniform and
solid 3D liver spheroids were used for cellular toxicity assessment
after an initiation interval of four days and analyzed in sextuplicate.
Established HepG2 spheroids were exposed to 50 uM AMI dissolved
in DMEM (0.1% DMSO and 2% FBS, V/V) for different time points.
Untreated spheroids were cultured with blank DMEM (0.1% DMSO
and 2% FBS, V/V) as a reference. Viability was assessed, and the
spheroids were harvested for AFADESI-MSI analysis.

2.3. Sample preparation

After drug treatment, spheroids were immediately washed
three times with 0.9% (V/V) NaCl to remove the drug from the
surface. After being transferred and embedded into Surgipath Cryo-
Gel (Leica) at —20 °C, micro spheroids were sectioned into 10-pm-
thick slices using a freezing microtome (CM1860, Leica, Germany).
To obtain a complete, well-formed, representative slide, the 4th to
8th slices (middle part of spheroids) were chosen for further
analysis. Slices were thaw-mounted on Superfrost Plus microscope
slides (Thermo Fisher Scientific Inc.) and stored at —80 °C until
AFADESI-MSI, hematoxylin and eosin staining, and immunohisto-
chemistry (IHC) analysis.

2.4. AFADESI-MSI analysis

MSI experiments were performed using an AFADESI platform
coupled with a quadrupole Orbitrap mass spectrometer (Q Exactive,
Thermo Scientific, Bremen, Germany) as previously reported [35]. To
obtain high-spatial-resolution images, a 20-um inner diameter spray
needle was used to analyze the cell spheroid sections. ACN:water
(8:2, V/V) was used as the spraying solvent at a flow rate of 3 pL/min
with the aid of 0.6 MPa nitrogen as the spraying gas. The spray
voltage was set at +7.0 kKV. The extracting gas flow rate was 45 L/min.
A 3D electrical moving stage (Beijing Optical Instrument Factory,
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Beijing, China) was set at a constant rate of 0.04 mm/s in the x-di-
rection and separated by a 0.04-mm vertical step in the y-direction.
AFADESI-MSI analysis was performed using a full MS scan in the
positive and negative ion mode. Parameters of the mass spectrom-
eter: capillary temperature, 350 °C; S lens voltage, 55 V; maximum
injection time, 200 ms; automatic gain control target, 3 x 10°; res-
olution, 70,000; m/z range, 70—1000.

2.5. Data processing

The collected MS data files (.raw format) were formatted (.cdf)
and imported into MassImager for image reconstruction and the
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average mass spectrum data (.txt) obtainment of the region of in-
terest (ROI). The spheroid area was specifically circled as a ROI ac-
cording to the characteristic images for ion choline ([M+H]", m/z
104.1070) and glutamate ([M—H]~, m/z 146.0459). Data were then
imported into the Markerview™ software 1.2.1 (AB SCIEX, Fra-
mingham, MA, USA) for peak picking, peak alignment to obtain a
multidimensional data matrix of m/z, and intensity assessment for
statistical analysis. Tentative metabolite identification was per-
formed using the Human Metabolome Database (HMDB, https://
hmdb.ca/) and LIPID MAPS® (https://www.lipidmaps.org/) by
extracting ions of [M+H]", [M+Na]t, [M+H—H20]", [M+NH4]",
[M+K]*, [M+Cl]~, and [M—H]~ with m/z tolerance <10 ppm. The

A B E
150 = 2D:48h
15007 — 2000 — 5000 3000 059 - 3D:48h
— 8000 — 10000 0.4 z -~ 3D:72h
= = 1004
€ 1000 £ =
2 o 0.39 =
& 8 =
© > 0.24 = 504
£ N Y
S 500 &) 3
= a 0.1-
(o]
00 Y 1 1 I 1
04 T T T T T T T T T 1 . ! I T T 1 -1 0 1 2
05 3 5 7 9 11 13 15 17 19 21 0 5 19 15 20 25 19 G (UML)
Culturing time (day) Time (day) F
125+ I
¢ ]
100 &
o
4 days 7 days <
_____ / Zz 754
i i 3
L > 50
) K}
S © 254
200 pm 200 pm| e < ° . ;
= = a 0 1 1 1 1 1 1 1 1 1 1
10 days 14 days " 0 051 4 8 12 24 30 48 72
Incubation time (h)
G
g 4 . 8h 24 h 48 h 72h
200,m 200 um 4 gty g
c
o
o L
200 pm 200 pm 0 200 ym
D
=
<
200 pm 1 200 ym : 200 pm
H 60 Hl Control EE AMI i
\% 404
>
@
c
£ 204 _—
=
0_
8 24 48 72

