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Abstract

Motivation: An important task in comparative genomics is to detect functional units by analyzing gene-context pat-
terns. Colinear syntenic blocks (CSBs) are groups of genes that are consistently encoded in the same neighborhood
and in the same order across a wide range of taxa. Such CSBs are likely essential for the regulation of gene expres-
sion in prokaryotes. Recent results indicate that colinearity can be conserved across multiple operons, thus motivat-
ing the discovery of multi-operon CSBs. This computational task raises scalability challenges in large datasets.

Results: We propose an efficient algorithm for the discovery of cross-strand multi-operon CSBs in large genomic
datasets. The proposed algorithm uses match-point arithmetic, which is scalable for large datasets of microbial
genomes in terms of running time and space requirements. The algorithm is implemented and incorporated into a
tool with a graphical user interface, called CSBFinder-S. We applied CSBFinder-S to data mine 1485 prokaryotic
genomes and analyzed the identified cross-strand CSBs. Our results indicate that most of the syntenic blocks are ex-
clusively colinear. Additional results indicate that transcriptional regulation by overlapping transcriptional genes is
abundant in bacteria. We demonstrate the utility of CSBFinder-S to identify common function of the gene-pair PulEF
in multiple contexts, including Type 2 Secretion System, Type 4 Pilus System and DNA uptake machinery.

Availability and implementation: CSBFinder-S software and code are publicly available at https://github.com/
dinasv/CSBFinder.

Contact: michaluz@cs.bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

An important problem in genomics is the organization of genes in
the genomes, and the interpretation of genomic information that is
encoded in genomic contexts (Rogozin et al., 2004). In the absence
of selective pressure on gene order, successive rearrangement will
lead to randomization of gene order (Huynen et al., 2000;
Mushegian and Koonin, 1996). Nevertheless, functionally related
genes may be constrained to remain close to each other due to nat-
ural selection, forming a syntenic block (SB): (Overbeek et al.,
1999)—a group of genes that are located close to each other in sev-
eral different genomes. Here, we study colinear syntenic blocks
(CSBs), where a CSB is an SB with a conserved gene order across all
its instances.

To compare genes from different microbial genomes, the respect-
ive genes need to be annotated using orthology group IDs. Public mi-
crobial databases often provide such annotations. For example the
Integrated Microbial Genomes database (Chen et al., 2019) provides
gene assignments to COG (Tatusov et al., 2000), Pfam (Bateman
et al., 2002) and TIGRfam (Selengut et al., 2007) protein families.
Large datasets of newly sequenced genomes that are not included in
public databases, can be analyzed using tools such as SwiftOrtho
(Hu and Friedberg, 2019), SonicParanoid (Cosentino and Iwasaki,

2019), OMA (Altenhoff et al., 2018) or ProteinOrtho (Lechner
et al., 2011) for the inference of gene orthology groups.

Selection pressure for the conservation of CSBs can be due to sev-
eral reasons, including the interaction of the gene products in path-
ways or complexes (Dandekar et al., 1998; Marsh et al., 2013),
common lateral gene transfer events (Danchin et al., 2000), co-
localization of the gene transcripts in the cell (Danchin et al., 2000),
gene proximity to the Origin of Replication Signal (ORI) and gene co-
expression under specific environmental conditions (Rocha, 2008).

The identification of CSBs across different genomes is important
for the discovery of new biological systems. Examples are bacterial
defense mechanisms (Doron et al., 2018) and functions relevant for
host-associated lifestyle (Levy et al., 2018).

CSBs in prokaryotic genomes often correspond to operons; those
are neighboring genes that constitute a single unit of transcription
and translation. CSBs in prokaryotes can span multiple operons. A
recent study showed that the contiguity of the tufB-secE operons in
Salmonella is essential for the organism’s fitness (Brandis et al.,
2019). The authors further concluded that the concatenation of the
operons, by an inter-operon terminator–promoter overlap, plays a
significant role in regulation of gene expression. Notably, the orien-
tation of genes in conserved multi-operons may have implications to
gene expression due to overlapping gene regulatory elements [e.g. as
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in Excludons (Sesto et al., 2013)]. Thus, an approach for the detec-
tion of multi-operon CSBs could benefit from integration of gene
orientation information. This motivated us to develop a novel bio-
informatic approach that facilitates the identification and study of
multi-operon cross-strand CSBs.

The general SB discovery problem (also denoted ‘gene cluster dis-
covery’) has been well-formalized and extensively studied on the the-
oretical front (reviewed in Supplementary Section S1.2). In a nutshell,
previous works for SB discovery can be classified into two categories:
reference-based approaches versus non-reference-based approaches.
Non-reference-based approaches (e.g. Böcker et al., 2009; He and
Goldwasser, 2005) seek some ancestral consensus pattern that does
not necessarily appear in its exact form as a substring in one of the in-
put sequences. Such approaches suffer from a search space that grows
exponentially with increasing input size. Thus, these approaches are
not feasible for data mining of thousands of genomes.

To solve this problem, the reference-based gene cluster model was
proposed in Jahn (2011). In this model, a gene cluster is not repre-
sented by an optimal consensus gene set but rather by a set of genes
that appears as a substring of one of the input genomes. This constraint
results in a polynomially bounded search space. In Jahn (2011), it was
shown that the results obtained by using a reference-based model are
highly comparable to the results obtained by non-reference-based
approaches. As scalability is one of our main objectives in this article,
the model presented here is also reference-based.

There are currently several available tools for the analysis of
multiple genomes for the discovery of SBs [GECKO 3 (Winter et al.,
2016) and Evolclust (Marcet-Houben and Gabaldón, 2019)], and
for the discovery of CSBs [CYNTENATOR (Rödelsperger and
Dieterich, 2010), MCScanX (Wang et al., 2012) and i-ADHoRe 3
(Proost et al., 2012)]. All of the aforementioned tools cannot scale
up to thousands of microbial genomes in all-versus-all search mode,
and would require an infeasible amount of running time or memory
consumption. In addition, except for GECKO 3, these tools are lack-
ing a well-defined model for SB discovery; instead, each of these
tools indirectly defines an SB through its algorithm, and employs a
heuristic search. A comprehensive review of these tools is given in
Supplementary Section S1.1.

In a previous work (Svetlitsky et al., 2019), we formalized the
CSB discovery optimization problem, as follows. Given an input of m
genomes, modelled as strings of gene identifiers and parameters k and
q: a CSB is formally defined as a pattern that appears as a substring of
at least one of the input genomes, and has instances in at least q of the
input genomes, where each instance may vary from the CSB pattern
by at most k gene insertions (see Definition 1 in Section 2.1).

