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Abstract: Breast cancer is the most common cancer observed in women. Although mammography is
a recognized method, it remains ionizing and cannot be used routinely or in young adults, leaving
up to two years between two diagnoses. Prior to validation on human subjects, this study aims to
validate on phantoms the feasibility of quantifying breast density and detecting breast cancer tumors
using a smart bra in young women. Six phantoms with various densities and seven phantoms with
various volumes of modelized tumor were prepared and measured with a smart bra, including an
electrophysiological module. There was a significant difference between the “healthy phantoms” and
the “tumor phantoms” with P(Student) = 0.008 (Shapiro–Wilk p = 0.846, samples follow a normal
distribution; Fisher variance test, p = 0.287). In addition, this study seems to indicate the possibility of
discriminating various types of tumorous and healthy breast tissue using a smart bra, in high density
breast. However, a new study on a large sample of human subjects will be required to generate new
models, including resistive, capacitive, and other sensor parameters versus reference data collected
from imaging.

Keywords: breast cancer; breast density; electrical characteristics; smart bra

1. Introduction

Breast cancer is the most common cancer observed in women in France, as well as in the European
Union and the United States. The number of cases observed each year has tended to decrease since
2005, yet this disease remained as the leading cause of cancer death among women in 2012. If detected
at an early stage, this cancer can be cured in 9 out of 10 cases.

According to the National Cancer Institute [1], there were 48,763 new cases estimated in 2012,
11,886 of which resulted in the death of the patient. In 8 out of 10 cases, these cancers affected women
aged 50 and over.

Breast cancer screening mainly uses mammography (breast X-rays under different views). This
technique can lead to overdiagnosis; some women are found to have precancerous lesions that have
never developed. According to the National Institut of Cancer (INCa), the rate of overdiagnosis is
estimated at 10% to 20%, or 2 to 3 cases of overdiagnosis for each death prevented.

In addition, this technique uses X-rays, which have a certain carcinogenic effect. In women over
50 years of age, mammography-induced cancers are estimated to cause 1 to 5 deaths per 100,000 patients
examined. The risk is higher before this age, as the breasts are denser and the examination requires
higher doses of X-rays.

Before the age of 50, a mammography would be more harmful than beneficial. However, in France,
77% of women have already had several mammograms before this age.

During the Days of the French Society of Senology and Breast Pathology [2], the problem of
interval cancers was finally raised. Its rate of 18% remains significant. It appears that implementing
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more frequent screenings (every year, for example) is not the solution because it would increase the
rate of false positives as well as the irradiation of women. Between 54% and 60% of interval cancers
are new tumors that could not be detected by mammography. The others, however, are the result of
errors, which can be technical (about 20% of cases) or human (about 30% of cases).

Many projects have been carried out over the past twenty years to overcome these problems.
Ng et al. [3] reviewed the various technical studies and solutions that have been developed, particularly
for the diagnosis of breast cancer, by exploring the electrical characteristics of tissues. More specifically,
Du [4], Gupta [5], Stojadinovic [6], Jossinet [7], and other authors [8] focused on detecting breast
cancer using bioelectrical impedance analysis (BIA), demonstrating up to 82.62% sensitivity and 95.79%
specificity in the discrimination of benign and malignant breast tumors based on simple BIA models
(injection of a low current and analysis of the induced voltage [9]) using characteristic tissue frequency
(fc, kHz), which is the extrapolation of resistances using the Cole–Cole model (shown in Figure 1) at
zero frequency and infinite frequency, known as Re (ohms) and Rinf (ohms), respectively [10].
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Other parameters, derived from the same model, can enrich the equations:

- C (xc, yc) (center of the Cole–Cole circle, r: radius of the Cole–Cole circle)
- Rc, Xc, and Fc data, known as characteristic curvature data (characteristic resistance, characteristic

reactance and characteristic frequency)
- Ri (modelled resistance of the intracellular zone in ohms)

