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Background: Acute myeloid leukemia (AML) is one of the most common hematologic malignancies with 
a poor prognosis and high recurrence rate. The discovery of new predictive models and therapeutic agents 
plays a crucial role.
Methods: The differentially expressed gene that was explicitly highly expressed in The Cancer Genome 
Atlas (TCGA) and GSE9476 transcriptome databases were screened and included in the least absolute 
shrinkage and selection operator (LASSO) regression model to derive risk coefficients and build a risk score 
model. Functional enrichment analysis was conducted on the screened hub genes to explore the potential 
mechanisms. Subsequently, critical genes were incorporated into a nomogram model based on risk scores 
to analyze prognostic value. Finally, this study combined network pharmacology to find potential natural 
compounds for hub genes and used molecular docking to verify the binding ability of molecular structures to 
natural compounds to explore drug development for possible efficacy in AML. 
Results: A total of 33 highly expressed genes may be associated with poor prognosis of AML patients. After 
LASSO and multivariate Cox regression analysis of 33 critical genes, Rho-related BTB domain containing 
2 (RHOBTB2), phospholipase A2 (PLA2G4A), interleukin-2 receptor-α (IL2RA), cysteine and glycine-
rich protein 1 (CSRP1), and olfactomedin-like 2A (OLFML2A) were found to played a significant role in 
the prognosis of AML patients. CSRP1 and OLFML2A were independent prognostic factors of AML. The 
predictive power of these 5 hub genes in combination with clinical features was better than clinical data alone 
in predicting AML in the column line graphs and had better predictive value at 1, 3, and 5 years. Finally, 
through network pharmacology and molecular docking, this study found that diosgenin in Guadi docked well 
with PLA2G4A, beta-sitosterol in Fangji docked well with IL2RA, and OLFML2A docked well with 3,4-di-
O-caffeoylquinic acid in Beiliujinu. 
Conclusions: The predictive model of RHOBTB2, PLA2G4A, IL2RA, CSRP1, and OLFML2A combined 
with clinical features can better guide the prognosis of AML. In addition, the stable docking of PLA2G4A, 
IL2RA, and OLFML2A with natural compounds may provide new options for treating AML.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous 
hematologic  mal ignancy character ized by c lonal 
proliferation of abnormally differentiated or undifferentiated 
myeloid cells in the bone marrow and peripheral blood. 
The main clinical manifestations are anemia, bleeding, and 
infection. Most patients have poor prognoses, especially 
those with poor prognostic karyotypes or mutated 
genes (1-3). In recent years, with the development of 
chemotherapy, hematopoietic stem cell transplantation, bio-
immunotherapy, cell therapy, and gene-targeted therapy, 
the complete remission rate and relapse-free survival rate 
of AML patients have been improved. However, most 
patients are still drug-resistant and relapse after remission 
(4-6). Different genetic characteristics of AML patients are 
often associated with various clinical prognostic features; 
it is of great significance to further elucidate the potential 
genes related to the prognosis of AML. Recently, different 
prognostic signatures with transcriptome profiles have 
been proposed for survival prediction including a 3-gene 
signature (7), a 5-gene signature (8), a 10-gene signature (9),  
an 85-gene signature (10), and a 17-gene leukemia stem 
cell (LSC) score (11). However, accurate prognostic 
stratification remains an unsolved problem in AML, along 
with the need for appropriate clinical treatment measures.

Network pharmacology is an approach to drug design that 
incorporates systems biology, network analysis, and genetic 
pleiotropy to understand drug-organism interactions and 
guide new drug discovery from a holistic perspective that 
improves or restores the balance of biological networks. 
Based on this, an approach to Traditional Chinese Medicine 
Systemic Pharmacological (TCMSP) was established to 
predict the targeting characteristics and pharmacological 
effects of herbal compounds, to screen multiple compounds 
from herbal formulations in a high-throughput manner, 
and to transform traditional Chinese medicine (TCM) from 
empirical medicine to an evidence-based medical system, 
which will accelerate the discovery of TCM and improve 
the current treatment options for diseases (12-15). Since 
its first appearance in the mid-1970s, molecular docking 
has represented a unique computer tool for drug design 
and discovery. It docks new natural compounds of potential 
therapeutic interest and predicts ligand-target interactions 
at the molecular level (16).