Incubation time (h)

Fig. 1. Establishment of HepG2 spheroid models and evaluation of amiodarone (AMI) hepatotoxicity. (A) Growth kinetics represented by the spheroid diameter over 21 days at
initial seeding densities of 2000—10000 cells/well. Error bars represent standard deviation (n = 6). (B) The optical density (OD) value was measured to evaluate the cell viability
under different culture days (n = 6). The black line represents the fitting line of the data. The red line represents nonlinear curve fitting line of the data. (C) Inmunohistochemistry
(IHC) analysis of CYP3A4 expression in HepG2 spheroids at initial seeding densities of 2000 cells/well cultured for 4, 7, 10, and 14 days. The darkened brown part of the cytoplasm
shows the expression of CYP3A4. (D) Hematoxylin and eosin images of HepG2 spheroids at initial seeding densities of 2000 cells/well cultured for 4, 7, 10, and 14 days. Darkened
cytoplasm staining and karyopyknosis are observed in the inner region of spheroids cultured for 10 and 14 days. (E) AMI dose-response curves of 2D and 3D models after treatment
for 48 and 72 h. (F) AMI incubation time-response curves of HepG2 spheroids under 50 uM AMI condition. The black line represents the fitting line of the data. The red line
represents nonlinear curve fitting line of the data. (G) Corresponding live/dead fluorescent micrographs in both control group and AMI-treated group after treatment for 8, 24, 48,
and 72 h. Red represents propidium iodide (PI) and green repersents fluorescein diacetate (FDA). (H) Fluorescence semi-quantitative analysis using Image]. PI intensity = PI (in-

tegrated density)/FDA (area). Error bars represent + standard deviation (n = 3). ""P < 0.001.
485
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identification process of AMI metabolites is described in the Sup-
plementary data.

3. Result and discussion

3.1. Establishment of a 3D HepG2 spheroid model to evaluate
hepatotoxic effect of AMI

To generate a well-formed 3D HepG2 spheroid model, the
optimal seeding number and culturing time were investigated by
seeding HepG2 cells at 2000, 3000, 5000, 8000, and 10,000 cells/
well. Representative images in Fig. S1A show that the spheroids
were self-assembled and round-shaped, especially in the lower
density model. The diameter of the spheroids gradually increased
to >1000 pm when cultured for 21 days (Fig. 1A). The relative
standard deviation (RSD) of the diameters was <10% after four days
of culturing (Fig. S1B), indicating acceptable reproducibility for the
spheroid models. We also examined the viability of spheroids on
different culturing days. This increased gradually for up to 21 days
(Fig. 1B), showing stable proliferation and improved longevity of
our established model, which is suitable for long-term toxicity
testing. In addition, we used IHC to determine the expression of the
representative metabolic enzyme CYP3A4 to estimate the liver-like
metabolic function. As expected, there was a clear increase in
CYP3A4 expression over time, especially from the 4th to 7th day
(Fig. 1C).

The HepG2 spheroid developed heterogeneity, similar to other
cell spheroids, because of the presence of physiochemical gradients
as the spheroid diameter was up to 500 um wide [36,37]. We
observed the formation of necrotic cores when the spheroids were
cultured for 10 days (Fig. 1D), with shrinkage of nuclei and con-
centration of chromatin for cells in the core areas of the spheroids.
However, the necrotic core is undesirable for recreating an in vivo-
like liver microenvironment for toxicology studies. Therefore, to
obtain a homogeneous model that was analogous to the liver both
in function and structure, a density of 5000 cells/well was finally
chosen for hepatotoxicity assay after four days of culturing when
the size of the spheroid was 550—700 um.

The hepatotoxic effect of AMI on HepG2 spheroids was evalu-
ated to obtain the proper exposure concentration. The median le-
thal dose (LDsp) of the 3D model was ~50 uM after AMI treatment
for 72 h (Fig. 1E). Less sensitivity was observed in 3D spheroids
compared with that in the two-dimensional model, which had an
LDs5g of 4.91 pM. To explore the hepatotoxic state under different
viability conditions, 50 pM AMI was selected for the time-
dependent experiment, which showed that cell viability
decreased significantly in a time-dependent manner (Fig. 1F). These
results were confirmed using live/dead staining. Fluorescent im-
aging and semi-quantitative analyses (Figs. 1G and H) showed that
signals for propidium iodide-positive cells increased significantly at
48 and 72 h, indicating that AMI induced cell death in the 3D
model.