Ri =
ReR∞

Re −R∞
(1)

- Alpha α (the phase angle in degrees at the characteristic frequency)

α = A tan
( yc + r

xc

)
∗

180
pi

(2)

- Tau τ (the ion relaxation time in µs)

τ = (Re + Ri) ∗Cm (3)

where Cm is the capacity of the cell membrane in Farad, as follows:

Cm =
1

2πXc
=

1
2π(yc + r)

(4)

Estrela da Silva et al. [11] have shown that it is possible to differentiate between certain types
of healthy or pathological breast tissue (connective tissue, fat tissue, glandular tissue, carcinoma,
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fibroadenoma, and mastopathy) by studying certain complementary parameters, including the area
under the impedance circle curve, its length, and the distance between the extreme points.

Along with these direct technologies, which seek to characterize or detect breast tumors,
two other indirect methods are used to estimate cancer development: breast density qualification
and thermography.

Breast density is an established risk factor for breast cancer, as shown in Table 1 [12,13].

Table 1. Combined relative risks of breast cancer in the general population according to the classification
used to assess breast density. RR = relative risk, CI95 = 95% confidence interval [13].

Classification Incidental Studies RR[CI95] Preliminary Studies RR[CI95]

Wolfe
N1 (Adipose Breast) 1 1

P1 (<25% Glandular Density) 1.8 [1.4–2.2] 1.3 [1–1.5]
P2 (>25% Glandular Density) 3.1 [2.5–3.7] 2 [1.3–3]

DY (Dysplastic Breast) 4 [2.5–6.3] 2.4 [2,3]
Density (%)

<5 1 1
5–24 1.8 [1.5–2.2] 1.4 [1.1–1.8]
25–49 2.1 [1.7–2.6] 2.2 [1.8–2.8]
50–74 2.9 [2.5–3.4] 2.9 [2.3–3.8]
>75 4.6 [3.6–5.9] 3.7 [2.7–5]

BI-RADS
1 (<25% Glandular Density) 1 1

2 (25–50% Glandular Density) 2.2 [1.6–3] 1.6 [0.9–2.8]
3 (51–75% Glandular Density) 3 [2.2–4.1] 2.3 [1.3–4.3]
4 (>75% Glandular Density) 4 [2.8–5.7] 4.5 [1.9–10.6]

This is clinically established by tactile methods, imaging, and other methods [14]. It is also one of
the factors of “noise”, as it varies based on the menstrual cycle [15].

White et al. [16] analyzed 2591 women aged 40 to 49 years, without hormone therapy, and
classified 24% of breasts as type 4 during the first week of the cycle and 23% during the second week,
while for weeks three and four the percentage was 28%, which is a significant variation (p = 0.04)
regardless of body mass index (BMI). They used the BI-RADS (Breast Imaging-Reporting and Data
System) classification to define breast typology:

- Stage/type 1: the breast is almost entirely fat (homogeneous fat) (less than 25% of the mammary
gland).

- Stage/type 2: there are scattered fibro-glandular opacities (heterogeneous fat) (approximately
25 to 50% of the gland).

- Stage/type 3: Breast tissue is dense and heterogeneous (heterogeneous density), making it difficult
to detect small masses (approximately 51% to 75% of the gland).

- Stage/type 4: the breast tissue is extremely dense (homogeneous density). This can reduce the
sensitivity of mammography (>75% of the gland).

In addition, Renaud et al. [17], in a European epidemiological study of a cohort of 40,293 women
aged 50 to 67 years, highlighted the evolution of breast density with age, as shown in Table 2, with a
higher propensity for dense breasts in younger women, and therefore a greater difficulty in detecting
the presence of a tumor.

Table 2. Rates of mammographic morphological breast types at 50 to 67 years of age [17].

