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An interpretable machine learning 
approach to identify mechanism 
of action of antibiotics
Mihir Mongia1,2, Mustafa Guler1,2 & Hosein Mohimani1*

As antibiotic resistance is becoming a major public health problem worldwide, one of the approaches 
for novel antibiotic discovery is re-purposing drugs available on the market for treating antibiotic 
resistant bacteria. The main economic advantage of this approach is that since these drugs have 
already passed all the safety tests, it vastly reduces the overall cost of clinical trials. Recently, 
several machine learning approaches have been developed for predicting promising antibiotics by 
training on bioactivity data collected on a set of small molecules. However, these methods report 
hundreds/thousands of bioactive molecules, and it remains unclear which of these molecules possess 
a novel mechanism of action. While the cost of high-throughput bioactivity testing has dropped 
dramatically in recent years, determining the mechanism of action of small molecules remains a 
costly and time-consuming step, and therefore computational methods for prioritizing molecules 
with novel mechanisms of action are needed. The existing approaches for predicting bioactivity of 
small molecules are based on uninterpretable machine learning, and therefore are not capable of 
determining known mechanism of action of small molecules and prioritizing novel mechanisms. We 
introduce InterPred, an interpretable technique for predicting bioactivity of small molecules and their 
mechanism of action. InterPred has the same accuracy as the state of the art in bioactivity prediction, 
and it enables assigning chemical moieties that are responsible for bioactivity. After analyzing 
bioactivity data of several thousand molecules against bacterial and fungal pathogens available from 
Community for Open Antimicrobial Drug Discovery and a US Food and Drug Association-approved 
drug library, InterPred identified five known links between moieties and mechanism of action.

Antibiotic resistance bacteria kills 700,000 worldwide each  year1. Overcoming the challenge of antibiotic resist-
ance requires development of antibiotics that can kill bacteria using novel modes of action. While the need for 
novel antibiotics has become more urgent in recent years, the progress in development of novel therapeutics 
has slowed down due to hurdles in discovery pipelines and lack of economic incentives. With current trends it 
is forecast that by 2050, the mortality rate of antibiotic resistance bacteria will be over ten million  worldwide2, 
surpassing that of cancer.

With hundreds of millions of known molecular structures available in molecular  libraries3–5, methods for 
prediction of bioactivity solely based on chemical structure can aid in selecting promising molecules active 
against targets of interest for downstream bioactivity testing. The first techniques for predicting the relationship 
between chemical structure and activity were rule  based6. The first machine learning approaches for prediction 
of structure-activity relationships from training data appeared in the  1990s7.

Neural networks were among the earliest methods used for learning structure-activity relationship from 
training  data8. However until very recently, neural networks (and many of other machine learning methods) 
were not capable of directly taking the graph structure of molecules as input. Recent advances in graph-based 
machine learning have enabled representation of complex molecular structures with real-valued vectors, making 
it feasible to incorporate local/global structural information for the prediction of molecular  properties9.

Recently, Stokes et al.10 applied a directed message passing neural network (D-MPNN) for prediction of the 
antibiotic activity of small molecules. In this approach, a vector representation is learned for each atom, and 
the molecular property is predicted as a learned non-linear transformation of these  representations11,12. Stokes 
et al. reported strong antimicrobial activity for Halicin, a drug chemical compound originally developed for 
treatment of  diabetes13.
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One of the main bottlenecks of the existing approaches is that they usually report hundreds/thousands of 
molecules, where the majority of them possess known mechanisms of action. Overcoming antibiotic resistant 
pathogens crucially depends on finding small molecules with novel mechanism of action, and currently determin-
ing the mechanism of action for small molecules remains an expensive and time-consuming effort. Therefore, it 
is crucial to develop computational methods for determining molecules with known mechanisms of action and 
prioritize molecules with novel mechanisms.

Mechanism of action of small molecules are usually linked to their bioactive moieties. One way to extract 
these moieties would be to find features of the molecule graph that correlate to bioactivity. Methods such as 
recursive feature  elimination14,  boruta15, and  lasso16 have been developed for this purpose, but they are limited 
to cases where a feature set is available.

Another method to find bioactive moieties is to determine the portion of a molecular graph that a D-MPNN 
uses to make a prediction. Several heuristic approaches have been developed in order to interpret graph neural 
networks. One approach is to take the gradient of neural networks with respect to the atoms in the molecular 
 graph17–20 and to attribute atoms with more importance if the gradient value for an atom is large. The set of atoms 
determined to be important by this approach, however, are not necessarily biologically relevant as often a large 
portion of the molecular graph is flagged as important. Furthermore although gradient methods have had some 
empirical success, the gradient only represents how the model changes with small perturbations, and high gradi-
ent values for atoms do not necessarily mean those atoms are important for classification by a neural network. 
Another approach for interpreting graph neural networks is to exhaustively search all subgraphs of a molecular 
graph and find those subgraphs that are either subsets of important nodes as determined by the gradient method 
or those that do not change the output of the neural network  significantly17,21. These methods again often fail in 
capturing reasonable bioactive moieties as they highlight subgraphs that are common in the molecular space.