Following the CSB discovery problem formalization, we also gave
an exact, polynomial time and space algorithm to solve it. In that
work, we targeted the data mining of CSBs that encode operons, and
enforced this by segmenting the input genomes to directons (consecu-
tive genes encoded on the same strand). Testing the algorithm perform-
ance showed that there is a large overlap between the inferred CSBs
and experimentally verified operons in E.coli K-12 str. MG1655.

However, the time complexity of that algorithm was sensitive to
the parameter k by a multiplicative factor, while the space complex-
ity of the algorithm was sensitive to the parameter ‘, denoting an
upper bound on the length of the CSBs. For the purpose of operon
detection, small values of k and ‘ make sense. In contrast, in this
work our goal is to discover colinear multi-operon CSBs that can

span both strands. This goal requires larger values of k and ‘ that
pose a challenge to the scalability of CSB discovery.

Our contribution and roadmap. In this article, we generalize
CSB discovery to extract cross-strand multi-operon CSBs. To scale
up to this generalization, a novel exact algorithm that uses Match-
Point (MP) arithmetic is proposed (Section 2). The time and space
complexities of the algorithm are insensitive to the parameters k and
‘. We show that in practice, the new algorithm is indeed faster than
the algorithm given in Svetlitsky et al. (2019) for larger values of k
(Section 4.1). Additional advantages of the algorithm are its simpli-
city of implementation, and the fact that it is easily parallelizable,
yielding further scalability.

The implementation of the proposed algorithm is incorporated
in a publicly available tool, including a graphical user interface,
denoted CSBFinder-S. The workflow of the tool is given in Figure 1.
CSBFinder-S takes as an input a set of genomes, where each genome
is modeled as a sequence of gene identifiers; a gene identifier indi-
cates the corresponding gene orthology group as well as the strand
(þ/�) in which the gene is encoded (Fig. 1A). The genomes are
mined to identify all patterns that qualify as CSBs according to user-
specified parameters (Fig. 1B). Next, the discovered CSBs are ranked
according to a probabilistic score that is adjusted by the gene con-
tent similarity between all the genomes in which the corresponding
CSB appears (Fig. 1C). Finally, the CSBs are clustered to families
according to their gene content similarity, and the rank of a family is
determined by the score of its highest scoring CSB (Fig. 1D).

CSBFinder-S provides several novel mechanisms to help the user
sort, filter and interpret the discovered CSBs. One such mechanism
is a ranking score that takes into account the gene content similarity
between the genomes in which the corresponding CSBs appear
(Section 3.7.3). Additional options enable the user to constrain the
structural features of the inferred CSBs (length, abundance, etc.), as
well as to extract CSBs confined to specific functional semantic cate-
gories. The new functions are available via a graphical user interface
that also includes a taxonomic viewer of the genomes that contain
instances of each CSB (Section 3.7.1).

We applied CSBFinder-S to data mine 1485 prokaryotic genomes
and analyzed the identified cross-strand CSBs (Section 4). Our
results indicate that most of the SBs are exclusively colinear.
Additional results indicate that transcriptional regulation by over-
lapping transcriptional genes is abundant in bacteria. We demon-
strate the utility of CSBFinder-S to identify common function of the
gene-pair PulEF in multiple contexts, including Type 2 Secretion
System, Type 4 Pilus System and DNA uptake machinery.

2 Algorithm

2.1 Preliminaries and definitions
Let R denote a finite set of characters representing gene identifiers,
where a gene identifier indicates the corresponding gene orthology
group as well as the strand (þ/�) in which the gene is encoded. A
genome is represented by a string T¼r1 . . . rn of concatenated char-
acters, where r1; . . . ; rn 2 R. For any set w, let jwj denote the num-
ber of members in w. For a string P, we use jPj to denote the length
of P and P½i� ¼ri to denote the ith character of P. For
1 � i � j � jPj: P0 ¼P½i . . . j� ¼ ri . . . rj is a substring of P, starting
from index i and ending at index j. P0 is a proper substring of P if P0
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Fig. 1. The proposed workflow for cross-strand CSB discovery and analysis. (A) A dataset of input genomes, where each genome is modeled as a sequence of gene identifiers;

an identifier is assigned to a gene based on the gene orthology group to which the gene belongs and the strand (þ/�) in which the gene is encoded. Genes marked by the same

letter belong to the same gene orthology group. (B) CSB discovery, where each CSB consists of a pattern (outlined by a rectangle) and its instances. A CSB must have an in-

stance in at least q genomes, and each instance can vary from the pattern by up to k gene insertions, where q and k are user specified parameters. (C) Ranking CSBs using a

probabilistic similarity-adjusted score. Note that the CSB exemplified in (B) is ranked second in this example. (D) Clustering CSBs to families based on gene content and rank-

ing families by their highest scoring CSB
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is a substring of P and if jP0j < jPj. P0 is a suffix of P if P0 ¼
P½i . . . jPj� and P0 is a prefix of P if P0 ¼ P½1 . . .j�. A string P0 is a sub-
sequence of a string P, if jP0j � 1 and if P can be obtained from P0

by inserting zero or more characters to P0.
Given a pattern string P and a string T: An instance of P in T is a

substring T 0 of T, such that P is a subsequence of T 0. Given an inte-
ger k: A k-instance of P in T is an instance T 0 of P in T, such that
jT 0j � jPj � k, i.e. T 0 can be obtained from P by inserting at most k
characters to P. We say that T 0 is a minimal k-instance of P in T, if
there is no proper substring of T0 that is also a k-instance of P in T.

Example 1 We refer the reader to Figure 2a for an illustration of the con-

cept of a minimal k-instance. For the pattern P¼BAC and k¼ 3,

S2½4 . . . 8� ¼BAACC is a k-instance of P in S2, as P is a subsequence of

BAACC, and two character insertions are needed to obtain BAACC

from P. It is not minimal, as S2½4 . . . 7� ¼BAAC is a k-instance of P in S2

and a proper substring of BAACC. S2½2 . . . 7� ¼ BABAAC is also a k-in-

stance of P in S2, but it is not minimal as well. S2½4 . . . 7� ¼BAAC

(marked in gray) is a minimal k-instance of P in S2.

S2½9 . . . 15� ¼BDAADDC is not a k-instance of P, since

jBDAADDCj � jBACj ¼ 4 > k.