In this study, a predictive model of transcriptomic data 
combined with clinical features was developed to better 
predict the prognosis of AML patients through different 
bioinformatics tools and public databases. In addition, 
drugs with possible efficacy in AML through hub genes 
were identified by network pharmacology and validated by 
molecular docking. A new direction for subsequent basic 
research and drug development was provided. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2500/rc).

Methods

Data collection

RNA sequencing (RNA-seq) data on AML were obtained 
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). The complete clinical information 
of patients was downloaded from TCGA, and a total of 
243 AML patients met the criteria at clinical information 
screening step, excluding samples with less than 30 days 
of follow-up. In addition, the GSE9476 dataset was 
downloaded from the Gene List module of the Gene 
Expression Omnibus (GEO) database for analysis. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). Since the data involved in this 
study were obtained from the TCGA and GEO databases 
and in strict accordance with TCGA and GEO publication 
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guidelines, no ethics committee approval was required.

Differentially expressed genes (DEGs) screening

The study identified TCGA and GSE9476 by the GEO2R 
online analysis tool, adjusted for P<0.05 and positive log fold 
change (FC) as cut-off criteria for DEGs screening. Statistical 
analysis and visualization were performed using R language 
(version 3.6.3), GEOquery package for data collation and 
download, limma package for gene variance analysis, ggplot2 
package for gene volcano map, gene variance ranking and 
Wayne plot visualization, ComplexHeatmap package for 
row heat map visualization, the pROC package and ggplot2 
package performed receiver operator characteristic (ROC) 
curve analysis of critical genes. The ggalluvial package 
analyzed the internal association of TCGA, GSE9476, and 
Vene intersection genes, and the ggalluvial package analyzed 
the inner association of TCGA, GSE9476, and Vene 
intersection genes.

Construction of protein-protein interaction (PPI) network

PPI networks were constructed using Cytoscape software 
for TCGA dataset, significantly DEGs of GSE9476 (P<0.05, 
logFC ≥2) and Vene intersection genes, and visualized using 
String online database for Vene intersection genes.

Functional enrichment analysis

Gene set enrichment analysis (GSEA, http://www.
broadinstitute.org/gsea/index.jsp) was applied to explain the 
functional enrichment of gene expression data. Functional 
enrichment of intersection genes with prognostic value was 
explored. We visualized the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
using the ggplot2 package and clusterProfiler package.

Construction of prognostic risk score model

A total of 2,340 DEGs were identified between AML and 
normal subjects by analyzing the dataset. The intersection 
of 2,153 highly expressed AML genes in the GSE9476 
dataset with 187 highly expressed genes in TCGA included 
33 hub genes. Thirty-three differentially expressed hub 
genes were included in the least absolute shrinkage and 
selection operator (LASSO) (glmnet package & survival 
package) regression model to obtain the risk coefficient and 
establish the risk score model.

Development of prognostic nomogram model

The rms and survival packages were used to construct 
a nomogram to predict survival in AML patients. The 
accuracy of the model was validated using the calibration 
curves (rms package and survival package), concordance 
index (C-index), and ROC time-dependent curves 
(timeROC package and ggplot2 package). We included the 
five DEGs in a multivariate Cox regression analysis.

Target-related drugs

Symptom mapping (symMap Version 2.0) database was 
used to predict the candidate herbs, which will target the 
hub gene. We chose herbs with a false discovery rate (FDR) 
less than 0.05. The constituents of the obtained drugs were 
analyzed using the TCMSP online database, and those with 
oral bioavailability (OB) ≥30% and drug-likeness (DL) 
≥0.18 were selected for follow-up studies.

Molecular docking

Before docking both structures, ligand and receptor 
structures were needed to prepare. Therefore, critical 
protein backbone structures were obtained from the Protein 
Database (PDB: https://www.rcsb.org/) and small-molecule 
drug structures of compounds with the most significant OB 
values from the Pub Chemical database (https://pubchem.
ncbi.nlm.nih.gov/). Finally, the RCSB PDB online tool 
(https://cadd.labshare.cn/cb-dock2/php/index.php) was used 
to perform the molecular docking procedure, and the one 
with the smallest docking score was selected for the study.

Statistical analysis

Survival curves were generated using the Kaplan-Meier 
method and compared with the Cox test. Statistical 
analysis was performed using R language (version 3.6). 
The prognostic value of hub genes was analyzed by Cox 
and LASSO’s regression. Differences were considered 
statistically significant when P<0.05.