Interpreting which substructures are responsible for bioactivity is a challenging problem for the existing algo-
rithms, as there are an exponential number of substructures of molecular graphs, and it is impossible to correctly 
infer which of these millions of substructures are responsible for activity from a few thousand training points. 
One way to overcome this issue is to limit the candidate substructures to those that are biologically important, 
including simple ring structures and functional  groups22,23. This knowledge however has rarely been integrated 
in machine learning methods for drug discovery.

In this work we develop an interpretable machine learning model by first identifying the simple ring structures 
and functional groups in the training data and using them to create binary feature vectors for each molecule 
where zeros and ones indicate absence/presence of rings and functional groups. Using simple rings and structures 
as features is advantageous since it is easier to interpret the correlations between these features and mechanism 
of action in the downstream analysis. Then we train a logistic regression or extra trees model with balanced 
scoring on these features in order to create a low complexity model that accounts for imbalanced data. Our 
model achieves similar accuracy as the D-MPNN in Stokes et al. while being fully interpretable, and it clusters 
molecules based on their mechanism of action. Moreover, the method can associate a bioacive molecule with its 
bioactive moiety, providing a strategy for prioritizing molecules with novel mechanism of action. Application 
of our method to the Community for Open Antimicrobial Drug Discovery (CO-ADD) and a FDA-approved 
dataset of antibacterial and antifungal bioactivites of several thousand molecules assigned five known mechanism 
of actions to their moieties.

Results
Overview of InterPred. InterPred predicts bioactivity of small molecules in the following steps (Fig. 1). 
Given (a) a collection of molecules (b) all unique simple ring structures and functional groups are extracted into 
binary vectors where 0/1 indicates absence/presence of a substructure. Then, (c) extra trees/logistic regression 
classifier with ℓ1 regularization is trained on the extracted binary features using balanced scoring. Given (d) a 
query molecule, (e) binary features are extracted, and (f) the trained model is used for predicting bioactivity.

Overview of MOACluster. MOACluster groups molecules with similar mechanism of action (MOA) in 
the following steps (Fig. 2). Given (a) a collection of molecules, MOACluster extracts their binary features. Then 
(b) a logistic regression classifier with ℓ1 regularization and balanced scoring is trained to predict bioactivity, and 
the model parameters are extracted. (c) MOACluster finds the indices of the top k coefficients and reduces mol-
ecule binary features to those k indices. (d) The molecules are clustered according to the reduced binary features.

Datasets. InterPred was trained on two datasets. The first dataset contains molecules from a US Food and 
Drug (FDA)—approved library, along with 800 natural products isloated from plant, animal, and microbial 
sources (total of 2335 unique compounds)10. Data on growth inhibition against Escheria coli is available for all 
the molecules. The corresponding test data contains growth inhibition of 162 molecules from the Drug Repur-
posing  Hub22. Each molecule in the test data is annotated with a mechanism of action by which it fights the 
disease it was originally purposed for. The second data set, CO-ADD23,24, contains bio-activity data from 4,803 
molecules against seven bacterial and fungal pathogens, which include Staphylococcus aureus, Pseudomonas 
aeruginosa, Acinetobacter baumannii, Candida albicans, Klebsiella pneumoniae, Cryptococcus neoformans, and 
Escheria coli . For this dataset, 80% of the molecules are randomly selected for training and the rest are allocated 
for testing.

Bioactivity prediction. Figure 3 illustrates the receiver operating characteristic (ROC) curve of InterPred 
compared to the approach from Stokes et al. on predicting activity against E. coli. Here 2335 molecules have been 
used for training, 162 molecules have been used for testing. These test molecules correspond to the portion of 
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the Drug Repurposing Hub for which screening data against E. coli is available (Stokes et al.). Figure 4 shows the 
distribution of the tanimoto similarity between each test data point and their closest neighbor in the training 
dataset. InterPred achieves nearly the same accuracy as Stokes et al. The area under the curve (AUC) for Inter-
Pred is 0.87 while the AUC for Stokes et al. is 0.88. Unlike Stokes et al., InterPred uses fully interpretable features.