Type 50 Years Old 67 Years Old

1 14.5% 28%
2 43% 54%
3 38% 16%
4 5.6% 1.2%
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A simple, non-operator-dependent method to quantify breast density could help to diagnose
breast cancer as well as to qualify natural “noise” due to the variation in density during the menstrual
cycle, which affects tumor detection.

Finally, skin thermography is another indirect indicator correlated with the detection of breast
cancer. Similar to breast density, it can also vary during the hormonal cycle. A warmer area (red
in clinical thermography), especially between 2 breasts in the same place, may show an increase
in vascularization and more particularly inflammation around the tumor. However, a variation in
temperature is not necessarily due to the presence of a tumor.

Integrating these various parameters into one built-in device, such as a bra, should make it
possible to generate breast cancer detection scores showing better specificity and sensitivity.

The overall objective of the project is, therefore, to validate a connected breast cancer diagnostic
bra that will allow:

- Early diagnosis at any age using non-ionizing technologies,
- Limitation of interval cancers as well as overdiagnosis by daily monitoring and considering

physiological “noise”.

Prior to validation on human subjects, this study aims to validate, on phantoms, the feasibility of
quantifying breast density and detecting breast cancer tumors using a smart bra.

2. Materials and Methods

2.1. The Phantoms

The animal model, although relevant, remains cumbersome, and some electrical characteristics
of small mammals, such as rodents, are far from similar to those of humans, particularly due to
the difference in metabolism (the average heart rate of a rodent can range from 250 to 450 beats per
minute [18]).

The representativity of human tissue in phantoms is also limited but they have the advantage of
being more controllable and easier to implement.

Several studies describe the development of techniques and ingredients to prepare materials that
mimic human tissues [19]. The most commonly used materials include water-based, agarose, gelatin,
and gel materials. Phantoms based on agarose and gelatin (also known as hydrogels) are the most
commonly used alternatives. Agarose provides consistency, while NaCl increases conductivity.

Although these phantoms are stable for several weeks [20], microbial development can occur,
distorting measurements. In addition, a precise preparation procedure must be followed to optimize
the reliability of the measurements, optimizing for cooking time, order of integration and method of
integration of the ingredients, refrigeration time, rest time at room temperature before measurements,
etc. [21,22].

Jossinet [23], in 1996, presented a study on the electrical characteristics of in vitro tissues,
including mammary glandular tissues, connective tissues, adipose tissues, and tissues with mastopathy,
carcinomas, and fibroadenomas. These studies did not converge with those of other authors regarding
the capacitive behavior of healthy and cancerous tissues. They do, however, agree on the resistive and
conductive characteristics of the tissues, according to Table 3.

Table 3. Resistive and conductive characteristics of breast tissue [23].

Tumor Fabrics Tissue Surrounding the Tumor Healthy Breast Tissue

ρ (Ω.cm) 250–500 125 1000

There is increased conductivity (a decrease in resistivity) in the tissue surrounding the tumor,
which is to be expected given the inflammation of the extracellular compartment around the tumor.
Since the intrinsic characteristics of tumor cell membranes remain uncertain, it is difficult to predict
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whether the electrons access the internal characteristics of tumors. In these initial tests, we will,
therefore, focus on the detection of the equivalent of peripheral tissues, assuming a coefficient of
10 between the resistivities of the 2 types of tissues.

Phantoms hemispheres are 11.5 cm in diameter. Table 4 presents the compositions of the different
types of phantoms.

Table 4. Definition of phantom characteristics.

Peripheral Tissues of
the Tumor,
Blue Color

Healthy Mammary Soft
Tissues (Fibro-Glandular
and Connective Tissue),

Clear Color

Adipose Tissue,
Yellow Color

Composition
4 g/L agarose

1 L demineralized water
10 g/L NaCl

4 g/L agarose
1 L demineralized water

1 g/L NaCl

4 g/L agarose
1 L demineralized water

0 g/L NaCl

Tables 5 and 6 present the phantoms that were included in the study. Some phantoms had cracks
or other defects that did not allow them to be included. The aim of the device is to supplement current
methods, particularly mammography. The latter method presents diagnostic difficulties in the case of
dense breasts, especially in young adults. At this preliminary stage of preparation of the clinical study,
we wanted to test the worst clinical case via “tumor” phantoms based on breasts of maximal density.