Results

DEGs analysis

One hundred and fifty-one AML patients with clinical, 
prognostic and gene expression data were included in the 
TCGA dataset (alive =54, dead =97); GSE9476 included 

http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://cadd.labshare.cn/cb-dock2/php/index.php
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Figure 1 Hub gene selection. (A) DEGs ranking in TCGA and GSE9476. (B) Volcano plot of DEGs. (C) DEGs in TCGA and GSE9476 
datasets. (D) Dimensional Sanky Diagram of hub Genes. (E) Heatmap of hub genes. DEG, differentially expressed gene; FC, fold change; 
TCGA, The Cancer Genome Atlas.

38 healthy individuals and 26 AML patients. DEGs was 
established based on two datasets, ranked according to 
logFC fold difference from largest to smallest, to investigate 
relevant biomarkers that can effectively predict prognosis 
in AML (Figure 1A). In addition, it used the volcano figure 
for differences in gene screening (P<0.05, |logFC| ≥1), 
selecting 2,340 high-expressed genes, lower expression gene 
1,097 (Figure 1B). Further, 2,153 highly expressed genes 
in GSE9476 and 187 highly expressed genes in TCGA 
were screened out, and 33 essential genes were obtained 
by the intersection of the highly expressed genes from the 
two datasets (Figure 1C). The Sankey diagram was used to 
analyze the dimensions of 33 essential genes, and it was 
found that they were correlated with the dimensions of the 
first 33 critical genes of TCGA and GSE9476 (Figure 1D). 
The vital genes were visualized by heat map (Figure 1E).

PPI network

Significant DEGs in TCGA and GSE9476 datasets were 
constructed for PPI networks. The results showed that 
these 33 differential genes acted as important components 
in PPI networks (Figure 2A). Network construction of hub 
genes also demonstrated some association (Figure 2B). Also, 
correlation heatmap analysis of 33 hub genes revealed that 
most were positively correlated (Figure 3).

Functional analysis of critical genes

GO and KEGG analysis were performed on 33 DEGs as 
well as significant differential genes in the GSE9476 dataset 
and TCGA database, respectively hub genes identified in 
GSE9476 were mainly involved in cell adhesion molecule 



Translational Cancer Research, Vol 12, No 6 June 2023 1539

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(6):1535-1551 | https://dx.doi.org/10.21037/tcr-22-2500

BA

RHOBTB2
CALCRL

SLC44A1
ZNF532

GCKR
UPB1

CCDC6 
LCT

PLA2G4A
LGALSL
HIVEP3 

HIP1
IL2RA

FXYD2
CSRP1

SH3TC2
OLFML2A 

HRH1
KCNE2

HEXIM1
DNAJC10
SORBS3

TMEM255A 
LAMP5
RGS13
PTPRA 

CPM 
FGF7

CSPG4
SPOCK3
TNFSF18 

G6PC
PADI3

R
H

O
B

TB
2

C
A

LC
R

L
S

LC
44

A
1

Z
N

F5
32

G
C

K
R

U
P

B
1

C
C

D
C

6 
LC

T
P

LA
2G

4A
LG

A
LS

L
H

IV
E

P
3 

H
IP

1
IL

2R
A

FX
Y

D
2

C
S

R
P

1
S

H
3T

C
2

O
LF

M
L2

A
 

H
R

H
1

K
C

N
E

2
H

E
X

IM
1

D
N

A
JC

10
S

O
R

B
S

3
TM

E
M

25
5A

 
LA

M
P

5
R

G
S

13
P

TP
R

A
 

C
P

M
 

FG
F7

C
S

P
G

4
S

P
O

C
K

3
TN

FS
F1

8 
G

6P
C

PA
D

I3

1.0

0.5

0.0

−0.5

−1.0

Correlation

Figure 3 Correlation heatmap for 33 hub genes.