The pattern discovery problem is defined as follows:

Definition 1 (CSB) Given a set of strings S ¼ ðS1; . . . ; SmÞ over alphabet

R, and integers k and q. A string P is a CSB if the following conditions

hold:

1. P is a substring of at least one string from S.

2. P has a minimal k-instance in at least q different strings from S.

The Colinear Syntenic Block (CSB) Discovery Problem is to
find all strings P s.t. P is a CSB, and to report minimal k-instances
for each of the discovered CSBs.

In this article, we use some notions from MP arithmetic, previ-
ously applied to the related problem of computing the pairwise lon-
gest common subsequence (Bergroth et al., 2000; Hunt and
Szymanski, 1977). Given two strings, P and T, a match-point of P
versus T is an ordered pair of positions (i, j), such that P½i� ¼ T½j�.
For a set of strings S and an integer q, define the match-points of S
abiding by q to be the collection of MPs of Sx versus Sy, accumulated
across all pairs of strings Sx; Sy 2 S s.t. x 6¼ y and each MP corre-
sponds to a character in R that appears in at least q strings from S
(see Supplementary Fig. S1 for an example).

An ordered set of MPs forms a chain; given two strings, P and T,
a chain of P versus T is an ordered set of MPs of P versus T:
ðð1; s1Þ; ð2; s2Þ; . . . ; ðjPj; sjPjÞÞ such that s1 < s2 < . . . < sjPj.

Since our proposed algorithm uses MP arithmetic, we represent
each minimal k-instance by a corresponding chain. However, note
that a specific minimal k-instance could be represented by more
than one chain.

Example 2 In Figure 2b for pattern P¼BAC and k¼ 3, the chains

ðð1; 4Þ; ð2; 5Þ; ð3; 7ÞÞ and ðð1; 4Þ; ð2;6Þ; ð3; 7ÞÞ both represent the minimal

k-instance BAAC of P in S2.

Therefore, we define a canonical representation of the chains
corresponding to a minimal k-instance: Given two strings P and T, a
chain of P versus T is canonical if each prefix of length i of this
chain, for i ¼ 1 . . . jPj, corresponds to some minimal k-instance of
P½1 . . . i� in T.

Example 3 In the previously mentioned example, the chain

ðð1; 4Þ; ð2; 5Þ; ð3; 7ÞÞ (the second chain shown in Fig. 2b) is canonical, as

the chain ðð1; 4Þ; ð2;5ÞÞ corresponds to a minimal k-instance of P½1 . . . 2�
(BA) and the chain ðð1; 4ÞÞ corresponds to a minimal k-instance of P½1�
(B). However, the chain ðð1; 4Þ; ð2; 6Þ; ð3; 7ÞÞ is not canonical, as the

chain ðð1;4Þ; ð2; 6ÞÞ corresponds to a non-minimal k-instance (BAA) of

P½1 . . . 2� (BA).

The data structures used by the algorithm are MatchLists and
NextMatch, defined as follows. MatchLists[1:jRj][1: m] is a two-
dimensional array, that contains for each r 2 R and for each Sy 2 S,
an ordered list of indices in Sy with the character r i.e. Sy½p� ¼ r for
each p 2MatchLists½r�½y�.

For any input string Sy 2 S, and any index 1 � i � jSyj; let r de-
note a character in R such that the string Sy½i�r is a substring of some
input string in S. Then, NextMatchyði; rÞ is defined to be the small-
est index j, i < j � jSyj, s.t. Sy½j� ¼ r. The requirement for the ap-
pearance of Sy½i�r as a substring of one of the input strings is used to
reduce the time and space complexity of the algorithm
(Supplementary Section S2.2). This requirement is justified by the
fact that according to Definition 1, two consecutive MPs can be a
part of a chain only if the corresponding characters appear as sub-
string of length two in one of the input strings.

Example 4 In Figure 2, NextMatch2ð9;AÞ ¼ 11 as this is the closest MP

with the character A in S2 to the right of index 9. There is no point in

computing NextMatch2ð9;CÞ during pre-processing, as there is no sub-

string BC in the dataset, and consequently (by Definition 1), there will

be no pattern with BC as its substring thus there will be no correspond-

ing chain with these characters. Only the values of NextMatch2ð9;AÞ
and NextMatch2ð9;DÞ need to be computed.

2.2 A match-point arithmetic-based algorithm
The proposed algorithm consists of a pre-processing stage and a
main stage. During the pre-processing stage, the input genomes are
annotated with the alphabet R to generate the input strings. Based
on these input strings, data structures are constructed to support
efficient MP arithmetic operations. Then, during the main stage,
the MPs of S abiding by q are processed to form chains represent-
ing CSB instances. A partial pseudo-code describing the main algo-
rithm is given below. The pseudo-code for the procedure
findInstances and additional procedures is given in Supplementary
Section S2.2. The algorithm is exemplified throughout the text and
in Figure 2.

Pre-processing stage. To detect CSBs spanning both strands,
the input genomes are pre-processed to generate the set of input
strings, as detailed in Section 3.2. Then, the two data structures
Matchlists and NextMatch are constructed from the MPs of S abid-
ing by q (construction details are given in Supplementary Section
S2.2).

Fig. 2. (A) Pattern P ¼BAC, which is a substring of S1, and its k-instances in string

S2 for k¼3. The k-instances of BAC in S2 are outlined by rectangles, and the rect-

angle marking a minimal k-instance is grey-filled. (B) Execution of the algorithm on

the dataset S¼fS1; S2g with the parameters k¼ 3 and q¼2. An ‘X’ represents a MP

of S1 versus S2. The MPs are assembled to chains that represent minimal k-instances

of a specific pattern. Each chain of the pattern BA is extended, if possible, to form a

chain of the pattern BAC. The pattern BAC is then reported as a CSB, as it has

instances in both S1 and S2. Additional elaboration on this figure is found in the

body of the text
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Main stage. During the main stage, the proposed algorithm iter-
ates over all input strings in S, and extracts substrings that are candi-
date CSBs. Consider, in turn, input string Sx 2 S. Each index in Sx

serves as a starting point for substrings that are potential CSBs. The
consideration of candidate CSBs is done by gradually increasing the
length of the considered substrings, and checking if they abide by
the definition of a CSB and the corresponding user specified parame-
ters (k and q).

