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ABSTRACT: Fluorescent protein (FP) maturation can limit the accuracy with
which dynamic intracellular processes are captured and reduce the in vivo
brightness of a given FP in fast-dividing cells. The knowledge of maturation
timescales can therefore help users determine the appropriate FP for each
application. However, in vivo maturation rates can greatly deviate from in vitro
estimates that are mostly available. In this work, we present the first systematic
study of in vivo maturation for 12 FPs in budding yeast. To overcome the
technical limitations of translation inhibitors commonly used to study FP
maturation, we implemented a new approach based on the optogenetic
stimulations of FP expression in cells grown under constant nutrient
conditions. Combining the rapid and orthogonal induction of FP transcription
with a mathematical model of expression and maturation allowed us to
accurately estimate maturation rates from microscopy data in a minimally
invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and
computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.
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■ INTRODUCTION

Fluorescent proteins (FPs) have become indispensable tools
for the study of cellular dynamics in a wide range of
applications, such as monitoring nutrient and stress responses,
the quantification of gene expression noise, the measurement
of protein turnover, and the characterization of synthetic
inducible systems. However, FPs are not fluorescent
immediately after translation. Instead, they need to undergo
a process of maturation, which collectively refers to the folding
and post-translational modifications that result in the
formation of a functional chromophore.1,2 Maturation is
largely autocatalytic (except for the strict requirement of
molecular oxygen), but its kinetics is affected by environmental
factors such as temperature.3 Currently available FPs have in
vivo maturation times that range from a few minutes to hours.
This fact needs to be taken into account when choosing an FP
for a particular application, as the speed of FP maturation
determines the range of timescales over which expression
dynamics can be accurately captured.4,5 Moreover, slow-
maturing FPs can generate artifacts in the dynamic measure-
ments of signaling activity via fluorescence resonance energy
transfer (FRET) biosensors.6−8 Besides limiting the accuracy
of dynamic measurements, maturation also has a large effect on
the in vivo brightness of a given FP.9,10 This is because a
fraction of immature FPs is always present in dividing cell
populations where FPs are continuously produced and diluted
by cell growth. The size of this immature FP fraction depends

on both the FP maturation rate and the cell division rate, and
therefore becomes important for fast-dividing cells such as
bacteria and yeast. For all these reasons, knowing the
maturation rates of different available FPs is crucial for
choosing the right protein for a particular application or for
post-processing fluorescence time series to account for the
effects of FP maturation.
Both in vitro and in vivo techniques have been developed to

study the maturation kinetics. In vitro methods11−13 can
provide valuable mechanistic insights under well-defined
conditions. However, the intracellular biochemical environ-
ment may differ significantly from the in vitro environment
(e.g., in terms of oxygen availability, crowding, and the
presence of chaperones), and these differences can lead to
large discrepancies between the in vitro and in vivo folding and
the maturation properties of a given FP.9,14−18 On the other
hand, the in vivo assessment of FP maturation is typically
carried out via the chemical inhibition of translation6,9,19−22

(sometimes combined with photobleaching of mature FPs23)
and the quantification of the resulting fluorescence increase as
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immature precursors become fluorescent. However, the
prolonged exposure to translation inhibitors can induce cellular
stress responses and thus perturb intracellular variables that are
important for FP brightness, such as pH.14,24 These
perturbations may then affect the observed fluorescence
dynamics, especially over the long timescales of slow-maturing
FPs. To circumvent the potential artifacts of translational
inhibition, the FP of interest has been placed under the control

of a nutrient-inducible promoter. By fitting of a mathematical
model of FP expression and maturation to fluorescence
measurements obtained after the induction of FP tran-
scription,25 an estimate of the FP maturation rate could be
obtained. The main challenge of this approach is the low
temporal accuracy of nutrient-based induction, which can limit
the overall accuracy of the estimated parameters.

Figure 1. Main elements of our joint experimental/computational approach to maturation rate estimation. (A) EL222-based optogenetic gene
expression system is used to drive FP expression. LOV: light−oxygen−voltage-sensing domain; AD: activation domain (VP16); HTH: helix-turn-
helix DNA-binding domain; BS: binding sites; CYC180: truncated CYC1 promoter;27 and FPOI: FP of interest. (B) Quantification of fluorescence
dynamics via time-lapse fluorescence microscopy of a mother cell population in which the EL222-AQTrip system drives FP expression. The cells
are stimulated with short light pulses every 5 min (Figure S1). (C) Determination of cell cycle- and growth-related parameter distributions of the
monitored mother cells, necessary for the simulation of cell volume dynamics [panel (E) and Figure S4]. (D) Estimation of the total delay between
the activation of EL222 and the appearance of FP molecules via Western blotting (Figures S2 and S3). (E) Modeling the volume dynamics of a
mother cell and its growing bud during a cell cycle, defined as the interval between two cytokinesis events. The continuous black line represents the
linear approximation used in our model, in which a cell starts with a volume V0, grows linearly with an average growth rate μ over the cell cycle
duration Τ, reaches a volume V1 at the end of the cell cycle, and loses a volume Vd (equal to the volume of the daughter cell) at division. A detailed
description is provided in Methods. (F) Schematic representation of the mathematical models describing mRNA, dark protein (Pd), and FP (Pm)
abundance assuming one-step and two-step maturation kinetics. The models are described by a set of delay differential equations, which take into
account the delay between the activation of EL222 and the appearance of FP molecules [cf. panel (D)]. The rates of the maturation steps are
denoted in red. The combination of the abundance and volume models enables for the calculation of the FP concentration over time (cf. Methods
for further details). (G) Population-averaged fluorescence concentration of simulated cells (brown line) is fitted to the measured population-
averaged fluorescence of real cells (green dots) in order to estimate the abundance model parameters, including the maturation rate km. (H)
Confidence intervals for maturation rates (and the corresponding maturation half-times) are obtained via the profile likelihood35 (Methods).
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A further complication of in vivo maturation analysis arises
from the fact that different organisms differ in terms of their
intracellular biochemical environment and growth temper-
atures. For this reason, results from one organism may not be
applicable to others, and the systematic in vivo characterization
of FP maturation has to be carried out specifically for a given
organism of interest. Systematic in vivo maturation studies have
already been presented for bacterial9 and mammalian26 cells,
with an optimal growth temperature of 37 °C. However, with
the exception of a few small-scale studies,20,23,25 a systematic
analysis of in vivo FP maturation in budding yeast
(Saccharomyces cerevisiae) is still missing, despite the central
importance of this model eukaryote in systems and synthetic
biology. Moreover, the fact that budding yeast grows optimally
at 30 °C makes it difficult to extrapolate FP maturation rates
from measurements made at 37 °C.
Here, we carry out the first systematic study of in vivo FP