Figure 2 PPI network. (A) Protein interaction relationship of hub genes in Dataset. (B) Association of 33 hub genes. PPI, protein-protein 
interaction.

binding, pattern specification process, cell-substrate 
adherences junction, and phosphatidylinositol 3-kinase 
(PI3K)-Akt signaling pathway processes (Figure 4A),  
corresponding to GO: 0050839, GO: 0007389, GO: 
0005924 and hsa04151, respectively (Figure 4B), see Table 1  

for details. Hub genes found in TCGA were mainly involved 
in platelet alpha granule lumen, cytokine-cytokine receptor 
interaction and carbohydrate digestion and absorption 
processes (Figure 4C), they corresponded to GO: 0031093, 
hsa04060 and hsa04973, respectively (Figure 4D), and the 
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detailed pathways involved are shown in Table 2. Thirty-
three hub genes were mainly involved in carbohydrate 
digestion and absorption and galactose metabolism processes 
(Figure 4E). They corresponded to hsa04973 and hsa00052, 
respectively (Figure 4F), and see Table 3 for details. GESA 
enrichment analysis of 33 genes revealed that they were 
mainly enriched in NABA ECM Regulators, NABA Secreted 
Factors, Reactome Class A1 Rhodopsin Like Receptors, 

Reactome Degradation of the Extracellular Matrix, Reactome 
Extracellular Matrix Organization (Figure 4G).

Establishment of critical gene prognostic models

To further explore key factors to guide the prognosis of AML 
patients, 33 key genes were included in the LASSO analysis 
(Figure 5A), combined with the equation of Figure 5B  

Table 1 GO and KEGG analysis of significantly DEGs in GSE9476 

Ontology ID Description Gene ratio Bg ratio P value P.adjust

BP GO:0048705 Skeletal system morphogenesis 57/1,866 239/18,670 3.20e-10 1.12e-06

BP GO:0007389 Pattern specification process 87/1,866 446/18,670 7.00e-10 1.12e-06

BP GO:0009952 Anterior/posterior pattern specification 53/1,866 219/18,670 7.59e-10 1.12e-06

CC GO:0005924 Cell-substrate adherens junction 77/1,915 408/19,717 8.85e-09 3.38e-06

CC GO:0030055 Cell-substrate junction 77/1,915 412/19,717 1.37e-08 3.38e-06

CC GO:0005925 Focal adhesion 76/1,915 405/19,717 1.42e-08 3.38e-06

MF GO:0050839 Cell adhesion molecule binding 91/1,856 499/17,697 9.00e-08 1.00e-04

MF GO:0045296 Cadherin binding 62/1,856 331/17,697 4.10e-06 0.002

MF GO:0001228 DNA-binding transcription activator 

activity, RNA polymerase II-specific

75/1,856 439/17,697 1.40e-05 0.005

KEGG hsa04142 Lysosome 36/977 128/8,076 6.57e-07 2.11e-04

KEGG hsa04512 ECM-receptor interaction 25/977 88/8,076 2.75e-05 0.003

KEGG hsa04151 PI3K-Akt signaling pathway 69/977 354/8,076 2.97e-05 0.003

Bg, background; BP, biological process; CC, cellular component; DEGs, differentially expressed genes; GO, Gene Ontology; MF, molecular 

function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 2 GO and KEGG analysis of significantly DEGs in TCGA database

Ontology ID Description Gene ratio Bg ratio P value P.adjust

CC GO:0031093 Platelet alpha granule lumen 5/146 67/19,717 1.39e-04 0.035

CC GO:0031091 Platelet alpha granule 5/146 91/19,717 5.80e-04 0.072

MF GO:0099106 Ion channel regulator activity 6/139 118/17,697 3.38e-04 0.067

MF GO:0005125 Cytokine activity 8/139 220/17,697 3.51e-04 0.067

MF GO:0019838 Growth factor binding 6/139 137/17,697 7.46e-04 0.091

MF GO:0016247 Channel regulator activity 6/139 144/17,697 9.68e-04 0.091

MF GO:0005201 Extracellular matrix structural constituent 6/139 163/17,697 0.002 0.091

KEGG hsa04973 Carbohydrate digestion and absorption 5/73 47/8,076 6.00e-05 0.011

KEGG hsa04060 Cytokine-cytokine receptor interaction 10/73 295/8,076 2.93e-04 0.028

Bg, background; CC, cellular component; DEGs, differentially expressed genes; GO, Gene Ontology; MF, molecular function; KEGG, Kyoto 

Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas.
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Table 3 Thirty-three hub genes KEGG analysis