In what follows, we describe an algorithm that computes the
minimal k-instances of a specific substring P 2 Sx in Sy. This al-
gorithm is easily extended to the general CSB finding algorithm
by applying it in ‘all versus all’ mode to the input strings. In the
algorithm, a minimal k-instance Sy½s . . . e� of P is represented by a
corresponding canonical chain that starts with the MP ð1; sÞ and
ends with the MP ðjPj; eÞ. In each iteration, we try to extend
each chain that represents a minimal k-instance of P½1 . . . jPj � 1�
in Sy to a chain that represents a minimal k-instance of P in Sy

by augmenting it with an additional MP. A MP can extend a
chain, only if it is the closest MP to the right of the chain’s end.
This MP can be obtained in constant time using the NextMatch
data structure.

Example 5 We illustrate the extension of a chain using the example in

Figure 2. The current pattern is P ¼ S1½1 . . . 3� ¼ BAC. The chains of

the prefix P½1 . . . 2� ¼ BA are considered for extension by MPs to ob-

tain the chains of P. The first chain consisting of the MPs

ðð1; 2Þ; ð2; 3ÞÞ is not extended; the MP (3, 1) cannot extend the first

chain as it is positioned to the left of the end of the chain. Although

the MP (3, 7) can possibly extend this chain without exceeding the

number of allowed insertions, this extension will create a k-instance

that is not minimal, as this MP can also extend the second chain

ðð1; 4Þð2; 5ÞÞ. The second chain is extended by the MP (3, 7), as it is

the closest MP to the right of the chain’s end. The third chain

ðð1; 9Þ; ð2; 11ÞÞ is not extended by the MP (3, 15) because this exten-

sion would create a chain of length seven, resulting in 4 > k inser-

tions. We refer the reader to Supplementary Section S2.2 for a more

formal description of this step.

Time and space complexity analysis. The time complexity of the
algorithm is OðnmþOCCÞ, where m denotes the number of input
strings, n denotes the average length of an input string, and OCC
denotes the sum of lengths of all the surviving chains, corresponding
to all CSB instances reported in the output. The space complexity of

the algorithm is Oðnmþ rÞ, where r is the number of MPs of S abid-
ing by q. A comprehensive analysis of time and space complexities
can be found in Supplementary Section S2.2. The time complexity
analysis is briefly summarized below.

In the pre-processing stage, computing for each character in R all
the indexes in which it appears and storing them in MatchLists takes
O(nm) time. Constructing NextMatch takes O(r) time.

In the main stage, chains of MPs are computed and reported as
CSB instances. Note that a MP is an instance of length one, and if a
pattern is not a CSB (i.e. there are less than q input strings encoding
instances of this pattern), then there is no point in extending the pat-
tern by an additional character. Hence, all active chains that are
maintained during the runtime of the algorithm, represent instances
and are part of the output. OCC � r, as MPs abiding by the quorum
could participate in one or more instances. As a result, the time com-
plexity of the algorithm proposed in this article is OðnmþOCCÞ.

Note that the value of the parameter OCC is output sensitive; in
a given experiment, OCC depends on the size and composition of S,
as well as on the values assigned to the parameters q and k. Hence,
we provide an empirical measurement of OCC on the benchmark
dataset used in this study (described in Section 3.1). According to
our measurements, the values of OCC ranges between 1.5 nm (for
q¼100 and k¼0) and 11.7 nm (for q¼10 and k¼20). Additional
details are given in Supplementary Section S2.3.

3 Materials and methods

3.1 Dataset
1485 fully sequenced prokaryotic strains with COG ID annotations
[Clusters of Orthologous Groups (Tatusov et al., 2000)] were down-
loaded from GenBank (NCBI; ver 10/2012). A list of all the genomes
included in this dataset is provided in the Supplementary Materials.

3.2 Generation of input strings from the dataset
In our string representation, each character in the alphabet is coded
as a gene-orthology group followed by a strand specifier, e.g. A(þ)
denotes a gene belonging to gene orthology group A, and residing
on the positive strand. The reverse complement sequence of each in-
put genome is also considered as an extension of the string repre-
senting the genome to detect reverse complement instances of a
pattern. For example C(þ)B(�)A(�) is considered to be an instance
of the pattern A(þ)B(þ)C(�).

3.3 Running time measurements
The Suffix-Tree (ST)-based algorithm (Svetlitsky et al., 2019) and
the MP-based algorithm presented in this article are both imple-
mented as part of the CSBFinder-S tool and can be selected by the
user. In this experiment, both algorithms were run in cross-strand
CSB discovery mode. The average running time of both algorithms
on the benchmark dataset (Section 3.1) was measured by executing
CSBFinder-S on an Intel Xeon X5680 machine with 192 GB RAM,
using the ‘time’ command in Linux. For each tested value of the par-
ameter k, CSBFinder-S was executed five times in a single threaded
mode with the Java option -Xmx190g, and the quorum parameter
set to 50. The results are given in Section 4.1.

3.4 Calculation of enrichment in different functional

categories
CSBFinder-S was executed on the dataset described in Section 3.1
with the parameters q¼30, k¼0, and with the length of a CSB con-
strained to three genes, resulting in 5234 CSBs of length three. Each
CSB of length three (or its reverse complement) has one of the fol-
lowing strand order combination patterns: !!!;  !!; !  
and ! !. These patterns are equivalent to their reverse comple-
ment strand order combination patterns:    ;   !; !! 
and  ! , respectively. The strand order combination pattern !
 ! was excluded due to a limited number of CSBs with this
pattern.

Algorithm 1 Pseudo-code of the MP arithmetic-based

algorithm

1: Input: A set of strings S ¼ ðS1; . . . ; SmÞ, integers k, q

2: Output: All CSBs in S and their minimal k-instances

3: Construct the data structures MatchLists and NextMatch

4: for Sx 2 S do

5: for i 1 to jSxj do

6: for j i to jSxj do

7: P Sx½i . . . j�
8: InstanceListP  new list

9: count findInstances(P; Sx; InstanceListP,

10: MatchLists, NextMatch)

11: if count � q then

12: Report P as a CSB and InstanceListP as its

instances

13: else

14: Exit internal loop
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The detection of significant enrichment within a specific COG
functional category, was performed for the first gene of CSBs having
a specific strand combination pattern, using a one-sided hypergeo-
metric test [Python library SciPy (Virtanen et al., 2020)]. In our
dataset, the population size is the total number of distinct functional
categories collected from all genes participating in any of the
extracted CSBs. For a functional category X and a strand order com-
bination pattern Y, the number of successes in the population is the
number of genes belonging to the category X, the sample size is the
number of distinct categories belonging to any of the genes in
the first position of the strand order combination pattern Y, and the
number of successes in the sample is the number of genes in the first
position of the strand order combination pattern Y belonging to cat-
egory X.