maturation in budding yeast, and present the maturation rates
for 12 commonly used and codon-optimized FPs. Avoiding the
use of invasive techniques such as translation inhibition, we
implemented a new approach that combines the optogenetic
induction of FP expression with time-lapse fluorescence
microscopy and mathematical modeling to estimate the FP
maturation rate. Optogenetic stimulation based on the EL222
gene expression system27,28 provided minimally invasive, rapid,
and orthogonal induction of FP transcription, while the
microscopic observation of single cells growing under constant
nutrient conditions enabled us to properly account for the
distinctive volume dynamics of this organism, which is driven
by asymmetric division. Finally, the single-cell measurements
of fluorescence and growth dynamics allowed us to calibrate
mathematical models describing FP expression and maturation
dynamics, pinpoint FPs with one and two kinetic steps in their
maturation process, and obtain accurate maturation rate
estimates.
Our results reveal a large range of maturation timescales

among the tested FPs, even among the proteins of the same
color. Moreover, our maturation rate estimates differ in several
cases from in vitro measurements and in vivo results obtained in
other organisms, highlighting the importance of studying
maturation in the context of an organism of interest. We
further demonstrate how maturation can affect the in vivo
brightness of an FP expressed in fast-dividing cells and how it
can distort the single-cell measurements of gene expression
dynamics. Besides providing a useful resource for the budding
yeast community, we believe that our new experimental
approach will also be applicable to other organisms thanks to
the widespread availability of optogenetic gene expression
systems.29

■ RESULTS
Light-Inducible Expression of a Set of FPs in Budding

Yeast. To overcome the technical challenges associated with
nutrient- and chemically induced gene expression systems, we
used a single-component optogenetic gene expression system
based on the bacterial light−oxygen−voltage (LOV) protein
EL22227,28 to activate the expression of FPs in budding yeast.
We constructed a collection of 12 yeast strains, each carrying a
chromosomally integrated copy of a slow-reverting EL222
mutant (AQTrip30) and a copy of a codon-optimized FP gene
driven by an EL222-responsive promoter (Figure 1A and
Methods). The AQTrip mutant was chosen because of its slow
dark reversion (with a half-life of ∼30 min30), which allows the

use of sparsely spaced light pulses for induction, thus avoiding
potential phototoxicity effects caused by continuous illumina-
tion over long time spans (Figures 1B, S1 and Supporting
Information Note 1). Because AQTrip is activated within a few
seconds upon light induction, similarly to the wild-type
protein,30 the induction of FP expression can be precisely
timed, a feature that is important for precisely capturing the
fluorescence dynamics via mathematical modeling.
For our tests, we chose a set of FPs of different colors that

have been previously used in yeast, for example, in the
construction of FRET-based biosensors or for monitoring
dynamic changes in protein expression. To monitor FP
expression dynamics, we followed the fluorescence of a yeast
cell population in time using time-lapse fluorescence
microscopy. A constant nutrient environment was maintained
throughout the experiments by growing cells inside a
microfluidic device31 suited for long-term cell imaging.

Mathematical Description of FP and Single-Cell
Volume Dynamics. Between the induction of FP expression
and the observation of fluorescence lie the processes of
transcription, translation, and maturation. Maturation, in
particular, has been modeled using a single- or multistep
models,25,32,33 depending on the features of a particular FP. To
estimate FP maturation rates using a mathematical model that
captures the dynamics of FP expression and maturation, we
constructed a system of delay differential equations (DDEs)
describing mRNA transcription from the active EL222-
responsive promoter, the translation of the mRNA into an
immature FP precursor form, and the formation of a FP via
one or more rate-limiting steps (Methods and Figure 1D,F).
We will henceforth refer to these equations (eqs 1a−1c, or
2a−2d in Methods) as the “abundance model”.
Budding yeast populations consist of mother and daughter

cells that differ in size, morphology, cell cycle duration, and
growth dynamics. This fact complicates the modeling of
volume dynamics of yeast populations and generates practical
challenges for the automatic single-cell quantification of
protein abundance, which requires the segmentation and
tracking of mother cells and their growing buds. To simplify
the modeling of volume dynamics and experimental data
collection, we therefore determined the mean cellular
fluorescence intensity (a proxy for FP concentration)20,34 for
a fixed number of mother cells that were present from the
beginning until the end of an experiment (Methods).
To describe the concentrations of the mRNA and protein

species, our abundance model was augmented with a simple
individual-based stochastic model for mother volume dynamics
(Figure 1C,E and eqs 1c−2d in Methods). Briefly, mother cells
produce buds which grow and eventually divide, taking away a
fraction of the mother−bud cell contents and volume.
According to our model, during a cell cycle c, a mother cell
of initial volume V0,c grows a bud at a constant (average) rate
μc over a cell cycle with a duration Τc, after which the bud
divides. Upon division, the bud volume (Vd,c) is lost (Figure
1E). The distributions of all volume model parameters were
estimated from the same mother cells that were tracked
throughout each experiment (Methods) in order to capture the
small differences in growth dynamics that are typically
observed across different experiments (Figure S4A−D). With
these distributions, we could generate individual mother cell
volume trajectories whose features matched the volume
dynamics observed in our experiments (Figure S4E,F). Using
the mRNA−protein abundance model together with the
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volume model, we could then simulate the evolution of mRNA
and protein concentrations in a population of growing and
dividing mother cells (Methods) and match the population-
averaged FP concentration predicted by the model with the
population-averaged fluorescence concentration measurements
obtained from our experiments (Figure 1G and Methods).
Model-based estimates of FP maturation rates. For all

the green and yellow-green FPs derived from Aequorea victoria
GFP (avGFP), we implemented a one-step maturation model,
reflecting the fact that the final oxidation step in the
chromophore maturation process is the main rate-limiting
step for these FPs.13,36 The maturation of Cerulean (also
avGFP derived) was also adequately captured using a one-step
model. However, fitting mTurquoise2 and mTFP1, and all the
red-emitting FPs using a one-step model produced less
satisfactory fits. In those cases, a two-step model was able to
capture adequately the FP maturation dynamics and was
strongly supported by the Akaike information criterion
(AIC)37 in comparison to the one-step model (Supporting
Information Note 4).
To ensure that FP maturation rates can be reliably estimated