Figure 1.  Interpretable prediction of antibiotic activity. Given (a) a collection of molecules, (b) InterPred finds 
all unique ring structures and functional groups and creates a binary vector for each molecule where zero/
one indicates absence/presence of ring structure. Then (c) InterPred trains a logistic regression classifier with l1
-regularization and balanced scoring/extra trees classifier on the resulting binary features. Given (d) a query 
molecule, (e) InterPred extracts the binary features, and (f) applies the logistic regression classifier/extra trees 
classifier to predict the activity.
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Linking substructures to mechanism of action in Stokes et al. dataset. Figure 5 shows the mech-
anism of action of molecules containing at least one of the five most important simple rings according to the 
logistic regression model. For the majority of molecules with similar bioactive moiety, the mode of action is 
the same. For example beta-lactam rings (shown in blue), are present in antibiotics such as penicillins and 
cephalosporins, and they have been reported to prevent cell wall  synthesis25,26. The majority of the molecules 
with this ring are mapped to the cell wall inhibition (G1) mechanism of action. In cases when molecules with 
the same moiety are mapped to multiple mechanisms of action, those mechanisms of action are usually similar. 
For example, for cyclohexane (shown in purple) associated mechanisms of action are bacterial 30S ribosomal 
subunit inhibitor (G3) and protein synthesis inhibitor (G6), both related to inhibiting protein synthesis. For 
moiety 4-quinolone (shown in green), the associated modes of action are HDAC inhibitor (G18), DNA gyrase 

Figure 2.  Clustering molecules based on their mechanism of action. Given (a) a collection of molecules, 
MOACluster extracts their binary features. Then (b) a logistic regression classifier is trained on the resulting 
binary features and the model coefficients are extracted. (c) MOACluster finds the indices of the top k 
coefficients and reduces molecule binary features to those k indices. (d) The molecules are clustered according 
to the reduced binary features.
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inhibitor (G2), and topoisomerase inhibitor (G7), which are all related to inhibition of bacterial nucleic acid syn-
thesis. Molecules containing 4-quinolone are known to inhibit bacterial nucleic acid synthesis by disrupting the 
enzymes topoisomerase IV and DNA  gyrase27. In cases where two molecules contain distinct bioactive moieties, 
they usually have distinct mechanisms of action. The only exceptions G13 and G17 can be explained by the fact 
that MAP kinases are a subset of Serine/Threonine  Kinases28. Among all the pairs of molecules with the same 
mechanism of action, 76% are clustered together by MOACluster, and among all the pairs of molecules clustered 
together by MOACluster, 67.6% have identical and 71% have similar mechanisms of action.

Linking substructures to mechanism of action in CO-ADD dataset. Figure 6 shows the ROC curve 
of InterPred for prediction for growth inhibition for seven different pathogens in the CO-ADD  dataset23,24. Fig-
ure 7 shows the most dominant bio-active moieties detected by InterPred. The pathogens that are predicted to 
be inhibited by each moiety are also shown. It has been reported that  guanadine29–31 and  nitro32 are the bioactive 
moiety in various antibacterial molecules. Moreover hydrazone/hydarazine have been reported to be potent 
against S. aureus, A. baumannii, and C. albicans33,34.

Figure 3.  ROC curve for neural network model from Stokes et al. and InterPred. For false positive rates greater 
than 0.3, the models have nearly identical true positive rate.

Figure 4.  Distribution of the tanimoto similarity between each test data point and its nearest neighbor in the 
training dataset. The average tanimoto similarity between test data points and their closest neighbors is 0.5035 
and the standard deviation is 0.18. Only 1.2% of test data points are more than 90% similar to a training data 
point.
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Figure 5.  Mechanism of action of molecules containing at least one of the five most important simple rings 
according to the logistic regression model. Each of the five rings are highlighted with a different color. Molecules 
sharing the same mechanism of action, as reported in the Drug Repurposing Hub, are further circled together. 
For the majority of molecules with similar bioactive moiety, the mode of action is the same.
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Figure 6.  ROC curve of InterPred for prediction of growth inhibition for 7 different bacteria in the CO-ADD 
dataset.
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Figure 7.  Top 31 ring/functional group features predicted to govern the mechanism of action of molecules 
along with pathogens they inhibit.
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Discussion
Fighting antibiotic resistance requires discovery of small molecules with novel mechanism of action. Recent 
advances in high-throughput screening have made it possible to collect large databases of small molecules and 
their activities against resistant pathogens. Moreover, neural network models have been developed to predict 
the antimicrobial activity of molecules by training on these large datasets. However, the existing models are 
largely uninterpretable, and do not provide any insight about the mechanism of action of small molecules, and 
their bioactive moieties. Therefore, it remains unclear which of the molecules among their predictions has novel 
activity, and should be pushed toward pre-clinical trials.

One of the reasons graph neural network methods remain uninterpretable is that there are millions of molecu-
lar substructures and it is impossible to correctly identify which substructures are correlated to bioactivity when 
there are only a few thousand training data. By focusing on simple ring structures and other substructures that 
are known to be biologically important, InterPred bypasses this issue. When trained on bioactivity data of sev-
eral thousand molecules from an FDA-approved library against E. coli, InterPred identified five important ring 
structures, each mapping to a distinct set of modes of action.