The hypergeometric test was performed for each COG function-
al category out of 25 different categories, and for each strand order
combination pattern, resulting in a total of 75 P-values. Finally,
these P-values were corrected using a two-stage FDR correction
(Benjamini and Hochberg, 2000) [Python library Statsmodels
(Seabold and Perktold, 2010)]. The results of this analysis are
detailed in Section 4.2.

3.5 Detecting SBs using CSBFinder-S
CSBFinder-S was executed on the dataset described in Section 3.1
using parameters q¼1 and k¼0, resulting in 595 708 CSBs. This
yielded the set of all possible substrings of length two or more that
appear in at least one of the genomes and contain only genes that
are annotated into orthology groups. Next, ignoring strand and
gene order information, CSBs that contain the exact same genes
were united to form the generalized set of SBs. The resulting SBs
were then filtered to 26 270 SBs that have more than 30 instances.
These SBs are analyzed in Section 4.3.

3.6 Exemplifying different functional contexts
CSBFinder-S was executed on the dataset described in Section 3.1
with the parameters q¼30 and k¼10. The CSBs were ranked using
a ranking score that is adjusted using a taxonomic similarity to over-
come a sampling bias (Section 3.7.3). A pre-specified parameter d
bounds the allowed similarity between any two genomes in the data-
set in order for them to be considered distinct (see Section 3.7.3 for
further details). In this example, the parameter d was set to 0.7. The
entire run in multi-threaded mode took 17 min and 16 s and yielded
133 823 CSBs spanning 13 686 families. The results of this bench-
mark are given in Section 4.4.

3.7 Additional features of CSBFinder-S
3.7.1 Semantic filters and a taxonomic view

The advantage of using COGs to represent gene orthology groups is
that each COG usually has a specific functional description in add-
ition to an association to one of 26 general functional categories.
CSBFinder-S allows the user to filter the resulting CSBs by specifying
keywords that are required to appear in the functional description
of any of their COGs. The functional description of COGs is
extracted from an input file that contains information from the
COG database (Tatusov et al., 2000). This file also contains com-
mon gene IDs of COGs, extracted from the Conserved Domaines
Databse (CDD) (Marchler-Bauer et al., 2015). The users can also
provide their own file with a functional description of gene orthol-
ogy groups in their dataset. In addition, if the user provides a file
containing a taxonomic annotation (phylum, class, genus and spe-
cies), a taxonomic view is then displayed for each CSB, showing the
genomes containing instances of this CSB (see for example
Supplementary Fig. S5).

3.7.2 Multi-threading

As each potential pattern can be processed independently by a differ-
ent thread, a multi-threading option was incorporated into the im-
plementation of the algorithm. This further accelerates the practical
running time of the tool.

3.7.3 Taxonomic similarity-adjusted ranking score

One of the main difficulties in inferring synteny from multiple
genomes is the bias incurred by the biased sampling of genomes, i.e.
some strains and species are more frequently represented in the data-
set than others. This could be handled by normalizing the input
sequences to keep only one representative from each distinct taxo-
nomic group, albeit at the cost of reducing the sampling density.
Furthermore, different users may prefer to apply different levels of
normalization; some users emphasize CSBs that are conserved across
a wide taxonomic range, while others focus on CSBs that character-
ize a narrow taxonomic scope. In the latter case, sample size reduc-
tion comes at great expense in sensitivity.

The single-strand CSBs described in Svetlitsky et al. (2019), were
scored using the assumption that any two genomes from the dataset
have a randomized gene order, unless there exists a selection pres-
sure against this randomization. This can result in over-estimation
of a ranking score for CSBs that are present mostly in closely related
genomes. To overcome sampling bias and allow the user to control
the level of redundancy normalization, CSBFinder-S incorporates a
measure of divergence between genomes into the ranking score com-
putation. A detailed review of the original score in Svetlitsky et al.
(2019) can be found in Supplementary Section S3.

In a related work, Junier and Rivoire (2016) inferred pairs of co-
localized genes from multiple genomes to study synteny in bacterial
genomes. In their computation of the significance score, they reduce
the weight of each genome that participates in the score computa-
tion proportionally to the number of other genomes to which it is
similar.

In this work, we apply a similar approach. In our implementa-
tion an inter-genomic similarity measure, denoted Dij, is computed
between any two genomes Si; Sj 2 S. The similarity measure used
here is the Jaccard index of the sets of gene orthology groups of the
respective genomes. Here, a similarity of one implies that the two
genomes have identical gene orthology groups, whereas if the
similarity is 0, the two genomes do not share any gene orthology
groups.

The proposed (and implemented) modifications affect parame-
ters m and qW (described in Supplementary Section S3) in the com-
putation of the ranking score. These two parameters now depend on
a pre-specified threshold d bounding from below the allowed simi-
larity between two genomes in order for them to be considered dis-
tinct. First, consider the parameter m which denotes the total
number of genomes in the dataset. This number is reduced to an ef-
fective number m0 � m of non-redundant genomes participating in
the dataset. m0 will be computed as follows:

m0 ¼ RSi2S
1

jfSj 2 S : Dij � dgj : (1)

Second, consider the parameter qW, which denotes, per each CSB
W, the number of genomes in which it has an instance. The cor-
rected parameter q0W will be computed as follows:

q0W ¼ RfSi :W2Sig
1

jfSj : W 2 Sj and Dij � dgj ; (2)

where W 2 Si indicates that W has an instance in Si (respectively, for
W 2 Sj).

Note that d is a user specified parameter between 0 and 1. If d is
set to 1, the input genomes are considered to be independent, where-
as if d is set to 0 all genomes are considered to be similar.

4 Results

4.1 Scaling up to support large values of k
In Svetlitsky et al. (2019), we described and implemented a ST-
based algorithm for the discovery of CSBs, which is sensitive to
the parameter k (the number of allowed insertions) by a multi-
plicative factor, in terms of time complexity. Here, we proposed
and implemented a MP arithmetic based algorithm that is in-
sensitive to the parameter k. Both algorithms are exact and
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address the same formally defined computational problem (see
Definition 1). Thus, if both algorithms are run with the same
genome pre-processing setup and in the same CSB discovery
mode (i.e. allowing the consideration of CSBs spanning either
one or both strands), the output returned by both algorithms is
identical. In this experiment, both algorithms were run in cross-
strand CSB discovery mode.