from our experimental data despite the presence of additional
unknown parameters in our model, we investigated the
identifiability properties of our models.38 Given that the
volume model parameterization was provided by the
experimental data, we focused on the identifiability of the
abundance model, whose parameters were unknown. Structural
identifiability analysis of this model verified that the maturation
rate for the one-step model and the individual maturation rates
of the two-step models are structurally locally identifiable
(Supporting Information Note 5). However, the individual
maturation rates of the two-step models are in practice difficult
to distinguish from each other (i.e., they are practically
unidentifiable) when the individual step half-times are not too
different from each other (Methods and Supporting
Information Note 5). It is worth noting that these observations
are valid for all linear two-step maturation models used in the
literature and are not specific to our model. Given the
difficulties associated with estimating two distinct maturation
rates for each two-step model, we estimated a single rate
parameter for both the maturation steps because the error
introduced by this choice is negligible when the two rates are
of the same order of magnitude (Supporting Information Note
5), that is, in the case when a two-step maturation model is
really necessary (when km1 and km2 differ by more than an
order of magnitude, the smallest rate will dominate the system
response and produce single-step behavior).
To estimate the unknown parameters of the abundance

model, we sought for the parameter value combination that
maximized a log-likelihood function formed by the sum of
squared deviations between the measured and predicted
population-averaged FP concentrations over time (Figure 1G
and Methods), assuming that our measurements were
corrupted by additive Gaussian noise generated by measure-
ment noise and day-to-day variability (Methods). Our
likelihood function considered the fluorescence data up to
200 min post-induction, an interval which was determined to
be sufficient for estimating the model parameters for all the
FPs considered in this work. The maximization of the
likelihood function with respect to the abundance model
parameters (taking into account unidentifiable combinations,
see Methods) resulted in good fits for all the FP data sets
(Figure S5A−L).

Following likelihood maximization, we verified the practical
identifiability of the FP maturation rate and obtained
approximate confidence intervals for the maturation rates of
different FPs through profile likelihood estimation35 (Figure
1H and Methods). The resulting optimal maturation half-time
estimates (given by ln(2)/km*, where km* is the maximum
likelihood maturation rate estimate) and their associated 95%
confidence intervals are displayed in Table 1. It should be

noted that in the case of a two-step maturation model, a single
maturation half-time cannot be defined based on the
maturation rates of the individual steps. Instead, the sum of
the half-times defined by each maturation step (ln(2)/km1* +
ln(2)/km2* ) forms a lower bound on the actual maturation half-
time of the protein (Supporting Information Note 5). An
accurate estimate of the maturation half-time (assuming that
only the nonfluorescent precursor Pd1 is present initially) can
be obtained by simulation and is also provided in Table 1.
Given that the stochastic individual-based volume model

that we used above to calculate species concentrations can be
computationally intensive, we finally explored the possibility of
employing a simpler DDE-based model to directly compute
species concentrations over time. This deterministic model
contains a linear term to capture the average effect of dilution
across the monitored cell population, resulting in much faster
runs (Supporting Information Note 6). Although it relies on

Table 1. Estimates of Maturation Half-Times for the FPs
Tested in Our Experimentsa

one-step maturation rates

FP t50 (min) 95% C.I.

Cyan
Cerulean 9.7 [5.5, 13]

Green
sfGFP 6.9 [5, 10.5]
pH-tdGFP 13.7 [10, 21]

Yellow-Green
mVenus 20.8 [11.5, 31]
mCitrine 10.4 [8, 20]
mNeonGreen 11.6 [7.5, 20]

two-step maturation rates

FP
t1,50 (min)/t2,50

(min) 95% C.I.
equivalent t50

(min)

Cyan
mTurquoise2 27.5, 27.5 [18.5, 30] 66.6
mTFP1 31.6, 31.6 [28.5, 46.5] 76.5

Red
mScarlet-I 12.9, 12.9 [11, 17.5] 31.2
mCherry 21.6, 21.6 [20, 28] 52.3
tdTomato 38.4, 38.4 [36.5, 55] 93
mKate2 53.5, 53.5 [45, 76] 129

aFor proteins with a one-step maturation kinetics, the maturation
half-life time is given by t50 = ln(2)/km*, where km* is the maximum
likelihood estimate of the maturation rate. As discussed in Supporting
Information Note 5, we estimated a single rate parameter for both the
maturation steps of two-step proteins, given the practical unidentifi-
ability of the two maturation rates. The half-time of each step is given
by t1,50 = t2,50 = ln(2)/km*, where km* is the (common) maximum
likelihood rate estimate. 95% confidence intervals for maturation rates
(and therefore for maturation half-times) were obtained via profile
likelihood (Methods). The equivalent maturation half-time for two-
step FPs was obtained via simulation, assuming that only the first
precursor is present initially.
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stronger simplifying assumptions than the individual-based
model, this concentration model was able to produce
maturation rate estimates that were, for the most part, similar
to those obtained with the individual-based model. This
finding demonstrates that this simpler model is a viable
alternative, especially when computational resources are
limited. It should be noted, however, that the calculation of
the dilution rate in this model still requires the determination
of single-cell volumes and division rates, as was done for the
more complex volume model above (Supporting Information
Note 6).
Testing Model Predictions. As a first test of our model

predictions on the relative maturation rates of different FPs, we
performed a protein synthesis inhibition experiment, similar to
the assay used to estimate FP maturation rates in vivo.6,9,19,20

In this experiment, we added the translation inhibitor
cycloheximide (CHX) to growing and dividing yeast cells
expressing different FPs under the control of the constitutive
TEF1 promoter. When CHX reaches the cells, it blocks the
production of new FP precursors, stops cell division, and slows
down volume increase. The maturation of immature FP
precursors that were produced prior to CHX addition will
therefore lead to an increase in the fluorescence intensity of the
cells. The concentration of these immature precursors, and
thus the fluorescence increase, depends on the maturation rate

of the FP. Based on this reasoning, we expected that the
addition of CHX to constitutively expressed FPs with different
maturation rates would lead to fluorescence changes that
reflect the relative maturation rates of these proteins. For fast-
maturing FPs, the increase in fluorescence should be small,
reflecting the fact that the immature precursor concentration is
a small fraction of the total FP concentration. On the other
hand, the immature fraction should be larger for slow-maturing
FPs, leading to a correspondingly larger fluorescence increase
after CHX addition. In line with the maturation rate estimates
of Table 1, the CHX treatment of cells expressing sfGFP,
mVenus, mCherry, and mKate2 resulted in fluorescence
increases that were ordered in exactly the same way as the
maturation half-times of these proteins (Figure 2A). These
observations also demonstrate the fact that the in vivo
brightness of a slowly maturing FP in fast-dividing cells is
severely limited by the maturation kinetics because a large
fraction of the expressed FP remains invisible.
Besides affecting the in vivo brightness, differences in FP

maturation rates manifest themselves in highly dynamic
settings, such as in the monitoring of cell cycle-regulated
gene expression. A prime example of cell cycle-regulated
proteins is histones. Because the synthesis of histones is tightly
coupled to DNA replication,39−41 the dynamics of the
fluorescently tagged core histone Hta2 can in principle be