As massive public datasets of small molecule bioactivities are becoming available, it has become impossible 
to investigate all the molecules in these datasets that show interesting activities. Therefore, methods for mining 
these datasets and prioritizing for molecules with unseen mechanisms of actions are highly desired. InterPred is 
a fully interpretable approach for predicting the bioactivity of small molecules from training data and retains the 
same accuracy as the state of the art neural network approach. Additionally, InterPred finds chemical moieties in 
small molecule datasets that are responsible for bioactivity. Since molecules with novel bioactive moieties usually 
possess novel modes of action, if a molecule contains a previously unreported moiety that InterPred determines 
to be bioactive, the molecule could be prioritized for follow up studies.

Methods
Outline of InterPred algorithm. InterPred is an interpretable machine learning algorithm for prediction 
of bioactivity, functional groups responsible for bioactivity, and mechanism of action by training on data. Below 
we describe various steps of the InterPred algorithm.

Extracting molecular features. Presence of simple rings are extracted using open source package 
 rdkits35 by finding symmetrized smallest set of smallest rings. Additionally the presence 32 functional groups 
are extracted by checking whether each molecule has a graph substructure matching the functional group using 
the descriptors module in RDKit. These substructures are deduplicated using kekulized canonical  SMILES36. 
Since small molecules have only a few simple rings, feature vectors for each molecules usually only have a few 
non-zero entries.

Training. Both the extra trees ensemble classifier and logistic regression model with ℓ1 norm regularization 
are trained on training data and hyperparameters are optimized via five-fold cross validation. The number of 
trees in the extra trees model was cross-validated for the numbers 10, 40, 70, 100, 130, and 160. The lambda 
parameter for ℓ1-regularized logistic regression was cross-validated for values 1
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 , 1
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 , and 1
.2

 . In logistic 
regression and extra trees, the loss function is of the form

where t is used as an index for each training point, yt represents the true label of each molecule in the train-
ing dataset, xt represents the features of each molecule, f is a function with range [0,1], and L refers to a loss 
function that is low when f (xt) is close to yt and high otherwise. yt takes on value 1 if molecule t inhib-
its bacterial growth and 0 otherwise. In logistic regression, f (xt) = Sigmoid

(

(cTxt)
)

 . c is the coefficient vec-
tor of logistic regression and Sigmoid(z) = 1

1+exp(−z) . L(f (x
t), yt) = CrossEntropy(f (xt), yt)+ �

|c|1
T  where 

CrossEntropy(y, ŷ) = −ylog(ŷ)− (1− y)log(1− ŷ) and � is a regularization parameter optimized via cross 
validation. In extra trees f (xt) is either 0 or 1 and is determined the by the majority label produced by all the 
trees in the extra trees ensemble. L(f (xt), yt) is 0 if f (xt) and yt are not the same and 1 otherwise.

In the training set introduced by Stokes et al., nearly 95% of the molecules do not have antibacterial activity. 
Such an imbalance could result in misclassification of bioactive molecules as inactive. To avoid this, we use a 
“balanced”  approach37. We modify the objective function in (1) to the following:

where bt is the number of training points with label yt . This way bioactive and inactive molecules will contribute 
to the training nearly equally.

Identifying bioactive moeities. Substructures corresponding to largest positive coefficients of the logis-
tic regression model are reported as bioactive moieties.

Clustering mechanism of action. Since the logisitc regression model is trained with ℓ1 regularization, 
only a few coefficients are non-zero in the model. InterPred algorithm first reduces the feature vector for each 

(1)min

T
∑

t=1

L(f (xt), yt)

(2)min

T
∑

t=1

L(f (xt), yt)

bt
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molecule to these non-zero features, and then molecules with identical reduced feature vectors are assigned to 
the same cluster.

Data availability
The results present in the this study are available from https:// gitlab. com/ mongo licio us/ inter preta bleml- for- 
mecha nism- of- action/. The datasets analyzed in Figs. 3, 4, and  5 are available at https:// www. scien cedir ect. 
com/ scien ce/ artic le/ pii/ S0092 86742 03010 21. The datasets analyzed in Figs. 6 and 7 are available at https:// db. 
co- add. org/.
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the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	An interpretable machine learning approach to identify mechanism of action of antibiotics
	Results
	Overview of InterPred. 
	Overview of MOACluster. 
	Datasets. 
	Bioactivity prediction. 
	Linking substructures to mechanism of action in Stokes et al. dataset. 
	Linking substructures to mechanism of action in CO-ADD dataset. 

	Discussion
	Methods
	Outline of InterPred algorithm. 
	Extracting molecular features. 
	Training. 
	Identifying bioactive moeities. 
	Clustering mechanism of action. 

	References
	Acknowledgements