In this section, we give a comparison of the practical running times
of the ST based algorithm described in the previous paper versus the
MP based algorithm described in the current manuscript (technical
details are given in Section 3.3). Our results show that on our bench-
mark dataset (described in Section 3.1), the MP algorithm indeed out-
performs the ST algorithm in terms of practical running time for
larger values of the parameter k (Supplementary Table S1). In particu-
lar, for k¼8, the MP algorithm is �5% faster than the ST algorithm
on average, while for k¼20 the MP algorithm is�38% faster.

Thus, a major advantage of the MP algorithm is its reduced sen-
sitivity to the number of allowed insertions. This feature pays off
when seeking multi-operon CSBs, in which large values of k need to
be accommodated. For example the CSBs described in Section 4.4
were obtained by running CSBFinder-S with the parameter k¼10,
allowing the discovery of CSB instances of higher divergence
(Supplementary Fig. S2). Notably, the running time of the MP algo-
rithm increases only slightly with k. This slight increase could be
due to the constants involved in processing a larger number of CSBs
and CSB instances that are discovered when more insertions are
allowed.

4.2 Functional analysis of cross-strand CSBs
The enhanced scalability of CSBFinder-S and its ability to identify
CSBs spanning both strands makes it possible to run an analysis
characterizing CSBs with different strand spanning patterns. CSBs
of length three were split to three different strand combination
groups, depending on the strand combination pattern of their genes:
!!!; !  or !!. Using the hypergeometric test, the enrich-
ment for each functional category in the first position of CSBs,
belonging to each strand combination group, was tested (details in
Section 3.4). Significant results (P-value � 0.05) were obtained for
the ‘Transcription’ functional category for the strand combination
pattern !! (FDR corrected P-value¼1:71� 10�34), and for the
‘Translation, ribosomal structure and biogenesis’ functional cat-
egory for the strand combination pattern!!! (FDR corrected P-
value¼0.01).

The enrichment of transcription related genes in the first position
of the strand combination pattern !!, corresponds well with the
results of a previous analysis of conserved gene pairs in 100 prokary-
otic genomes (Korbel et al., 2004). In that study, an analysis of a set
of conserved divergently transcribed gene pairs (i.e. gene pairs with
the strand pattern  !) showed that there is strong enrichment of
pairs in which one gene encodes a transcriptional regulator, while
the other encodes any other class of protein. Here, we generalized
this result for longer blocks of consecutive genes.

Another previous related study investigated the inter-
relationship between transcription regulation and chromosomal or-
ganization of transcription units (TUs) in Escherichia coli, Bacillus
subtilis and Saccharomyces cerevisiae (Hershberg et al., 2005).
Transcription factors that regulate an adjacent TU were found to be
very common in E.coli and in B.subtilis (44 and 42% of all tran-
scription factors in these genomes follow this pattern, respectively),
but practically non-existent in the yeast S.cerevisiae.

These two aforementioned studies serve as a positive validation
of our approach and motivate the utilization of CSBFinder-S to in-
clude strand information in CSB detection. Furthermore, our results
indicate that transcriptional regulation by overlapping transcription-
al genes is abundant in bacteria, as previously suggested for genes
arranged in excludons (Sesto et al., 2013).

4.3 Colinearity among syntenic blocks
Having a scalable tool that can data-mine CSBs spanning multiple
operons, we can now harness it to re-examine the colinearity of SBs.

The definition of an SB is similar to the definition of a CSB (see
Definition 1); the only difference is in how an instance is defined:
Given a pattern string P and a string T, an instance of P in T is a
substring T 0 of T such that the characters of P constitute a subset of
the characters of T 0. In others words, unlike CSBs, SBs are not
required to be colinearly conserved.

Previous approaches for finding general SBs, with no restrictions
on gene order, showed that colinearity is largely conserved across
instances of SBs. In one study, SBs were extracted from 133 bacterial
genomes and then the percentage of gene pairs that remain adjacent,
in each genome where an SB occurs, was computed (Ling et al.,
2009). This measure showed that a large proportion of the gene
order is preserved across all SBs. In another study (Winter et al.,
2016), half of the 65 SBs obtained by searching the genome of
Synechocystis sp. PCC 6803 against 677 bacterial genomes were
shown to be exclusively colinearly conserved. Furthermore, most of
the found SBs had a dominant (i.e. most frequent) colinear variant.

In this section, we execute CSBFinder-S on a dataset of 1485
archaeal and eubacterial genomes spanning 31 phyla (Section 3.1).
CSBFinder-S was executed with the parameters k¼0 and q¼1, i.e.
the quorum restriction was removed and insertions were prohibited
to uncover all possible orders of any set of genes that occurs con-
secutively in any of these genomes. The resulting CSBs were trans-
formed to SBs by merging all CSBs that share the same gene set into
a single SB (details in Section 3.5). We focus on SBs that appear in at
least 30 different genomes in our dataset, and distinguish between
‘exclusively ordered SBs’, which are SBs that have only one colinear
order, versus the rest of the SBs, denoted hereafter ‘shuffled SBs’.
Our goal is to estimate how often SBs are colinearly conserved, and
whether exclusively ordered SBs are different from shuffled SBs in
terms of their size and their taxonomic distribution.

First, we compute the proportion of exclusively ordered versus
shuffled SBs in the computed set of SBs. This analysis reveals that
our set of SBs include 20 088 exclusively ordered SBs and only 6182
shuffled SBs. Thus, the frequency of shuffled SBs is substantially
smaller than the frequency of exclusively ordered SBs—a staggering
76.5% of the SBs have only one gene order. Our results show that
exclusively ordered SBs are much more common than previously
thought.

Analyzing the length distributions of exclusively ordered SBs ver-
sus shuffled SBs, we find a negative correlation between the propor-
tion of shuffled SBs and their length; almost half of the SBs of length
two have at least two gene order variants among their instances (out
of four possible order and strand combinations). In comparison,
only 3% of the SBs of length seven are shuffled (see Figure 3).
Furthermore, the average length of exclusively ordered SBs is 4.91
that is considerably larger than the average length of shuffled SBs
(2.61). We note, however, that SBs in our analysis may be dependent
due to shared COGs. To test the effect of such dependency on our
results, we examined all SBs of length two (9855 SBs), including

Fig. 3. Frequency of shuffled and exclusively ordered SBs according to SB length
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5675 exclusively ordered SBs and 4180 shuffled SBs. We found that
4008 (70%) of the exclusively ordered SBs are substrings of longer
exclusively ordered SBs. Of the shuffled SBs, 1198 (25%) have a col-
inear variant that is a substring of a longer exclusively ordered SB;
in most of these SBs (1137; 95%), this colinear variant is the domin-
ant one among all other order and strand combinations. Thus, our
results demonstrate that SBs of length two that are commonly coli-
near, are likely to be conserved as part of longer colinear SBs.