Figure 2. Testing model predictions. (A) Fluorescence dynamics of cells carrying sfGFP (green, n = 49 cells), mVenus (orange, n = 55), mCherry
(black, n = 53), and mKate2 (red, n = 61) driven by the constitutive TEF1 promoter after the addition of CHX (25 μg/mL final) at t = 0 (dashed
line). Fluorescence curves were normalized with respect to their value at t = 0 to better compare the relative increase in fluorescence. The vertical
black arrows indicate the relative maximum reached by the fluorescence signal, and bands denote the standard error of the mean. The small
(inconsequential) decrease in fluorescence observed at later times is not due to FP degradation (Figure S6), as we verified using Western blotting.
Instead, it can be attributed to a combination of photobleaching of the FP pool, changes in the intracellular environment that may affect FP
brightness, and changes in mother cell volume after CHX treatment. (B) Hta2-sfGFP single-cell fluorescence dynamics during the cell cycle (from
karyokinesis to karyokinesis) (n = 7 cells). The dashed line denotes the moment of budding. Individual cell cycle traces were interpolated and
aligned as described in Methods. The thick green line represents the mean. (C) Predicted Hta2-sfGFP (green) and Hta2-mRFP1 (red)
fluorescence dynamics during the cell cycle assuming a pulsatile Hta2 production rate (black). One-step maturation kinetics and a maturation half-
time of 7 min were used to model Hta2-sfGFP dynamics. A two-step model with individual maturation half-times of 22 min were used to model
Hta2-mRFP1 dynamics. The time axis was normalized from 0 to 1 to represent progression through the cell cycle. Furthermore, details on the
histone−FP model are provided in the Supporting Information Note 3. (D) Hta2-mRFP1 single-cell fluorescence dynamics during the cell cycle
(from karyokinesis to karyokinesis) (n = 6 cells). The dashed line denotes the moment of budding. Individual cell cycle traces were interpolated
and aligned as described in Methods. The thick red line represents the mean.
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used to determine the interval of DNA replication during the
budding yeast cell cycle. Given the relatively short timescale of
this process (average S/G2/M duration in fast-growing
budding yeast is around 60 min) and the fact that many of
our FPs had comparable maturation half-times, we reasoned
that the maturation rate of the FP used in the Hta2-FP fusion
construct could potentially distort the observed histone
dynamics during the cell cycle.
To explore this possibility, in a second test, we compared the

cell cycle dynamics of Hta2-sfGFP and Hta2-mRFP1 (a
precursor of mCherry with a similar reported maturation
timescale9) by measuring the total fluorescence of cells
growing on minimal glucose medium for several cell cycles
(Methods). To arrive at cell cycle histone profiles, we
interpolated, aligned, and averaged individual cell cycle
fluorescence time series using the appearance of the bud
(entry to S) and karyokinesis (the onset of anaphase) as cell
cycle indicators (Methods). Following histone abundance with
the fast-maturing sfGFP correctly showed a plateau during G1,
where no DNA replication takes place, followed by an increase
starting soon after budding and a second plateau prior to
karyokinesis, correctly indicating that histone synthesis starts
right after budding and stops several minutes before the
anaphase (Figure 2B). A simple mathematical model that
assumed a pulse for the histone synthesis rate and accounted
for sfGFP maturation (Supporting Information Note 3) was
able to correctly predict the observed fluorescence dynamics
(Figure 2C).
In stark contrast to sfGFP, use of the slow-maturing mRFP1

as a reporter of histone synthesis produced a very different
fluorescence pattern, with the signal increasing throughout the
whole cell cycle, even during G1 and late G2/M when no
histone synthesis occurs (Figure 2D). Assuming the same
histone synthesis rate dynamics as before and accounting for
mRFP1 maturation with a two-step model using the
maturation rates estimated for mCherry (Supporting Informa-
tion Note 3), we correctly predicted the observed fluorescence
dynamics. The model also explains the “paradoxical” increase
in fluorescence during G1 (when histones are not produced),
which is due to the fact that a fraction of the immature mRFP1
synthesized during the previous cell cycle is still maturing
during the G1 phase of the following cell cycle (Figure 2C,D).
Collectively, the tests described above showed that our

maturation rate estimates are in good agreement with
experimental observations. They also highlight the effect of
maturation on the in vivo brightness of a given FP, and on the
observations of dynamic single-cell gene expression patterns.

■ DISCUSSION
Maturation is an FP characteristic that is often under-
appreciated, even though it plays a crucial role in the studies
of gene expression dynamics inside living cells and also
contributes to the in vivo brightness of a given FP in dividing
cell populations. A previous study of FP maturation in the
model prokaryote Escherichia coli investigated the effect of
temperature on maturation times by growing cells at 37 and 32
°C, observing large changes in maturation times with
temperature.9 In this work, we carried out a systematic
characterization of FP maturation kinetics for a collection of
commonly used FPs in budding yeast, a model eukaryote that
grows optimally at 30 °C. To avoid perturbations in cell
physiology and growth (which may affect FP maturation
kinetics), we developed an experimental approach that does

not involve the use of translation inhibitors. Instead, we
combined the optogenetic induction of FP expression with
mathematical modeling to infer FP maturation rates in a
minimally invasive manner.
Our results showed that FP maturation times can vary

substantially, even among proteins of the same color. For
instance, Cerulean was one of the fastest FPs that we tested,
whereas the other two cyan proteins (mTurquoise2 and
mTFP1) were among the slowest and were also fitted with a
two-step maturation model. Although mTurquoise2 is avGFP
derived, previous work9 has already indicated that its
maturation kinetics cannot be captured by a single exponential.
On the other hand, mTFP1 is not an avGFP derivative,42 and
the maturation process of its chromophore is unknown. Our
results suggest that mTFP1 maturation is complex and slow.
The estimates of Cerulean and mTurquoise2 maturation half-
times agree well with estimates obtained from E. coli grown at
32 °C.9 However, the in vitro characterization of mTFP1
maturation43 suggested a much shorter maturation half-time of
15 min, highlighting the discrepancies between in vitro and in
vivo FP studies. Slow cyan FP maturation needs to be taken
into account when these proteins are used for the construction
of FRET-based biosensors.6,8

The green FPs derived from avGFP are among the fastest-
maturing FPs known, and therefore, both sfGFP and pH-
tdGFP are fast-maturing proteins, with the former being the
fastest protein in our collection. An in vivo maturation half-
time very close to our estimate has been previously obtained in
budding yeast.25 Interestingly, the maturation of an sfGFP
variant very similar to ours was distinctly slower in E. coli,9

which exemplifies the fact that FP maturation kinetics can vary
among organisms. The maturation of pH-tdGFP has not been
quantified before, and our results suggest that it is a fast-
maturing FP, in agreement with the fact that this is a tandem
dimer of two pH-resistant sfGFPs.44