Ontology ID Description Gene ratio Bg ratio P value P.adjust

KEGG hsa04973 Carbohydrate digestion and absorption 3/16 47/8,076 9.81e-05 0.007

KEGG hsa00052 Galactose metabolism 2/16 31/8,076 0.002 0.061

Bg, background; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 5 Construction of prognostic risk models. (A) LASSO variable trajectories for 5 key genes. (B) Screening of LASSO regression 
coefficients for 33 hub genes. (C) Risk factor plots for 5 hub genes. LASSO, least absolute shrinkage and selection operator.
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of the results. The model fitted best when the penalty 
coefficient was 5. The corresponding five related genes 
were selected to enter the model, which were Rho-related 
BTB domain containing 2 (RHOBTB2), phospholipase A2 
(PLA2G4A), interleukin-2 receptor-α (IL2RA), cysteine 
and glycine-rich protein 1 (CSRP1), and olfactomedin-like 
2A (OLFML2A). Risk factor analysis of these 5 hub genes 
revealed that the risk of death increased with increasing 
expression of the 5 genes (Figure 5C). In addition, 

multivariate cox regression analysis of the five hub genes 
revealed that these 5 hub genes were important prognostic 
factors, and CSRP1 and OLFML2A were independent risk 
factors for AML prognosis. Therefore, these five genes 
entered the equation as prognostic factors for AML (Table 4).  
Further analysis yielded the corresponding regression 
coefficients β1–β5, which were 0.075, 0.119, 0.069, 0.074, 
and 0.029, respectively. Based on the above formula, 
combined with the beta value of regression coefficient from 
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Table 4 The results of Cox regression analyses

Characteristics N
Univariate analysis

 
Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age (>60 years) 61 3.333 (2.164–5.134) <0.001 2.458 (1.503–4.019) <0.001

Cytogenetic risk (intermediate) 76 2.957 (1.498–5.836) 0.002 1.266 (0.570–2.811) 0.563

Cytogenetic risk (poor) 31 4.157 (1.944–8.893) <0.001 1.598 (0.675–3.781) 0.286

RHOBTB2 (high) 69 2.437 (1.572–3.779) <0.001 1.547 (0.961–2.492) 0.073

PLA2G4A (high) 70 3.387 (2.143–5.355) <0.001 1.690 (0.959–2.978) 0.070

IL2RA (high) 71 2.027 (1.315–3.127) 0.001 1.007 (0.630–1.611) 0.976

CSRP1 (high) 71 2.356 (1.527–3.635) <0.001 1.747 (1.109–2.751) 0.016

OLFML2A (high) 69 2.362 (1.534–3.639) <0.001 1.697 (1.057–2.724) 0.029

CI, confidence interval; CSRP1, cysteine and glycine-rich protein 1; HR, hazard ratio; IL2RA, interleukin-2 receptor-α; OLFML2A, 

olfactomedin-like 2A; PLA2G4A, phospholipase A2; RHOBTB2, Rho-related BTB domain containing 2.

the LASSO regression, the final predictive risk score model 
was established: risk score = 0.075 * RHOBTB2 + 0.119 
* PLA2G4A + 0.069 * IL2RA + 0.074 * CSRP1 + 0.029 * 
OLFML2A.

Clinical characteristics of 5 hub genes associated with poor 
prognosis in AML

Differential analysis revealed that RHOBTB2, PLA2G4A, 
IL2RA, CSRP1, and OLFML2A were all significantly more 
expressed in AML than in the normal group (Figure 6A), 
critical gene expression was positively correlated with 
age greater than 60 years (Figure 6B) and cytogenetic risk  
(Figure 6C), indicating that higher critical gene expression 
may have a worse prognosis.

Five hub genes are associated with prognosis in AML

The ROC curves predicted the sensitivity and specificity 
of five hub genes, and the results showed that RHOBTB2 
[area under the curve (AUC) =0.991], PLA2G4A (AUC 
=0.996), IL2RA (AUC =0.995), CSRP1 (AUC =0.880) 
and OLFML2A (AUC =0.977) all had a good prediction 
of AML prognosis sensitivity and specificity. (Figure 7A). 
Survival analysis of these 5 genes in AML showed that high 
expression of RHOBTB2 [hazard ratio (HR) =2.44, 95% 
CI: 1.57–3.78, P<0.001], PLA2G4A (HR =3.39, 95% CI: 
2.14–5.36, P<0.001), IL2RA (HR =2.03, 95% CI: 1.31–3.13, 
P=0.001), CSRP1 (HR =2.36, 95% CI: 1.53–3.64, P<0.001), 
and OLFML2A (HR =2.36, 95% CI: 1.53–3.64, P<0.001) 
indicated poor prognosis (Figure 7B-7F).