Table 5. Characteristics of the “breast density” phantoms included in the study.

“Breast Density” Phantoms F

% of Healthy Soft Tissue
Equivalent to Breast Density

(Fibro-Glandular and
Connective Tissue)

% of Adipose Tissue

F1 20 80
F2 (Breasts equivalent to those of

healthy women in their 60s) 50 50

F3 60 40
F4 70 30
F5 90 10

F6 (Theoretical breasts of maximum
density, without fat tissue) 100 0

Table 6. Characteristics of the “tumor” phantoms included in the study.

“Tumor” Phantoms F’ Volume (cm3) of Tumor Phantom Randomly Integrated into a
100% Density Phantom % of Healthy Soft Tissue

F1′ 22.0
F2′ 16.5
F3′ 15.1
F4′ 13.8
F5′ 11.0
F6′ 8.3
F7′ 5.5

Figure 2 shows photos of the phantom F4 (dense breast with only 30% adipose tissue), F1 (very
low-density breast with 80% adipose tissue), and F2′ (breast with a 16.5 cm3 tumor).
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2.2. The Device

The bra prototype designed for the clinical study (Figure 3), which is still under development,
is based on three types of sensors: temperature (breast thermography), photoplethysmograph
(PPG) (oxygen saturation of the external thoracic artery), and bioimpedance of the tissue. In total,
120 temperature measurement points (60 per breast) are organized in stars for each breast. These
sensors are managed via a multiplexer connected to the electrophysiological module via a USB
link. The latter is also connected to two optical PPG sensors, each based on two green LEDs and
a photodiode (sample rate 100 Hz, pulse width 115,2 ms) placed on the arterial vascularization of
each breast. Finally, 120 electrodes (60 per breast) knitted in silver wire are organized in stars on each
breast for the acquisition of the electrical parameters via a multiplexer connected to the electronic
module. The module is driven by an application on an android tablet (Android 9.0, API (Application
Programming Interface) Level 28).
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Figure 3. Schematic bra prototype under development (all the cables connecting the electrodes, the
temperature sensors, and the PPG to the multiplexer are molded in the silicone shell placed between
the double layer of the textile, forming the cap).

In this study, our aim is to first explore the electrical parameters on phantoms that are unable to
represent the complexity of human tissue. Then, we simplify the device for this purpose, as shown in
Figure 4.
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Figure 4. Photo of the “simplest” prototype device (without temperature and estimation of arterial
oxygen saturation (SPO2) sensors).

The textile electrodes were replaced by metal electrodes in order not to risk a modification of
the characteristics of the electrodes during the experiments by the gel absorption of the phantoms
in the tissue. Only the right bra cup was used. Four electrodes (10 mm size) were combined with
the electrophysiological module according to a quadripolar measurement using φ-module (ZRange
(0–2500 ohms); Zreal CV% 0.025% and Zimg CV% 0.408%; accuracy (all frequencies) Zr mean error
2.60% ± 2.01% and Zimg mean error 0.43% ± 0.84%) from RunSys, France.

The device was tested first on the universal Resistance//Resistance-Capacitor phantom
(680 ohms//910 ohms - 2.7 nF). We obtained Zr mean error of 2.97% ± 1.15% and Zimg mean
error of 0.5% ± 0.80%. The CV% obtained was closely to that of the module alone.

A current of 32 µA (at low frequency <8 KHz with high-pass filters (HPF) and low-pass filters
(LPF) in bypass, 20 v/v amplifier, 64 sample per second (sampling frequency)) was injected and the real
parts of the Zr impedances (ohms) of the different phantoms were collected.