Out of the yellow-green FPs that we tested, mNeonGreen
and mCitrine showed faster maturation compared to mVenus.
Both the mNeonGreen and mVenus maturation half-times are
comparable with the E. coli-based estimates at 32 °C9 (using
the nomenclature of our Venus variant, it is Venus JBC in ref
9). For mCitrine, the in vivo maturation half-time had not been
determined before. Our estimate is in line with the in vitro
maturation half-time of the protein at 37 °C (11.5 min45).
Fast-maturing yellow-green FPs have an advantage over GFP
variants, as they can be jointly expressed with cyan FPs when
two fast gene expression readouts are needed (e.g., in studies of
extrinsic noise46).
Red- and far-red-emitting FPs derived from DsRed

(mCherry and tdTomato) and TagRFP (mKate2) are known
to display complex maturation dynamics through the slow
formation of a green/blue fluorescent intermediate.2,32,36

mScarlet-I was developed from a synthetic template based on
naturally occurring red FPs (RFPs),47 and its maturation
process is unknown. According to our results, the maturation
of mScarlet-I appears to follow similar steps as other RFPs.
The complex and slow maturation process of RFPs/far-RFPs,
which requires two-step kinetic models to be captured
adequately, makes them inappropriate for studying fast-
changing gene expression dynamics. Moreover, the practical
brightness of these FPs is severely reduced in fast-dividing cells
such as bacteria and yeast, due to the existence of a large
fraction of immature precursors that are always present in the
cell. Still, due to the fact that RFPs or far-RFPs are frequently
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used as acceptors in FRET-based biosensors, knowledge of
their maturation rates is important, as the relative maturation
speed of the donor and acceptor is critical for the efficiency of
an FRET sensor.6−8 Our kinetic models of RFP/far-RFP
maturation contain two maturation steps, which lead to
nonexponential maturation dynamics and no closed-form
expression for the maturation half-time, which needs to be
obtained via simulation. Moreover, obtaining reliable estimates
for the maturation rates of the individual steps is difficult in
practice, as our mathematical analysis showed. For this reason,
we reported a single maturation rate value for both the
maturation steps of FPs with a two-step mechanism. This value
was able to accurately reproduce the observed maturation
dynamics of each FP.
Our results show that mScarlet-I is the fastest-maturing RFP

among those tested, with an effective half-time (31 min)
comparable to previous estimates from E. coli grown at 32 °C.9

mCherry is considerably slower, with an overall in vivo
maturation half-time (52 min) very close to a previous
estimate obtained in budding yeast25 (56 min, based on
individual half-times of 17 and 30 min). Although mKate2 was
reported to have an in vitro half-time of less than 20 min at 37
°C,48 it is a very slow-maturing far-RFP in budding yeast, and
therefore impractical for most applications. Finally, the
tdTomato in vivo maturation half-time (1.5 h) is also
considerably longer than the previously known in vitro estimate
(1 h at 37 °C49).
We believe that the maturation rate estimates presented here

will be a useful resource for the budding yeast community and
should serve as good starting points for FP maturation
estimates in organisms grown at similar or lower temperatures.
Thanks to the availability of fast optogenetic gene expression
systems for a large range of organisms,29 we expect that our
experimental approach can be easily adapted to study in vivo
FP maturation in multicellular organisms as well, where the use
of protein synthesis inhibitors is impractical.

■ METHODS
Plasmid Construction. E. coli Dh5α cells were used for

plasmid cloning and propagation. All plasmids were con-
structed using Gibson assembly.50 The details of the plasmids
used in this study can be found in Table S1 and the sequences
of the primers are available in Table S4.
All polymerase chain reaction (PCR) amplifications in this

study were performed using Q5 and Phusion polymerases from
New England Biolabs and KOD polymerase from Toyobo.
The FPs were subcloned into the pDB60 plasmid downstream
of the 5× EL222 transcription factor binding sites, a truncated
CYC1 promoter, a Kozak sequence, and upstream of the
ADH1 terminator (5×BS-CYC180pr-Kozak-FPs-ADH1t). The
pBD146 plasmid was modified to remove the mScarlet-I tag,
leaving only the EL222-AQTrip transcription factor construct
(ACT1pr-VPEL222_AQTrip-CYC1term). All the plasmids
were verified by Sanger sequencing (Eurofins genomics, The
Netherlands).
Yeast Strain Construction. All the presented S. cerevisiae

strains were derived from BY4741 and YSBN6 (Euroscarf,
Germany), both were S288C-derived strains. The strains used
in this study are listed in Table S2.
The 5× EL222 transcription factor binding sites and EL222-

AQTrip transcription factor constructs were integrated,
respectively, into the HIS3 and URA3 loci of BY4741. The
former was integrated from PCR-linearized pDB60 and

pLV12-21 plasmids and the latter from a PacI-digested pLV1
plasmid. sfGFP- and mRFP1-tagged Hta2 were cloned in the
YSBN6 background. Each genetic construct was genomically
integrated using the classical lithium acetate transformation,51

and all the constructs were verified by Sanger sequencing
(Eurofins genomics, Netherlands).

FP Sequences. All the FP sequences used in this study and
their characteristic mutations relative to their predecessors are
listed in Table S3. All the DNA sequences of proteins
expressed in this study have been yeast codon-optimized.
Three cyan FPs were analyzed, Cerulean, mTurquoise2, and

mTFP1. The Cerulean protein used in this study was taken
from ref 52 and is similar to the previously described
mCerulean ME.9 Our protein lacks the A206K substitution
of mCerulean ME (which prevents dimerization), and contains
the neutral K26R mutation. mTurquoise2 was obtained from
ref 53, in which the proteins are truncated at the last 11 amino
acids to create mTurquoise2Δ. For the characterization of the
protein in this work, we reintroduced these amino acids to
generate the full-length version. mTFP1 corresponds to the
original version of the protein and was taken from ref 54.
Two green FPs were analyzed, sfGFP and pH-tdGFP. The

sfGFP protein characterized in this study is identical to the
original with the exception of the previously introduced
mutation A206R, which prevents dimerization.25 pH-tdGFP is
a tandem dimer of two pH-resistant sfGFPs separated by a
flexible 22 amino acid linker. These sfGFPs differ from the
original by two mutations, N149Y and Q204H.44

Three yellow-green FPs were analyzed, mVenus, mCitrine,
and mNeonGreen. The mVenus used in this study corresponds
to the original mVenus,55 also called mVenus JBC in ref 9, and
presents the H231L neutral mutation, which was introduced in
the EYFP predecessor.9 Our mCitrine, taken from ref 27, is
equivalent to the original version56 with the exception of the
F64L substitution, which is known to improve maturation.57

mNeonGreen was derived from the tetrameric LanYFP of
Branchiostoma lanceolatum and the original sequence was
used.58

Four RFPs were analyzed, mScarlet-I, mCherry, tdTomato,
and mKate2. mScarlet-I was taken from ref 59 and is identical
to the original.47 The mCherry presented in our work was
taken from ref 60. tdTomato was also taken from ref 53 with
no further mutations. mKate2 was taken from ref 27 without
modifications.