Construction of nomogram and evaluation of prognostic 
value

A nomogram containing multiple clinicopathological 
features were developed to evaluate the prognosis of 
AML patients. The nomogram has ten components: 
sex, age, peripheral blood (PB) blasts (%), cytogenetic 
risk, FLT3 mutation, and hub genes included in the 
r i sk  score  model  (RHOBTB2 ,  PLA2G4A ,  IL2RA , 
CSRP1, OLFML2A). The nomogram can be calculated 
a n d  c o m b i n e d  w i t h  e a c h  v a r i a b l e ’s  f r a c t i o n  t o 
comprehensively predict AML patients’ prognosis  
(Figure  8A ) .  The establ ished nomogram C-index 
was 0.787. In summary, the predictive power of risk 
scores incorporating hub genes combined with clinical 
characteristics is more substantial than traditional clinical-
only prediction approaches. The predictive accuracy of 
nomograms integrating multiple clinical information is the 
most pow robust. Similarly, predictive model fitting analysis 
(Figure 8B) and decision curve analysis (DCA) plot (Figure 
8C) also demonstrated that our nomogram had better 
clinical application value in predicting the 1-, 3-, and 5-year 
prognosis of AML patients. The results indicated that the 
constructed nomogram model had better net benefits for 
AML patients.

Specificity and sensitivity of hub genes in predicting 1, 3 or 
5 years in AML patients

To assess the specificity and sensitivity of the five key genes 
in predicting 1, 3, and 5 years in AML patients, time-
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Figure 6 Hub gene expression and clinical relevance in AML. (A) Differential expression of 5 hub genes in AML versus normal groups. (B) 
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dependent ROC curve analysis was performed. The results 
showed that the 5 hub genes had good sensitivity and 
specificity in predicting 1-year prognosis (RHOBTB2, AUC 
=0.68; PLA2G4A, AUC =0.714; IL2RA, AUC =0.69; CSRP1, 
AUC =0.769; OLFML2A, AUC =0.718), 3-year prognosis 
(RHOBTB2, AUC =0.732; PLA2G4A, AUC =0.758; IL2RA, 
AUC =0.755; CSRP1, AUC =0.732; OLFML2A, AUC 
=0.682) and 5-year prognosis (RHOBTB2, AUC =0.802; 
PLA2G4A, AUC =0.851; IL2RA, AUC =0.78; CSRP1, AUC 
=0.763; OLFML2A, AUC =0.73) (Figure 9).

Molecular docking to search for drug molecules of 5 hub 
genes in AML

RHOBTB2, PLA2G4A, IL2RA, CSRP1, and OLFML2A 
molecules were targeted analysis to find effective drugs 

in AML patients, respectively, and found that drugs 
targeting these 5 hub genes may have some efficacy 
in AML (RHOBTB2—Piananghuang,  PLA2G4A—
Guadi, Huomaren, Difuzi, IL2RA—Fangji, Difengpi, 
Baiguo, CSRP1—Juye, Guijia, Biejia, OLFML2A—
Fengfang, Mingdangshen, etc.) (Table S1). Further, drugs 
corresponding to hub genes as targets were selected in 
AML for analysis (PLA2G4A—Guadi, IL2RA—Fangji, 
CSRP1—Juye, and OLFML2A—Beiliujinu), respectively. 
The chemical composition of Guadi, Fangji, Juye, and 
Beiliujinu were obtained by analysis in the TCMSP 
database (Table 5). The drug with the largest OB (%) value 
was selected for molecular docking to validate the drug and 
target possibility. As a result, diosgenin could dock well 
with PLA2G4A (Figure 10A), beta-sitosterol could dock well 
with IL2RA (Figure 10B), and 3,4-di-O-caffeoylquinic acid 

https://cdn.amegroups.cn/static/public/TCR-22-2500-Supplementary.pdf
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Figure 7 Hub gene-related prognostic analysis. (A) Sensitivity and specificity analysis of ROC curves for 5 hub genes. (B) OS for RHOBTB2. 
(C) OS for PLA2G4A. (D) OS for IL2RA. (E) OS of CSRP1. (F) OS for OLFML2A. AUC, area under the curve; CSRP1, cysteine and 
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could dock well with OLFML2A (Figure 10C). These reveals 
that these natural compounds may be efficacious in AML 
patients and provide appropriate targets.