To quantify the taxonomic diversity of SBs, we analyzed the
taxonomic diversity of the genomes containing instances of shuffled
SBs versus genomes containing instances of exclusively ordered SBs.
We used the Shannon (1948) index to quantify the biodiversity of
SBs, denoted by H ¼ RpilnðpiÞ, where pi is the proportion of
genomes belonging to the ith taxon in the dataset. The Shannon
index was computed for each SB and for three different taxa groups:
Phylum, Class and Genus, by considering the genomes containing at
least one instance of the corresponding SB. The comparison of aver-
age values for all shuffled and exclusively ordered SBs shows that
the instances of shuffled SBs are found in more diverse taxa in com-
parison to exclusively ordered SBs, in all tested taxonomic levels
(Table 1). Thus, the taxonomic resolution of the analyzed data is
expected to have an effect on the proportion of exclusively ordered
versus shuffled SBs; for example analysis of specific taxonomic
groups would yield a higher proportion of exclusively ordered SBs.

4.4 Contextual analysis of CSBs
In this section, we exemplify how the functional semantic filter
implemented in CSBFinder-S, coupled with the data-mining algo-
rithm, can be utilized for contextual and evolutionary analysis of
CSB families. CSBFinder-S was used to analyze the dataset of 1485
chromosomal genomes (Section 3.1) to obtain CSBs spanning both
strands (details in Section 3.6). We focus our example on secretion
systems, as they play a critical role in the evolution of bacterial viru-
lence (Green and Mecsas, 2016).

In Section 4.3 we observed that many SBs of length two have
more than one colinear variant. However, in most of these SBs, the
dominant variant is a substring of a longer exclusively ordered SB.
The most common shuffled SB of length two that has genes related
to secretion, consists of the genes PulE (COG2804) and PulF
(COG1459). In CSBFinder-S execution without insertions, there are
two CSBs consisting of this gene pair: PulE(þ)PulF(þ) has 745
instances, and PulF(þ)PulE(þ) has 41 instances (see Supplementary
Fig. S3). The dominant CSB is a substring of longer exclusively coli-
near CSBs, while the second CSB is not a substring of any other
CSBs. This motivated us to explore longer CSBs that contain the
PulE(þ)PulF(þ) CSB.

To examine different functional contexts of PulEF, we executed
CSBFinder-S with up to 10 insertions. Allowing a large number of
insertions revealed CSB instances with higher divergence (see
Supplementary Fig. S2 for an example). The results were filtered for
CSBs containing the PulEF COG IDs and then re-clustered into fam-
ilies using the CSBFinder-S user interface (Supplementary Table S2).
Figure 4 illustrates seven of the resulting CSBs selected to exemplify
three distinct contexts: Type II Secretion System (T2SS), Type IV
Pilus system (T4PS) and DNA uptake machinery. Genes that func-
tion in these contexts share several structural and functional fea-
tures, and were previously shown to be evolutionary related (Giltner
et al., 2012; Peabody et al., 2003).

Homologous proteins shared across these three contexts include
proteins forming filamentous structures (e.g. pillins and pseudopil-
lins), the cytoplasmic ATPases (e.g. pulE and its homologs) and the
membrane proteins (e.g. pulF and its homologs). A common ances-
try has been previously suggested for the T2SS, T4PS and the
Archaeal Flagella, based on their homologous ATPases and their
homologous transmembrane proteins (Peabody et al., 2003). Note
that the user interface of CSBFinder-S enables to display a detailed
taxonomic distribution of the instances of each CSB (Supplementary
Figs S5–S8). Furthermore, the different orientation of genes in CSBs
5, 6 and 7 indicates that these CSBs likely include multiple operons.
In what follows, we elaborate on the different functional contexts of
PulE(þ)PulF(þ) CSB.

T2SS context: CSBs 1 and 2 in Figure 4 contain genes from the
Type II Secretion System (T2SS), and in particular, the second CSB
contains most of the known T2SS genes. The T2SS is a membrane
spanning secretion system composed of 12–15 different secretory
pathway proteins that secrete a wide variety of folded exoproteins
(Korotkov et al., 2012). The order of T2SS genes is typically well
conserved, where variations in gene content in different species are
usually found at the 50 and 30 ends of the gene cluster (Sandkvist,
2001). The first CSB we present in Figure 4, was detected in alpha-,
beta-, gamma- and delta-proteobacteria, while the second CSB was
found only in gamma-proteobacteria. T2SSs contain five pilins
(PulGHIJK) needed for secretion; PulG is the major pseudo-pilin,
while the other four are minor pseudo-pilins (Possot et al., 2000).
The three copies of pulG (COG2165) in the second CSB correspond
to homologs of pulG, pulH and PulI, which are classified into the
same COG ID due to sequence similarity.

DNA uptake context: CSBs 3–5 in Figure 4 exemplify the occur-
rence of pulEF in the context of natural competence (DNA uptake).
These CSBs include COG4537, a gene homologous to ComGC, that
functions in DNA uptake in Gram-positive bacteria (Muschiol et al.,
2015). Indeed, these three CSBs are found exclusively in Gram-
positive strains; CSB 4 is found in the genera Bacillus, Geobacillus
and Staphylococcus, whereas the other two CSBs are Streptococcus-
specific. Note that PulE and PulF in these CSBs are termed in these
organisms ComGA and ComGB, respectively (classified into the
same COG IDs).

Examining the instances of CSB 4 reveals that it has 10 instances
in Bacillus strains with 7–10 gene insertions, 2 instances in
Geobacillus strains with 5 gene insertions and 19 instances in
Staphylococcus strains without any gene insertions (see
Supplementary Fig. S2). Thus, setting the parameter k to 10 (i.e.