Growth Conditions. For all experiments involving the
EL222-AQTrip system, cells were grown in YNB−His medium
(Formedium) supplemented with 2% glucose (Sigma-Aldrich).
For the estimation of histone dynamics during the cell cycle,
cells were grown in minimal medium61 supplemented with 2%
glucose. Note that the average division time in YNB−His is
shorter than in the minimal medium (80 vs 100 min). Batch
cultivation was carried out at 30 °C with shaking at 300 rpm.
Exponentially growing cells were used for all the experiments.

Microscopy. All microscopy experiments were performed
using inverted fluorescence microscopes (Eclipse Ti-E, Nikon
Instruments). The temperature was kept constant at 30 °C
using a microscope incubator (Life Imaging Services). For all
the experiments, a 100× Nikon S Fluor (N.A. = 1.30) objective
was used. Images were recorded using the iXon Ultra 897 DU-
897-U-CD0-#EX cameras (Andor Technology). Fluorescence
measurements were performed using a light-emitting diode
(LED)-based excitation system (pE2; CoolLED Limited and
Lumencor, AURA). For green fluorescent protein (GFP)
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measurements, cells were excited at 470 nm (excitation filter:
450−490 nm, dichroic: 495 nm, and emission filter: 500−550
nm). For yellow fluorescent protein (YFP) measurements, cells
were excited at 500 nm (excitation filter: 490−510 nm,
dichroic: 515 nm, and emission filter: 520−550 nm). For RFP
measurements, cells were excited at 565 nm (excitation filter:
540−580 nm, dichroic: 590 nm, and emission filter: 600−650
nm). To activate the EL222-AQTrip system, we used an LED
light source centered at 440 nm (pE2; CoolLED Limited) and
further filtered at 420−450 nm. During brightfield imaging a
long-pass (600 nm) filter was used to prevent unwanted
activation of the EL222 system. The Nikon perfect focus
system was used to prevent loss of focus.
For all the microscopy experiments involving the EL222

system, batch cultures were grown in the dark. Cell preparation
and experiment setups were also conducted in the dark or
under a red light in order to prevent unwanted activation of the
EL222 system.
For the measurement of fluorescence increase after light

stimulation for the estimation of the maturation time,
exponentially growing cells were loaded into a microfluidic
device31 and were continuously fed fresh warm medium at 3.6
μL/min. For each experiment, multiple nonoverlapping XY
positions were recorded. For each position, unless otherwise
stated, the activation of the EL222-AQTrip system and the
recording of brightfield and fluorescence images were
performed every 5 min. For the EL222 system activation,
light pulses of 1 s at ∼100 mW/cm2 were used.
For the measurement of fluorescence intensity of cells

expressing Hta2-sfGFP or Hta2-mRFP1, exponentially growing
cells were placed under a prewarmed agarose pad (minimal
medium, 2% glucose, and 1% agarose). Brightfield and
fluorescence imaging for multiple XY positions were performed
every 5 min.
For the estimation of the transcriptional + translational delay

(τ1 + τ2, cf.Mathematical Modeling section below) using CHX,
exponentially growing cells at OD = 0.1 were incubated in the
dark for 30 min at 30 °C in plastic well plates for inverted
fluorescence microscopy (Ibidi) treated with concanavalin A
(1 mg/mL). The wells were then washed twice with
prewarmed medium (+2% glucose) and placed under the
microscope. For each well, multiple nonoverlapping XY
positions were recorded, and for each position, the activation
of the EL222 system and the recording of brightfield and
fluorescence images were performed every 3 min. A final
concentration of 25 μg/mL CHX (diluted in H2O) was then
added to the wells at the indicated time.
For the measurement of fluorescence dynamics after CHX

addition, cells expressing sfGFP, mVenus, mCherry, and
mKate2 under the control of the constitutive TEF1 promoter
were incubated in plastic wells as described above, with
brightfield and fluorescence images taken every 5 min. A final
concentration of 25 μg/mL CHX (diluted in H2O) was added
to the wells at the indicated time.
Image Analysis. For each experiment, the fluorescence

channel images were background corrected using the rolling
ball background subtraction plugin in ImageJ. Cell segmenta-
tion and tracking were performed on the brightfield channel
using semi-automatic ImageJ plugin BudJ.62 The cell volume
output of BudJ was used for further analysis. For fluorescence
analysis, the background-corrected images were analyzed using
a custom-made Python script and the segmentation boundaries
were detected using BudJ.

To monitor the single-cell fluorescence dynamics after the
activation of EL222-AQTrip, we quantified at each time point
the mean cellular fluorescence (mean pixel intensity) of
individual mother cells that were present from the beginning to
the end of an experiment (Cerulean: n = 60, mTurquoise2: n =
62, sfGFP: n = 55, pHtdGFP: n = 57, mTFP1: n = 48,
mVenus: n = 48, mCitrine: n = 47, mNeonGreen: n = 50,
mCherry: n = 52, tdTomato: n = 39, mKate2: n = 53, and
mScarlet-I: n = 44). For each XY position, the segmentation
data from BudJ and the corresponding background-corrected
images were read in a custom-made Python script. The
segmentation information from BudJ was used to generate a
mask of the corresponding cell at each time frame. For each
cell and time point, the cell mask was applied to the
fluorescence channel image and the mean pixel intensity inside
the mask of the cell was calculated. Given the very small
leakage of the EL222-AQTrip system, cell fluorescence prior to
light induction was only due to autofluorescence. To remove
the small contribution of autofluorescence in the measure-
ments after light induction, we subtracted from each single-cell
fluorescence time series its value at t = 0, when no FP is yet
present. Assuming that the concentration of the FPs in the
mother and in the bud is the same, the corrected mean
fluorescence intensity of a mother cell was used as a proxy of
the FP concentration in that cell.
For quantification of Hta2-sfGFP and Hta2-mRFP1

fluorescence dynamics during the cell cycle, the same method
described above was used to locate and track cells over time,
and the sum of pixel intensities inside the mask of the cell was
used as a proxy for Hta2-FP abundance. To obtain single-cell
Hta2-FP abundance profiles on a common time axis
representing normalized cell cycle progression, we first split
every cell cycle time series into two parts, one from
karyokinesis to the following budding event and the other
from the budding event to the next karyokinesis. Budding
events were annotated based on the appearance of a dark spot
on the mother cell membrane, and karyokinesis was annotated
based on the first frame when the nucleus of the mother cell
and the nucleus of the bud are completely detached. We then
linearly interpolated the first part of every cell cycle time series
with a fixed number of equidistant points, and did the same
with the second part. The number of points chosen for the
interpolation of the first and the second part of each cell cycle
time series were calculated based on the ratio of the average
durations of the first part and the second part of the cell cycle.
For both Hta2-sfGFP data and Hta2-mRFP1 data, we used 30
points to interpolate the first part and 50 points to interpolate
the second part of the cell cycle. For subsequent plotting, we
then removed the last 10 points of each interpolated time
series to exclude the short time interval where the nucleus was
already partially in the daughter cell (which was not
segmented). We then aligned the interpolated points of each
cell cycle on a common (relative) time grid with 70 points
between 0 to 1, representing a normalized time axis of cell
cycle progression.