Discussion

AML, the most common acute leukemia in adults, accounts 
for approximately 80% of this group of diseases. In the 
United States, the incidence of AML is 3 to 5 per 100,000 
people, and the incidence of AML increases with age (17). 
Combined chemotherapy, demethylation, hematopoietic 
stem cell transplantation, and targeted therapy are currently 
the primary treatment modalities based on patients’ clinical 
and genetic characteristics. Although advances in AML 
treatment have improved outcomes in younger patients, the 

prognosis of the elderly remains very poor, which accounts 
for the majority of new cases. Mutations in genes such as 
NPM1, CEBPA, RUNX1, FLT3, TP53, and ASXL1 play a 
vital role in the diagnosis, treatment, and guiding prognosis 
of AML (18-20). Molecular diagnosis allows individualized 
evaluation and treatment options for AML patients with 
different genetic characteristics. For example, combining 
small molecule inhibitors of FLT3, IDH1/IDH2, and BCL-
2 with standard treatment can enhance anti-tumor activity 
and reduce drug resistance while providing new options 
for relapsed and refractory patients (21,22). Therefore, 
discovering new targets and developing new therapies are 
essential for improving the prognostic stratification and 
clinical efficacy of AML patients.

This current study screened 33 DEGs highly expressed 
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in AML in both TCGA and GSE9476 datasets by 
bioinformatics. Through GO/KEGG functional analysis, 
hub genes were mainly involved in lysosome, extracellular 

matrix (ECM)-receptor interaction, and PI3K-Akt signaling 
pathway processes. The PI3K-Akt-mammalian target of the 
rapamycin (mTOR) pathway appears to be constitutively 
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Figure 9 Time-dependent ROC curves for five key genes predicting prognosis in AML patients. (A) 1-year OS. (B) 3-year OS. (C) 5-year 
OS. AML, acute myeloid leukemia; AUC, area under the curve; CSRP1, cysteine and glycine-rich protein 1; FPR, false positive rate; IL2RA, 
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BTB domain containing 2; ROC, receiver operator characteristic; TPR, true positive rate. 

Table 5 Information of drugs corresponding to hub genes

Gene Medicine Mol ID Molecule name MW AlogP OB (%) Caco-2 DL FASA− HL

PLA2G4A Guadi MOL004355 Spinasterol 412.77 7.64 42.98 1.44 0.76 0.21 5.32

MOL000546 Diosgenin 414.69 4.63 80.88 0.82 0.81 0.19 4.14

IL2RA Fangji MOL002333 Tetraneurin A 322.39 0.7 35.4 0.04 0.31 0.31 4.54

MOL000358 Beta-sitosterol 414.79 8.08 36.91 1.32 0.75 0.23 5.36

MOL002341 Hesperetin 302.3 2.28 70.31 0.37 0.27 0.33 15.78

CSRP1 Juye MOL005100 5,7-dihydroxy-2-(3-hydroxy-4-

methoxyphenyl) chroman-4-one

302.3 2.28 47.74 0.28 0.27 0.31 16.51

OLFML2A Beiliujinu MOL001733 Eupatorin 344.34 2.55 30.23 0.7 0.37 0.21 15.21

MOL000358 Beta-sitosterol 414.79 8.08 36.91 1.32 0.75 0.23 5.36

MOL000006 Luteolin 286.25 2.07 36.16 0.19 0.25 0.39 15.94

MOL008135 3,4-di-O-caffeoylquinic acid 516.49 1.56 49.62 −0.96 0.69 0.40 4.14

MOL008127 Ermanin 314.31 2.09 58.95 0.57 0.3 0.31 16.53

AlogP, lipid/water partition coefficient; Caco-2, intestinal epithelial permeability; CSRP1, cysteine and glycine-rich protein 1; DL, drug-

likeness; FASA−, fractional water accessible surface area of all atoms with negative partial charge; HL, drug half-life; IL2RA, interleukin-2 

receptor-α; MW, molecular weight; Mol, molecular; OB, oral bioavailability; OLFML2A, olfactomedin-like 2A; PLA2G4A, phospholipase A2.

activated in 60% of AML patients, and this activation 
seems to be associated with reduced overall survival. PI3K 
is frequently activated in AML and contributes to the 
proliferation of blasts and leukemic progenitors (23,24). 
The selected differential genes in this study were also likely 
to be involved in the development of leukemia through the 
PI3K-Akt signaling pathway. Further, LASSO regression 
and multivariate Cox regression analysis revealed that 