Table 1. The average Shannon index of exclusively ordered versus

shuffled SBs

Phylum Class Genus

Exclusively ordered 0.458 0.312 2.278

Shuffled 0.780 1.307 2.841

? PulE* PulF* ComGC PulG* ComGF

PulD PulE PulF PulG PulG* PulG* PulJPulC PulK PulL PulM

PulD PulE PulF PulG PulG* PulJ PulK PulL

GloB PulE* PulF* ComGCYqgVNagCYqgQ

? PulE* PulF* ComGCRpoCRpoBMrcBTyrSZnuBZnuCMarR

PulE* PulF* GuaB CoaE ZapD YacG YjhB SecAPilANadCAmpDAmpEAnsPFadRAceE

PulE* PulF* PulO CoaE ZapD YjhB SecACorBIspA ArgJ?

Score Count
1 599 128

2 378 53

3 16 37

4 73 31

5 52 30

6 81 69

7 159 32

B.
x x x x

x
x
x
x

x
x

Fig. 4. Seven of the CSBs obtained after filtration using the keywords PulE and PulF. The COGs in the figure were annotated with gene IDs using the CDD database (Marchler-

Bauer et al., 2015). The taxonomic classes in which each CSB has an instance are indicated. a� d are the classes of proteobacteria, B. stands for the class Bacilli. COGs are

color coded, except for COGs appearing in only one CSB that are colored in gray. A question mark denotes an uncharacterized gene. Note that the instances of the CSBs shown

in this figure can have up to 10 gene insertions. To exemplify this, some of the instances of CSB 4 are shown in Supplementary Figure S2. *Gene names may be ambiguous, see

text
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enabling up to 10 insertions) revealed further instances of this CSB
in strains where the gene synteny is less conserved (typically distant-
ly related strains). In addition, as the instance quorum was set to 30
in this benchmark, if less than 10 insertions were allowed this CSB
would not have passed the quorum and thus would not have been
detected.

T4P context: CSBs 6 and 7 have many genes in common and
were clustered by CSBFinder-S to the same CSB family. The sur-
rounding context of CSB 6 seems to indicate that it functions in the
type IV pilus biogenesis (T4P) system, while the context of CSB 7 is
quite puzzling as it does not include pilus genes. The T2SS and the
T4P pathways share many homologous proteins, suggesting a com-
mon evolutionary origin (Nunn, 1999). Well characterized roles of
T4P systems include adherence to natural surfaces, twitching motil-
ity, modulation of biofilm architecture, DNA uptake (competence)
and transfer (conjugation), secretion of exoproteins and bacterio-
phage susceptibility (Giltner et al., 2012). Note that PulE and PulF
in these CSBs are termed in these organisms PilF and PilG, respect-
ively (classified into the same COG IDs).

The T4P gene PilA, as well as ComGC in the DNA uptake system
and PulG in the T2SS, are type IV pilin proteins with a distinct N-ter-
minal signal sequence (Giltner et al., 2012). Proteins with this unique
signal sequence are called prepilins and are not competent for assem-
bly until the signal is cleaved, using prepilin peptidases (PilD/PulO),
that is included in CSB 7. The protein SecA, an ATPase that is pre-
sent in both CSBs 6 and 7, is a primary component of the Sec path-
way that inserts prepillins into the cytoplasmic membrane. It is
conceivable that the co-expression of PilA and SecA in CSB 6 may be
important for Sec-mediated translocation of the prepilin PilA.

Accessory virulence genes across different contexts: CSBs 4, 5
and 6 in Figure 4 illustrate multi-operon context including genes
that play a role in resistance to antimicrobial substances. These
genes span CSBs from two distinct functions (DNA uptake versus
T4P) and a wide taxonomic range (both Gram-positive and
Gram-negative bacteria, correspondingly). CSB 4 contains a GloB-
homolog—a predicted glyoxylase that is part of a methylglyoxal
degradation pathway; it has been previously shown that methyl-
glyoxal has an antibacterial activity against Staphylococcus aureus
(Jervis-Bardy et al., 2011). The resistance factor found in CSB 5 is
an MrcB-homolog—a penicillin binding protein. The presence of
antimicrobial genes in the neighborhood of DNA uptake genes
may be related to the functional link between antibiotic stress re-
sponse and the induction of natural competence (Prudhomme
et al., 2006).

Genes associated with antimicrobial resistance are also found in
CSB 6 (in the predicted context of Pilus Assembly in gamma-
proteobacteria): this CSB contains the operon AmpDE, which plays
a role in the regulation of the AmpC gene encoding a beta-
lactamase. AmpE is a signal transduction inner-membrane protein,
predicted to be activated in the presence of beta-lactam (Honoré
et al., 1989), while AmpD is the predicted repressor of AmpC. The
longest CSB that includes PulEF comprises 36 genes, among which
are AmpE and AmpD (Supplementary Fig. S4, see details in Section
S4.5).

5 Discussion

We propose an efficient algorithm for the discovery of cross-strand,
multi-operon CSBs in large genomic datasets. The proposed algo-
rithm uses match-point arithmetic and is thus both time and space
scalable. The new algorithm is insensitive to the number of allowed
insertions and to the length of the sought CSBs, thus it enables the
discovery of CSBs spanning multiple operons. The algorithm was
implemented and incorporated into a tool with a graphical user
interface, denoted CSBFinder-S.

CSBFinder-S differs from our previously released tool for CSB
discovery (Svetlitsky et al., 2019) by several major contributions.
Mainly, it is more general; while in the previous version of the tool
CSBs were confined to directons (consecutive genes encoded on the
same strand), the new tool can also detect cross-strand multi-operon
CSBs. This generalization is scalable due to the newly proposed

algorithm (Section 2), and due to its multi-threaded implementation
(Section 3.7.2). In addition, CSBFinder-S incorporates a measure of
divergence between the input genomes to overcome sampling bias in
the ranking score computation (Section 3.7.3).

Furthermore, CSBFinder-S offers new functions to help the user
navigate through the database of discovered CSBs. These include fil-
ters that enable the user to constrain the structural features of the
inferred CSBs (length, abundance, etc.), as well as to extract CSBs
confined to specific functional semantic categories (exemplified in
Section 4.4). The user interface also includes a taxonomic viewer of
the genomes in which CSB instances appear (see for example
Supplementary Fig. S5), and the option to re-cluster the found CSBs
into families according to user-specified parameters.

Notably, despite extensive shuffling of prokaryotic genomes,
most SBs in our dataset were exclusively ordered, also when consid-
ering cross-strand CSBs that can span multiple operons. The CSBs
we uncovered with CSBFinder-S likely represent functional units
whose expression is tightly coordinated and their gene order evolves
under a strong purifying selection (Koonin, 2009). The analysis of
conserved colinear gene orders is instrumental for functional studies
of microbial organisms.
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