Western Blots. To estimate the total expression delay (τ1 +
τ2), batch cultures were grown in the dark before being
subjected to blue illumination using two breadboards each
carrying five blue LEDs (Lumex, part no. SSL-LX5093USBC,
470 nm) oriented toward the cultures. Protein extracts were
prepared from exponentially growing cells (OD600 = 1) which
were sampled every 5 min (2.5 OD) and directly treated with
CHX at a final concentration of 25 μg/mL (diluted in H2O) to
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stop translation. Proteins were extracted and denatured
following the standard alkaline lysis as previously described.63

To quantify sfGFP and mKate2 abundance in response to
CHX treatment, batch cultures were grown and protein
extracts were prepared from exponentially growing cells
(OD600 = 1) which were sampled every 80 min. The cultures
were treated once with CHX (same concentration as
mentioned above) 80 min after the first sample. Proteins
were extracted after cell fixation with TCA (at a final
concentration of 6%). For protein extraction, the fixed cells
were incubated on ice for 10 min, washed with cold acetone,
and the pellets were air-dried. Subsequently, the cells were
lysed by bead beating in urea buffer [50 mM Tris HCl pH 7.5,
5 mM ethylenediaminetetraacetic acid, 6 M urea, and 1%
sodium dodecyl sulphate (SDS)], after which samples were
shaken (800 rpm) for 10 min at 65 °C and centrifuged for 5
min at 4 °C.
In both experiments, proteins denatured in SDS sample

buffer were resolved on 12% SDS-polyacrylamide gel electro-
phoresis gels and transferred to polyvinylidene fluoride
membranes, which were subsequently probed with the
following primary antibodies: anti-RFP (Thermo Fisher
Scientific, Rabbit polyclonal, #R10367), anti-GFP (Abcam,
Rabbit polyclonal, #ab6556), or anti-α-Tubulin (Abcam,
Rabbit monoclonal, #ab184970) and secondary antibody:
anti-rabbit IgG Superclonal recombinant secondary antibody
HRP conjugate (Thermo Fisher, Goat polyclonal, #A27036).
ImageJ software (v.1.52n, Java 1.8.0_202) was used to

perform the relative abundance of FPs Qfp on the Western blot
TIFF images. After converting the images to grayscale, we
selected a region of interest corresponding to the largest
protein band across the row, and measured the mean gray
values of the protein of interest POI and the α-tubulin loading
control LC and their respective background mean gray values
BCp and BCl. The latter were measured below or above each
band where no stain was present on the blots. The relative
abundance of FPs Qfp is defined as

=
−
−

Q
(BC POI)

(BC LC)fp
p

l

Mathematical Modeling. The DDEs describing the time
evolution of the abundances of the modeled species for the
one-step maturation model are

τ̇ = − −m k s t k m( )r 1 dr (1a)

τ̇ = − −P k m t k P( )d p 2 m d (1b)

̇ =P k Pm m d (1c)

where m denotes the mRNA, Pd is the dark (immature)
precursor, and Pm is the mature (fluorescent) form of the FP.
s(t) denotes the Heaviside step function (i.e., s(t) = 0 for t < 0
and s(t) = 1 for t ≥ 0), which models the step-like activation of
the EL222-responsive promoter. All states are assumed to be
zero for t < τ1.
The equations corresponding to the two-step maturation

model are

τ̇ = − −m k s t k m( )r 1 dr (2a)

τ̇ = − −P k m t k P( )d1 p 2 m1 d1 (2b)

̇ = −P k P k Pd2 m1 d1 m2 d2 (2c)

̇ =P k Pm m2 d2 (2d)

where Pd1 and Pd2 denote the first and second immature
precursors of the fluorescent form Pm, respectively.
The DDEs contain two delay parameters, τ1 and τ2. The first

represents the time required for EL222 promoter activation
following the application of light, and the second represents
the delay between the appearance of FP mRNA and the
production of the immature FP species. τ1 was estimated in ref
59 to be around 2 min. To estimate τ2, we used Western
blotting to locate the moment of appearance of immature
protein following light stimulation (Figure S2, Supporting
Information Note 2) for three different FPs (fast and slow
maturing), and cross-validated the results with CHX addition
at different time points after light induction for two FPs
(Figure S3, Supporting Information Note 2). Both approaches
allowed us to conclude that the total delay between EL222
activation and the appearance of immature protein (τ1 + τ2) is
very close to 6 min, irrespective of the tested FP. From this
total delay, we estimated τ2 to be around 4 min. Overall, the
precise estimation of τ1 + τ2 is more critical for fast-maturing
FPs than for slow ones (Supporting Information Note 7).
Due to the fact that our experimental data consists of

concentration measurements in mother cells present from the
beginning to the end of an experiment, we complemented the
abundance model (eqs 1a−1c, 2a−2d) with a single-cell
volume model that describes growth and division processes for
a mother cell over consecutive cell cycles. A cell cycle starts at
the moment a bud divides and ends at the next bud division.
We assume that during the n-th cell cycle (cn) of duration Tcn, a

cell grows linearly from an initial volume V0,cn to a volume V1,cn

with a growth rate μcn (Figure 1E)

μ̇ =V cn (3)

Even though the instantaneous growth rate of individual
yeast cells is known to fluctuate during the cell cycle,62,64

assuming a constant growth rate for our model is sufficient
because growth rate fluctuations are averaged out in an
asynchronously growing cell population. At the end of the cell
cycle, the cell loses a volume Vd,cn (Figure 1E) due to the
detachment of the newborn daughter cell. We can then define
the fraction fc of the mother−bud volume that remains after
division

= −f
V

V
1c

c

c

d,

1,
n

n

n (4)

Assuming that the mRNA and FP protein species are
uniformly distributed in the mother−bud volume, the
abundance of mRNA, Pd, and Pm at the start of the following
cell cycle is reset by the fraction fc

=+ −T T fmRNA ( ) mRNA ( )c c cn n n (5a)

=+ −P T P T f( ) ( )c c cd dn n n (5b)