RHOBTB2, PLA2G4A, IL2RA, CSRP1, and OLFML2A 
were important factors affecting the prognosis of AML. 
Clinical correlation and predictive analysis showed that the 
expression of these 5 hub genes were positively correlated 
with age older than 60 years, cytogenetic risk, and high 
expression were associated with poor prognosis. When 
these 5 hub genes were combined with clinical features 
into the prediction model, they were found to be of high 
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Figure 10 Molecular docking. (A) Diosgenin-PLA2G4A. (B) Beta-sitosterol-IL2RA. (C) 3,4-di-O-caffeoylquinic acid-OLFML2A. IL2RA, 
Interleukin-2 receptor-α; OLFML2A, olfactomedin-like 2A; PLA2G4A, phospholipase A2.
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value in predicting AML patients at 1, 3, and 5 years. To 
discover which of these 5 hub genes act on AML through 
which drugs, natural compounds were excavated that 
may affect AML patients through network pharmacology 
and molecular docking. RHOBTB2 is a candidate tumor 
suppressor located on human chromosome 8p21, a region 
commonly found in cancer (25). RHOBTB2 is an atypical 
Rho-GTPase with a conserved Rho-GTPase domain at 
the N-terminus followed by 2BTB domains that may be 
involved in protein interactions (26). The RHOBTB has 
been identified as a tumor suppressor and is reduced, 
eliminated, or mutated in various solid tumors. Studies have 
confirmed that RHOBTB2 plays an essential role in breast 
and colon cancer occurrence and development (27-29), and 
studies have also shown that high RHOBTB2 expression 
is associated with poor prognosis in AML patients (30), 
so drugs targeting RHOBTB2 have specific therapeutic 
prospects for treating AML patients. PLA2G4A belongs 
to the group IV phospholipase A2 family and hydrolyzes 
phospholipids, providing arachidonic acid as a rate-
limiting substrate for prostaglandin production. Hassan 
et al. identified PLA2G4A as a poor prognostic marker 
and potential therapeutic target in HOXA9 and MEIS1-
dependent AML (31), which is consistent with the results of 
the current study. At the same time, a natural compound in 
Guadi (diosgenin) was found that could perform molecular 
docking well with PLA2G4A, suggesting that the natural 
compound diosgenin may act through PLA2G4A in AML 
patients. L2RA is a low-affinity receptor for interleukin-2 
(IL-2) that regulates proliferation, differentiation, apoptosis, 
stem cell-related properties, and leukemogenesis and is a 
potential therapeutic target for AML (32,33). This study 
found beta-sitosterol to be well-docked to IL2RA, providing 
a new option for targeting IL2RA therapy. Similarly, CSRP1 
and OLFML2A play a role in the development of tumors, 
and in addition, overexpression of OLFML2A is associated 
with poor prognosis of extramedullary infiltration in AML 
(34-36). 3,4-di-O-caffeoylquinic acid also docked well 
with OLFML2A. Network pharmacology and molecular 
docking play a vital role in the drug development of 
natural compounds. The stable combination of natural 
compounds selected in this study with their corresponding 
targets PLA2G4A, IL2RA, and OLFML2A promotes the 
development and research of AML drugs. However, these  
5 hub genes have different roles in different cancers, and 
only PLA2G4A and IL2RA have been validated for their 
function in AML (31,33).

This study finds that a predictive model composed of 

selected hub genes RHOBTB2, PLA2G4A, IL2RA, CSRP1, 
and OLFML2A is vital for guiding AML patient prognosis. 
It brings new ideas for the individualized treatment of AML 
patients. In addition, natural compounds with potential 
efficacy against AML were selected by molecular docking, 
which also provides new possibilities for the selection of 
subsequent drug studies.

However, there are some limitations to this study. First, 
the establishment and validation of this model are based on 
an existing public database, and more prospective studies are 
required to validate its clinical application. Second, further 
experiments need to explore the role of related molecules 
and corresponding natural compounds in AML. Overall, 
these finds need further confirmation in larger experimental 
and clinical studies.

Conclusions

In this study, a predictive model for AML patients was 
constructed based on public databases combined with 
bioinformatics, which has a high predictive value for the 
prognosis of AML. Natural compounds with potential 
efficacy against AML were discovered by molecular 
docking against selected hub genes. This study provides a 
new direction for establishing prediction models for AML 
patients and the research and development of precision 
medicine drugs.
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