3.2. High-coverage spatially resolved metabolome profiling in
HepG2 spheroids

AFADESI-MSI was applied to detect and localize the metabolites
within the spheroids. The performance of this method for the
detection of endogenous metabolites was evaluated via parallel
analyses of six spheroids under both positive and negative modes.
The maximum ion intensities exceeded 1 x 10° counts, and typical
metabolite ion signals could be easily found in the mass spectra
after excluding background ions in both positive and negative
detection modes (Fig. S2). Reproducible m/z features were screened
based on whether they were observed in all six samples and the
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lowest ion intensity was >1,000. Finally, >1100 reproducible m/z
features (530 in positive and 610 in negative ion conditions) were
detected (Fig. 2A).

The m/z distribution of these features is shown in Fig. 2B. Ions
with m/z 100—400 accounted for 80% and many ions with m/z
700—900 can also be detected. The reproducible m/z features were
then annotated using HMDB and LIPID MAPS®, and 195 and 243
metabolites (positive and negative modes, respectively) were an-
notated (Fig. 2A; Tables S1 and S2). The identified metabolites were
grouped according to their HMDB classification. More than 10
classes of metabolites were detected, including amino acids (AAs),
organic acids, nucleosides and nucleotides, fatty acids (FAs), and
glycerophospholipids (GPs) (Fig. 2C). Among these detected me-
tabolites, AAs and FAs were the most abundant, accounting for
40%—50%. GPs were also detected, particularly in the positive mode,
and accounted for a large proportion (17.95%). These results
demonstrate the high coverage of AFADESI-MSI in the detection of
the spheroid metabolites.

The metabolic pathways involved were further analyzed using
the Kyoto Encyclopedia of Genes and Genomes database. There
were 73 metabolic pathways mapped, and 29 pathways had a
coverage of >50% (Table S3). Notably, these pathways included
glutamine and glutamate metabolism, linoleic acid metabolism,
arachidonic acid metabolism, glycerolipid metabolism, and the TCA
cycle, which were all key pathways directly related to the survival
and proliferation of cells.

AFADESI-MSI images of representative metabolites showed
clear spatial distribution within the spheroids (Fig. 2D). There was
uniform distribution of many metabolites in the spheroid, such as
FAs and carnitine; however, there was spatial heterogeneity of
several metabolites: e.g., AAs and choline were distributed in the
center of the spheroid, whereas lysophosphatidylethanolamine
16:0 and lysophosphatidylinositol 16:0 were distributed in the
outer layers. These results illustrate the direct and precise visu-
alization of complex spatial distribution of metabolites in spher-
oids obtained using AFADESI-MSI. In addition, the stability and
repeatability of the method were evaluated via the intensity
variation of reproducible m/z features. The RSD values of these
features showed that there were 72.3% and 81.2% features with
RSD < 40% in the stability experiment, and 75.5% and 63.5% fea-
tures with RSD < 40% in the repeatability experiment, demon-
strating the acceptable reproducibility and stability of the
metabolomic analysis (Fig. S3). These results demonstrate the
powerful application potential of AFADESI-MSI in small-scale
sample analysis.

3.3. Penetration and metabolism of AMI in HepG2 spheroids

To visualize drug penetration and metabolic processes, HepG2
spheroids were harvested and imaged using AFADESI-MSI after
treatment with AMI for 0.5, 4, 8, 24, 48, and 72 h. AMI was mainly
observed in the spheroid periphery at 0.5 h, and enhanced followed
by drug penetration into the spheroid core within 4 h (Fig. 3A). The
average ion intensity of AMI increased from 0.5 to 72 h, showing
that AMI gradually penetrated and accumulated in the spheroids
(Fig. S4). The potential AMI metabolite ions were then screened.
The tandem MS spectra of these ions were collected using a liquid
chromatography-high-resolution tandem mass spectrometer in the
parallel reaction monitoring mode (the Supplementary data). Based
on the high-resolution MS1 and MS2 spectra of AMI, we deduced
the cleavage pathway of AMI (Fig. S5). Based on the similarity of the
product ions (Fig. S6) and fragmentation patterns to the drug
metabolite parent, a total of 15 phase I metabolites of AMI were
identified. The retention times, mass errors, formulas, and reaction
types of all identified metabolites are presented in Table S4. These
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Fig. 2. Wide-coverage detection and visualization of metabolites in HepG2 spheroids using airflow-assisted desorption electrospray ionization-mass spectrometry imaging
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metabolites are involved in N-desethylation, hydroxylation, deio-
dination, dealkylation, and desaturation metabolic reactions. In
previous studies, mono-N-desethylamiodarone was identified as
the major metabolite of AMI in human plasma [38]. 33 AMI me-
tabolites in human bile were identified [39], including 22 phase I
and 11 phase Il metabolites, and the major metabolites were mono-
N-desethylamiodarone and w-carboxylate AMI. In addition, 49 AMI
metabolites in rats were identified (all 49 in urine and 17 in serum)
[40], and revealed that these metabolites were formed via four
primary metabolic pathways: hydroxylation or carboxylation (oxo/
hydroxylation) of the butyl-benzoxazole group; N-desethylation;
deionization; and glucuronidation. Although the number of AMI
metabolites identified in the HepG2 spheroids is less than that in
previous reports, nine potential AMI metabolites involved in
multistep metabolic reactions, such as deiodination, desaturation,
and dealkylation reactions, were found for the first time (Table S4,
labeled with #).