=+ −P T P T f( ) ( )c c cm mn n n (5c)

= −+ −V T V T V( ) ( )c c cd,n n n (5d)

where the minus and plus superscripts denote the value of the
corresponding variable, infinitesimally before and after
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division. The following cell cycle (cn+1) then starts with an
initial volume V0,cn+1 = V+(Tcn), and a new set of parameters

Tcn+1, μcn+1 and Vd,cn+1. For each cell cycle, these three parameters
are sampled from a multivariate log-normal distribution. This
distribution was fitted to experimentally determined values of
T, μ, and Vd, obtained from the same mother cells whose
fluorescence was tracked over time.
Given that asymmetric division leads to mother cell aging,

which is accompanied by a gradual increase in cell size over
consecutive divisions,65 the following condition was applied
when sampling a set of parameters, to ensure that the volume
lost at the end of a cell cycle of our simulated cells is less than
the volume gained during that cell cycle, that is, a cell grows in
volume over successive divisions (Figure S4E,F)

μ<V Tc c cd, n n n (6)

This condition is already fulfilled in most cases when
sampling from the estimated multivariate distribution of cell
cycle parameters, but the explicit enforcement of the condition
ensures that every simulated cell satisfies it.
To account for the population asynchronicity, each

simulated cell starts at a random point in its first cell cycle
with an initial volume

μ τ= +V V(0) c c0, 1 1 (7)

where τ is uniformly distributed in [0,Tc1]. For each simulated

cell, the initial starting volume of the first cell cycle (V0,c1) is
sampled from a normal distribution fitted to the experimentally
measured mother cell volumes at t = 0 (start of EL222-AQTrip
activation).
Combining the abundance model with the volume model,

we could then calculate the FP concentration Pm,C of the
mature FP for each simulated cell over a time horizon
corresponding to the observation horizon in our experiments

=P t
P t
V t

( )
( )
( )Cm,

m

(8)

Because the volume dynamics introduces stochasticity in our
model, 500 cells were simulated in order to produce a
population-averaged FP concentration profile that was fitted to
the experimental data.
Estimation of Parameter Distributions for the

Volume Model. To generate the probability distributions
from which the cell cycle parameters of the volume model (Tc,
μc and Vd,c) were drawn, we first determined the empirical
distributions of these quantities for the same cells whose
fluorescence was quantified (number of cell cycles analyzed:
Cerulean: n = 100, mTurquoise2: N = 91, sfGFP: n = 101,
pHtdGFP: n = 69, mTFP1: n = 91, mVenus: n = 99, mCitrine:
n = 87, mNeonGreen: n = 102, mCherry: n = 89, tdTomato: n
= 63, mKate2: n = 71, and mScarlet-I: n = 103). Tc was defined
as the time between two divisions (cytokinesis events), μc as
the average growth rate between two divisions, and Vd,c was the
volume of the bud at division. Cytokinesis events were
identified by the darkening of the bud neck and the slight
movement of the bud away from the mother cell. The average
growth rate μc was calculated by subtracting the volume of a
mother cell after a cytokinesis (V0) from the mother + bud
volume at the next cytokinesis (V1) and dividing by Tc.
Considering the right skew of these empirical distributions
(Figure S4B−D), we fitted a multivariate log-normal

distribution to Tc, μc and Vd,c by calculating the empirical
means and covariance matrix of the logarithms of Tc, μc and
Vd,c.

Maximum Likelihood Parameter Estimation. Follow-
ing the light induction of FP expression, the fluorescence
measurements corresponding to the FP concentration in
mother cells were obtained every 5 min up to 200 min post-
induction. We denote the set of fluorescence measurements by
{y(tn), n = 1,...,N} and the model-based prediction of
population-averaged FP concentration over 500 simulated
cells using the parameter vector θ by P̅m,c(t,θ), t ≥ 0. We
further assume that our observations are corrupted by additive
independent, normally distributed noise samples, leading to an
observation model of the form ŷ(tn,θ) = P̅m,c(tn,θ) + εn, with εn
∼ N(0,σ2), where σ = 0.02·max({y(tn), n = 1,...,N}). The value
of σ was chosen empirically to correspond to the level of
measurement variability observed due to the finite number of
cells tracked in each experiment and day-to-day variability in
experimental measurements. Under this noise model, the
maximization of the likelihood with respect to θ is equivalent
to the minimization of the sum of squares objective function

∑χ θ
σ

θ= − ̂
=

y t y t( )
1

( ( ) ( , ))
n

N

n n
2

2
1

2

(9)

Profile Likelihood Analysis. To verify the practical
identifiability of the maturation rates and derive confidence
intervals, we made use of the profile likelihood methodology.66

Given the definition of χ2(θ) in ref 9 and assuming that we are
interested in θi, the i-th component of the vector θ, the
(negative) profile log-likelihood is defined as

χ θ χ θ=
θ ≠

( ) min ( )i
j iPL

2 2

(10)

Practical identifiability of θi can be investigated by examining
the (1 − a)% confidence interval for θi for a given significance
level a: if the confidence interval is finite at the desired
confidence level, the parameter θi is deemed practically
identifiable at the given confidence level.66 Here, we
considered a = 0.05 and constructed 95% confidence intervals
for the maturation rates in our FP models. These confidence
intervals are given by the set of θi values for which χPL

2 (θi) is
smaller than χ2(θ*) + Δ1;1−α, where θ* is the parameter vector
that minimizes χ2(θ) and Δ1;1−α is the (1 − a)% quantile of the
χ2 distribution with 1 degree of freedom. Symbolically

θ θ χ θ χ θ= { | ≤ * + Δ }α−CI ( ) ( ) ( )i i iPL,95% PL
2 2

1;1 (11)

The calculation of χPL
2 (θi) over a grid of θi values requires

repeated minimization of the function χ2(θ). In turn, each
optimization run requires multistarting to ensure that the
global minimum will be reached. Given that the abundance
model contained a small number of unknown parameters, we
avoided running optimization by estimating χ2(θ) on a dense
grid in the space of locally identifiable model parameters (i.e.,
setting kr = kp, cf. Supporting Information Note 5) with 60
points per dimension, and evaluating the profile likelihoods
and confidence intervals with the grid-based values of χ2(θ).
For one-step maturation models, θ = [kdrkpkm]. For two-step
maturation models, θ = [kdrkpkm1], while km2 was set equal to
km1 (cf. Supporting Information Note 5). The search space for
km (and, correspondingly, km1) was bounded from above at
0.1386 (corresponding to a maturation half-time of 5 min),
with no lower bound, while the search space for kdr was limited
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between 0.0462 and 0.1386, corresponding to mRNA
degradation half-lives between 5 and 15 min, in line with the
available experimental evidence on the GFP mRNA degrada-
tion half-life in budding yeast.67
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