2.3. The Algorithms

Using equations (5 to 9), the device estimated the breast density percentage and a tumor risk
score (developed on a subpopulation of the sample (F1′, F3′, F4′, F5′, F4, F5, F6) and validated on the
remaining subpopulation (F6′, F7′, F8′, F1, F2, F3)).

The breast density is estimated by a multivariable linear regression, calculated as Equation (5):

Breast Density = a + bx1 + cx2 + · · ·+ ixi (5)

where a, b, . . . , i are constants and x1, x2, . . . , xi are experimental variables of the equation.
The tumor risk score is estimated by a binomial law, calculated as Equation (6):

Tumor Risk Score = 1/
(
1 + e(−(a+bx1+cx2+···+ixi))

)
(6)

where a, b, . . . , i are constants and x1, x2, . . . , xi are experimental variables of the equation.
In this study, having fewer experimental variables, we used the simplified logistic binomial law

(two parameters µ, s), with its density function calculated as Equation (7):

f (x;µ, s) = e−((x−µ)/s)/s(1 + e−(
x−µ

s ))2 (7)

Then, its distribution function is calculated as Equation (8):

F(x;µ, s) = 1/1 + e−(
x−µ

s ) (8)

We notice in our study the Esperance E(X) = µ = 0 and the variance Var (X) = s2π2/3, inducing
s = 1.



Sensors 2019, 19, 5491 8 of 12

Then, the obtained distribution function of the tumor risk score is calculated as Equation (9):

F(x) = 1/1 + e−(x) (9)

with x corresponding to the electrical characteristics measured.

3. Results

3.1. Repeatability of Measurements

Table 7 shows average coefficients of variation of 0.69% ± 0.81% and 0.19% ± 0.08% for the “breast
density” and “tumor” phantoms, respectively, thus ensuring that the repeatability of measurements is
over 99%.

Table 7. Coefficient of variation (%) obtained for the different phantoms.

“Breast Density” Phantoms F1 F2 F3 F4 F5 F6

Coefficient of Variation (%) 0.04 1.13 0.07 2.08 0.73 0.07
“Tumor” Phantoms F1′ F2′ F3′ F4′ F5′ F6′ F7′

Coefficient of Variation (%) 0.15 0.15 0.26 0.29 0.12 0.23 0.10

3.2. Raw Data

Table 8 shows the raw data obtained for each selected phantom.

Table 8. Raw data obtained for each phantom.

“Breast Density” Phantoms F1 F2 F3 F4 F5 F6

Zr (ohms) 37.18 27.85 26.10 27.51 25.10 24.93
“Tumor” Phantoms F1′ F2′ F3′ F4′ F5′ F6′ F7′

Zr (ohms) 19.33 16.97 20.30 21.92 17.41 20.02 19.02

3.3. Estimation of Breast Density Using the Device

Figure 5 shows that the device underestimates the theoretical breast density by an average of
3.1%. The dispersion indicates a R2 value of 0.72, with a minimum deviation of −1.6% and a maximum
deviation of −17.4%.

Sensors 2019, 19, 5491 8 of 12 

 

3. Results 

3.1. Repeatability of Measurements 

Table 7 shows average coefficients of variation of 0.69% ± 0.81% and 0.19% ± 0.08% for the “breast 
density” and “tumor” phantoms, respectively, thus ensuring that the repeatability of measurements 
is over 99%. 

Table 7. Coefficient of variation (%) obtained for the different phantoms. 

“Breast Density” Phantoms  F1 F2 F3 F4 F5 F6 
Coefficient of Variation (%)  0.04 1.13 0.07 2.08 0.73 0.07 

“Tumor” Phantoms F1′ F2′ F3′ F4′ F5′ F6′ F7′ 
Coefficient of Variation (%) 0.15 0.15 0.26 0.29 0.12 0.23 0.10 

3.2. Raw Data 

Table 8 shows the raw data obtained for each selected phantom.  

Table 8. Raw data obtained for each phantom. 