The spatiotemporal changes of these identified metabolites
were mapped to monitor their location and dynamics for accurate
estimation of drug metabolism. From the occurrence time and in-
tensity of these ions in each group, an interesting characteristic was
found: M1, M2, M3, and M12 metabolites showed higher intensity
and appeared even earlier in the 0.5 and 4 h AMI-treated groups of
spheroids compared with other drug metabolites (Fig. 3A). Based
on the reaction types, these metabolites are the main metabolites
directly transformed from AMI through one-step reactions. For
instance, M1 was identified as one of the main metabolites in the
liver with a N-desethylation transformation [39,41]. M11 was found
to form from a one-step dehydrogenation reaction, although this
metabolite had low intensity, indicating that dehydrogenation was
not the main metabolic pathway of AMI. We also found that M4 and
M5 underwent an N-desethylation reaction, but the intensities
were low and time of appearance was late. Therefore, these me-
tabolites are regarded as M1 derivatives via N-desethylation or
deiodination reactions. Similarly, M2 was produced after AMI had
undergone a monohydroxylation reaction, and M7, M8, and M9
were inferred as being derived from M2. Therefore, we used the
intensity of the metabolites to reflect the priority of the metabolic
reactions and used the time of metabolite occurrence to reflect the
metabolic rate. The proposed metabolic networks of AMI are shown
in Fig. 3B. The pathway activity and relationships between each
metabolite are clearly displayed. This spatiotemporal imaging
pattern of drug metabolism improves the understanding of the
biotransformation process of drugs and potential substance basis of
hepatotoxicity.

3.4. Spatiotemporal metabolic response of HepG2 spheroids under
AMI treatment

To investigate the toxicity effects induced by AMI exposure on
HepG2 spheroids, metabolomic profiles at different treatment time
points were analyzed after excluding drug and drug metabolites.
The volcano plot in Fig. S7 shows considerable metabolic change
after 24 h AMI treatment, and these changes were more pro-
nounced at 48 and 72 h. Notably, most of the ions were significantly
downregulated, indicating a decrease in overall cellular meta-
bolism with considerable reduction in cell viability.

The fold change (FC) of reproducible m/z features in each AMI-
treated group was assessed using non-supervised principal
component analysis (PCA) to search for discriminant metabolomic
patterns caused by hepatotoxicity. Each AMI-treated group was
well clustered and there was distinct separation between the long-
and short-term-treated groups (48, 72 h and 0.5, 4 h, respectively)
(Fig. 4A). The metabolites that contributed to classification were
screened according to the threshold of the Student's t-test P
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value < 0.05, FC < 0.8 or >1.2. Finally, 81 and 138 metabolites were
identified with significant FCs in the 24 and 72 h AMlI-treated
groups, respectively (Table S5). The heatmap (Figs. 4B and S8)
presents a marked variation in the levels of metabolites in the 24,
48, and 72 h AMI-treated groups compared with those in the
control groups. AMI treatment induced significant downregulation
of lipids, and specifically of FAs, such as monounsaturated FAs,
polyunsaturated FAs, hydroxy FAs, FA esters of hydroxyl FAs,
monophosphate glycerol, diphosphate glycerol, and phosphocho-
line (PC) (Fig. 4C). However, there was also a marked upregulation
of phosphatidylinositol (PI) and phosphatidylglycerol (PG) of 1.2- to
2.2-fold, respectively, in the AMI-treated group in a time-
dependent manner. Levels of several small-molecule organic
acids, AAs, and nucleosides were also significantly downregulated
(Figs. 4B and S8 and Table S5).

The differential metabolites in the 24, 48, and 72 h AMI-treated
groups were enriched in various metabolic pathways. Four
metabolic pathways, namely arachidonic acid, glycer-
ophospholipid, phenylalanine, and glutamine and glutamate
metabolism showed aggressive progression in both number and
impact value with increasing exposure time (Fig. 4D), reflecting
the enhanced exacerbation of metabolic dysregulation. Arach-
idonic acid metabolism was the earliest and most significant
pathway altered during AMI treatment. Therefore, we further
mapped MSI images of arachidonic acid and six associated de-
rivatives in each group (Fig. S9). The intensity of these metabolites
gradually decreased both spatially and temporally, which was
most significant in peripheral areas in the 24 h AMI-treated group
and further decreased at 48 and 72 h. AMI is a cationic amphiphilic
drug that can directly inhibit the lysosomal lipases or bind to the
hydrophobic and hydrophilic moieties of negatively charged
cellular phospholipid-producing drug-phospholipid complexes.
These complexes are indigestible by lysosomal phospholipases A1,
A2, and C and therefore directly inhibit the hydrolysis of arach-
idonic acid from phospholipids [42]. In addition, these changes
are related to inflammatory response and lipid peroxidation,
where arachidonic acid and its associated derivatives play an
important role [43,44].

As the glycerophospholipid metabolic pathway was found to be
significantly altered in the 48 and 72 h AMI-treated groups
(Fig. 4D), we also mapped the glycerophospholipid metabolic
pathway network and observed that alternate trends were evident
among different phospholipid metabolites (Fig. 5). The intensity of
PIs and PGs biosynthesized via the cytidine diphosphate-
diacylglycerol pathway was upregulated but that of PCs, phospha-
tidylethanolamines (PEs), and phosphatidylserines was down-
regulated. PCs and PEs are major components of the cell membrane,
involved in energy storage, and play an important role in the
growth and proliferation of cells [45,46]. After AMI treatment, the
viability of the spheroids rapidly decreased within a short time;
thus, these glycerophospholipids were quickly depleted for energy
supply. However, PGs and PIs are important signal transduction
molecules, and their increase may be related to the inhibitory effect
of AMI on phospholipase because of the cationic amphiphilic na-
ture [42].

3.5. Hepatotoxicity characterization of AMI with endogenous
metabolite biomarkers

To explore the relationship between cellular metabolite alter-
ation and cell viability, Pearson correlation analysis was performed
to search for metabolic biomarkers closely related to cell viability.
This identified 42 biomarkers with P < 0.05 and absolute value of
Pearson r > 0.5 (Table S6). Among these biomarkers, 40 exhibited
significant positive correlation, and two phospholipids (PI 36:2 and
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Fig. 5. Spatial distribution and changes of metabolites related to phospholipid metabolism in HepG2 spheroids after amiodarone (AMI) treatment (48 and 72 h). SFA: saturated fatty
acid; SCD1: stearoyl-CoA desaturase 1; MUFA: monounsaturated fatty acid; FA: fatty acid; ELOVLs: elongase of very-long-chain fatty acids; G-3-P: glycerol-3-phosphate; GPATs:
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PG 34:1) exhibited significant negative correlation. Notably, 24
biomarkers are FAs, including arachidonic acid and five associated
derivatives (Table S6). We speculated that the changes in these
metabolites probably reflect the spheroid viability, and thus a
combination of these metabolites could effectively provide a more
accurate reflection of viability during drug treatment. For this
purpose, multiple linear regression (MLR) was introduced to
construct a biomarker panel model between metabolite change and
cell viability. After optimization, a sparse set of metabolites
including eight FAs that were most relevant to cell viability were
selected. The correlation scatter plot is shown in Fig. S10, and these
metabolites were significantly positively correlated with cell
viability. The MLR equation is

E(Y) = 0.473X; + 0.438X, + 0.287X3 — 0.108X4 — 0.215X5 +
0.123Xs — 0.151X7 — 0.034Xg + 0.288

Where Y is the predicted value of cell viability and X; is the esti-
mated FC of each metabolite. Table S7 shows the detail of the MLR

model between the FC of metabolites and cell viability. The corre-
lation scatter plot between the predictive cell viability model and
cell viability is shown in Fig. S11. As expected, the inclusion of
multiple metabolites improves on the correlation found with a
single metabolite and cell viability.