“Breast Density” Phantoms   F1 F2 F3 F4 F5 F6 
Zr (ohms)   37.18 27.85 26.10 27.51 25.10 24.93 

“Tumor” Phantoms F1′ F2′ F3′ F4′ F5′ F6′ F7′ 
Zr (ohms) 19.33 16.97 20.30 21.92 17.41 20.02 19.02 

3.3. Estimation of Breast Density Using the Device 

Figure 5 shows that the device underestimates the theoretical breast density by an average of 
3.1%. The dispersion indicates a R2 value of 0.72, with a minimum deviation of −1.6% and a maximum 
deviation of −17.4%.  

 
Figure 5. Graphs representing the breast density estimated by the device versus the theoretical density 
of the phantoms. 

The average deviation obtained is 0.009% ± 13.651%. The Shapiro–Wilk tests verified that the 
samples do not follow a normal distribution. This, therefore, led us to a nonparametric paired Mann–
Whitney test, indicating P = 0.937. 

3.4. Detection of the Presence of a Breast Tumor Using the Device 

Table 9 describes the actual impedances measured on the different phantoms. An average of 19.3 
± 1.7 ohms is obtained for phantoms containing a tumor versus 24.9 ± 2.9 ohms for phantoms 
simulating healthy breasts, with an equivalent intrinsic density of 100% (or 0% adipose tissue), which 
are the most difficult conditions to discriminate from tumor tissue. The mean difference is −22.7% ± 

y = 0.969696x
R² = 0,7186

Man-Whitney, P=0.937

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

Br
ea

st
 d

en
si

ty
 fr

om
 th

e 
de

vi
ce

 (%
)

Theoretical breast density (%)

Figure 5. Graphs representing the breast density estimated by the device versus the theoretical density
of the phantoms.

The average deviation obtained is 0.009% ± 13.651%. The Shapiro–Wilk tests verified that the
samples do not follow a normal distribution. This, therefore, led us to a nonparametric paired
Mann–Whitney test, indicating P = 0.937.
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3.4. Detection of the Presence of a Breast Tumor Using the Device

Table 9 describes the actual impedances measured on the different phantoms. An average of
19.3 ± 1.7 ohms is obtained for phantoms containing a tumor versus 24.9 ± 2.9 ohms for phantoms
simulating healthy breasts, with an equivalent intrinsic density of 100% (or 0% adipose tissue), which
are the most difficult conditions to discriminate from tumor tissue. The mean difference is −22.7%
± 6.8%. There is a significant difference between samples with P (Student) = 0.008 (Shapiro–Wilk
p = 0.846, samples follow a normal distribution; Fisher variance test, p = 0.287).

Table 9. Real impedance (Zr, ohms), measured on phantoms, including tumors versus healthy phantoms
(*, p < 0.05; **, p < 0.01; ***, p < 0.001).

100% Low-Density Breasts
with Tumor in Random

Position (from 5 to 22 cm3)

100% Density
Healthy Breasts

Healthy Breasts
(Density Varies

from 20% to 100%)

Zr Mean ± SD (Ohms) 19.3 ± 1.7 24.9 ± 2.9 28.1 ± 4.6
Difference Mean ± SD (%) −22.7 ± 6.8** −30.6 ± 4.2 ***

If we consider the sample comprising a set of healthy breasts with a variable density with the
presence of simulated fat tissue from 0% to 80%, the significant mean difference is −30.6% ± 4.2% with
P (Mann–Whitney) = 0.001 (Shapiro–Wilk p = 0.012, the samples do not follow a normal distribution);
that is, 6.3% more than for very dense breasts.

Figure 6 shows two groups of data according to healthy or tumor phantoms.
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Figure 6. Graphs representing Zr (ohms) for each phantom: healthy (with various densities) and tumor
phantoms (with various volumes of simulated tumor in high density phantoms).