Similarly, the representative AFADESI-MS images of these me-
tabolites present time-dependent decrease in AMI-treated groups
(Fig. 6). The FCs of these metabolites in the 48 and 72 h AMI-treated
groups decreased <0.5 (except for FA 20:2 and FA 20:1), which
correlates with the cell viability results (Fig. 1F). Several specific
metabolites, such as prostaglandin C1, were heterogeneously
distributed, and could only be detected in the core region of the
spheroid in the 48 h AMI-treated group, indicating that the gradual
processes of hepatotoxicity can be captured by integrating both
temporal and spatial dimensions of metabolite biomarkers. These
results suggest that the biomarkers are closely related to cell ac-
tivity and can directly characterize the hepatotoxicity of AMI,
providing important molecular clues for evaluating the hepato-
toxicity of AMI.

Fig. 4. Amiodarone (AMI)-induced metabolic variation in HepG2 spheroids. (A) Principal component analysis (PCA) score plots of spheroids in the 0.5, 4, 24, 48, and 72 h AMI-
treated groups in positive and negative ionization modes (n = 6). (B) Heatmap analysis of identified metabolites after AMI treatment for 48 and 72 h. (C) Fold change of 24, 48,
and 72 h AMI-treated groups vs. control group of fatty acids (FAs) and other lipid metabolites. P < 0.05, P < 0.01, and ***P < 0.001. (D) Altered metabolic pathways during AMI
treatment. WE: wax ester; MG: monophosphate glycerol; DG: diphosphate glycerol; LPEO: lysophosphatidylethanolamine preoxide; FAHFA: fatty acid esters of hydroxyl FAs;
POHSA: palmitoleic acid esters of hydroxystearic acid; PAHSA: palmitic acid esters of hydroxy stearic acid; OAHSA: oleic acid esters of hydroxy stearic acid; LysoPI: lysophos-
phatidylinositol; PC: phosphocholine; PA: palmitic acid; PGJ: prostaglandin J; PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PI: phosphatidylinositol; FC: fold change;
MUFA: monounsaturated FAs; PUFA: polyunsaturated FAs; OHFA: hydroxy FAs.
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Fig. 6. Representative airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI) images and changes of eight fatty acids (FAs) after amio-
darone (AMI) treatment for 0.5, 4, 24, 48, and 72 h. FAHFA: fatty acid esters of hydroxyl fatty acid; OAHSA: oleic acid esters of hydroxy stearic acid; FC: fold change.

4. Conclusion

In this study, we present a spatiotemporal pharmacometabo-
lomic method to investigate the metabolism and hepatotoxicity of
AMI by combining AFADESI-MSI and HepG2 spheroids. The high-
coverage AFADESI-MSI method enabled acquisition of spatially
resolved information of >1100 endogenous metabolites in HepG2
spheroids, covering >10 metabolite classes and 29 metabolic
pathways, providing a powerful tool for the study of hepatotoxicity
within an in vitro model. The dynamic features of AMI and 15
associated metabolites could be simultaneously visualized within
micro-scale HepG2 spheroids and helped to deduce the drug
metabolic network. Using metabolomic analysis, the gradual pro-
gression caused by AMI toxicity was clearly demonstrated both in
the number and degree of variation of the significantly altered
metabolites and metabolic pathways. Using MLR, a group of eight
FA biomarkers was constructed that exhibited improved correlation
to spheroid viability. Using these methods, specific endogenous
metabolic changes related to drug penetration, metabolism, and
drug hepatotoxicity can be obtained, provided a new strategy for
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revealing the potential toxic mechanism and evaluating the hepa-
totoxic effects of drugs in vitro.

The advantage of this present study is to elucidate the molecular
cues of AMI toxicity using MSI of drug-exposed hepatocellular
spheroids. However, this method has some limitations. The struc-
tural annotations of MSI data are rather challenging, and the ac-
curate information of chemical components is the basis for the
subsequent biochemical interpretation. The biomarkers found in
this study still need a series of biological validation in vivo and
in vitro. In addition, only one drug of AMI was carried out studies,
and the potential biomarkers screened by different drug exposures
may be different. Therefore, this method can be extended to the
study of hepatotoxic drugs with different mechanisms to obtain
universal or specific hepatotoxic biomarker models and quantita-
tive indicators, which will help to implement an in vitro model-
based metabolomics method for hepatotoxicity assessment.
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