As described in Table 10, a tumor risk score of 100% is recorded for phantoms containing
a simulated tumor and 0% for “healthy” phantoms at different densities.

Table 10. Tumor risk score for each phantom in the validation subpopulation.

Tumor Risk Score

F6′ 100%
F7′ 100%
F8′ 100%
F1 0%
F2 0%
F3 0%
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Although it seems possible to discriminate healthy and diseased tissue modeled in phantoms,
Figure 7 does not show any correlation between the measured data and the theoretical tumor volumes.Sensors 2019, 19, 5491 10 of 12 
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Figure 7. Graphs representing Zr (ohms) measured by the device versus the theorical volume of the
tumor included in the phantoms (cm3).

4. Discussion

It can be assumed that some significant differences between the device’s estimation of breast
density and theoretical breast density are due to the sum of model-related errors, as well as to the
fabrication of the phantoms. Indeed, the model used in this study is not robust enough due to the small
population used to generate the model. In addition, incorporating a specific percentage of simulated
fat tissue into a healthy tissue phantom is not easy. Theoretical breast densities are, therefore, biased.

Furthermore, since the capacitive characteristics of the tissues are discriminative, it can be assumed
that the estimation of breast density based on the resistive and capacitive properties of the tissues
making up the breast will be more accurate. In addition, these models will have to be generated and
compared with imagery to ensure baseline data, and on larger populations to increase the robustness
of the models.

As expected, the difference between healthy and tumorous tissues is negative, with the latter
being more conductive (or less resistive) than healthy tissues, especially if they contain insulating
adipose tissue. It would have been interesting to also test a population of phantoms with varying
densities and including tumors, representing older women. We can imagine that there would be a risk
of overlap between the data measured in a diseased breast with higher density, including a tumor,
and those of a healthy breast of lower density; the soft tissue could be confused with the tumor tissue.
This would be particularly true in the case of this type of phantom, not considering the capacitive or
thermal differences of a healthy soft tissue versus a tumor tissue.

In addition, incorporating a specific volume of simulated tumoral tissue into a healthy tissue
phantom is not easy. Theoretical tumoral volumes are, therefore, biased. This may explain in part why
no correlation was found between the raw data and the tumor volumes. Moreover, given the choice of
using phantoms of maximum density as a base for the inclusion of tumors, which are very conductive,
one might think that the current would have an easily conductive path but would not fully cover the
tumor volume. This should not occur in the case of complex human tissues with more resistive or
capacitive parts, even in the case of very dense breasts with a high proportion of soft tissue.

The results of the tumor risk score have to be qualified. Phantoms do not simulate all the
complexities of human tissue, either healthy or tumoral (variation of the temperature of the tumor
zones, variation of the transmembrane exchanges impacting the capacitive characteristics of tissues,
etc.).
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Besides, the experimental conditions did not allow phantoms to be studied with tumors smaller
than 5 cm3 and detecting tumors larger than 20 cm3 is of no clinical use. It is likely that it will be
necessary to explore the capacitive properties of healthy and tumorous human tissues (more difficult
to control on phantoms) in order to discriminate between low volumes.

5. Conclusions

However, the resistive models used indicate significant differences between the phantoms, which
came from the models themselves (insufficient population), as well as from bias from the phantom.

A new study on a large sample of healthy human subjects will be required to generate new
models, including resistive, capacitive and other sensor parameters versus reference data collected
from imaging.

In addition, this study seems to indicate the possibility of discriminating various types of tumorous
and healthy breast tissue using electrical methods in young adults. A new study on human subjects with
various typologies (to test the level of specificity of the device) and various volumes (to test the level of
sensitivity), including minimal tumors, is required to be able to validate the complete device. The latter
will then be used in its entirety with its additional sensors (temperature, photoplethysmography, etc.).
Further longitudinal studies can then be conducted to qualify the effects of the hormonal cycle and
daily life on predictive models.

6. Patents

Patent FR 1,903,655 resulted from a part of this work.
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