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Wobble uridine modifications–a reason to live, a reason to die?!
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ABSTRACT
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but
are not required for viability in fungi. In this review, we provide an overview on the types of modifications and
how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery
required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational
regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific
RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridinemodifications lead to
phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of
eukaryotes. A recent review has extensively covered their bacterial andmitochondrial counterparts.1
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Wobble uridine modifications are essential in
evolution

Among the plethora of chemical posttranscriptional modifica-
tions that are found on tRNA, those of wobble uridine (U34)
are peculiar, because U34 is almost invariably modified in any
organism.2,3 This phenomenon implies a strong evolutionary
pressure to maintain wobble uridines modified and is further
affirmed by the analysis of minimal genomes. InMollicutes spe-
cies that have drastically reduced their genome size during evo-
lution, uridine thiolation (s2U) is part of an essential core
module of translation.4 Furthermore, recent attempts of syn-
thetic biologists to generate a minimal genome based on Myco-
plasma mycoides found modification systems of U34 to be
required for rapid growth under laboratory conditions.5 Sur-
prisingly however, the absence of U34 modification does not
cause lethality in Caenorhabditis elegans and most yeasts but is
essential in some strain backgrounds of Saccharomyces cerevi-
siae and in mice.6-12 Furthermore, several human diseases are
linked to defects in U34 modifying enzymes.13-15 This apparent
discrepancy between essentiality during evolution and variable
effects in different organisms makes wobble uridines even
more worth exploring.

We know a lot about U34 modifications from the research of
many laboratories working mainly on baker’s yeast. Theoreti-
cally, 16 anticodons carry a uridine at their wobble position.
UAA and UGA, 2 codons that would require U34-containing
tRNAs for decoding are nonsense codons and therefore recog-
nized by the Eukaryotic Release Factor 1 and 3 (eRF1 and
eRF3) GTPase complex.16,17 However, the modification
machinery is of such broad specificity that U34 in suppressor
tRNASer

UUA is modified.6 tRNAArg
UCG does not exist in yeast and

tRNALeu
UAG is unmodified.18 tRNAIle

UAU carries a pseudouridine
(C34).

19 The remaining 11 tRNA species are decorated by 4
types of modifications: First, 5-carbamoylmethyluridine
(ncm5U34), the most abundant modification, is present on
tRNAVal

UAC, tRNASer
UGA, tRNAPro

UGG, tRNAThr
UGU and tRNAAla

UGC.
Second, tRNALeu

UAA is further 2-O-methylated to 5-carbamoyl-
methyl-2-O-methyluridine (ncm5U34m). Third, 5-methoxy-
carbonylmethyluridine (mcm5U34) is found on tRNAArg

UCU and
tRNAGly

UCC. Finally, 3 tRNAs are further decorated by a 2-thio
group to form 5-methoxycarbonylmethyl-2-thiouridine
(mcm5s2U34): tRNAGln

UUG, tRNA
Lys
UUU and tRNAGlu

UUC (Fig. 1).20,21

The physicochemical properties of wobble uridine
modifications

The multitude of modifications speaks for particular require-
ments in the U34 position. But what are the effects of these
modifications on the chemical and structural properties of
uridine? In his wobble hypothesis, Francis Crick proposed
that U34 recognizes A and G in the third position of the
codon.22 However, he could not account for the extent of
modified nucleotides in tRNA as these modifications were not
known. Later adaptations of the wobble hypothesis have
attempted to integrate how modifications of U34 affect codon
recognition.20,23-26

Uridines are structurally flexible and form only weak stack-
ing interactions with neighboring nucleosides. This is because
uridines-even when decorated by 50-modifications-adopt a
C(20) endo conformation, which is relatively flexible.27,28

However, the presence of 2-thio modifications leads to the
adaptation of a C(3’) endo, gauche plus [C(4’)-C(5’)], anti
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structure.27-29 This conformation is hydrophobic, more
restricted and appears to be best suited for anticodon base-
stacking, therefore stabilizing the anticodon stem loop (ASL)
and favoring the interaction with A in the codon.27,28 The con-
formational stability of s2U34 is similar to U34m, which also
occurs mainly in its C(3’) endo form.30,31 While, s2U34 enhan-
ces the stability of the stacking of the triplet significantly over
unmodified U34,

32,33 the stabilizing effect of the C(3’) endo con-
formation appears to be more important for the codon-antico-
don interaction than an improvement of base stacking.29,34

Furthermore, 2-thio modifications do not only restrict and sta-
bilize the conformation of the nucleoside that carries s2 but also
of a 3’-adjacent unmodified uridine.35,36 Importantly, a stabili-
zation of the interactions between 2-thiolated anticodons with
their codon partners has been observed in binding models and
in the context of the ribosome.36-38 While the role of s2U34

modification is to restrict codon conformation, the role of xm5

modifications is to open up the rigidity to stabilize U�G wobble
pairing.39 In general, the ribosomal grip constrains the posi-
tioning of the mRNA more than that of the ASL. Therefore,
G34�U3 wobble pairs can form in unmodified anticodons, while
U34�G3 pairs are much less stable, if they form at all.26,40-42

Structural studies found that near-cognate tRNAs do not
necessarily take up a wobble confirmation but that non-stan-
dard base pairing can retain Watson-Crick geometry.43 This
structural arrangement is supported by the presence of U34

modifications. Indeed, mcm5s2U34 modifications change the
physicochemical behavior of the base. While s2 of mcm5s2U34

is required for proper positioning of the nucleoside, the main
function of the mcm5 modification is to modify the electron

structure of the ring and to shift the keto-enol equilibrium
toward enol thus enabling hydrogen bonding between U34�G
pairs.44 Therefore, while s2U rigidifies the ASL structure
thereby favoring an interaction with A-ending codons, the xm5

modifications relax the conformation and enable pairing with
G-ending codons. However, when analyzing codon-translation
speed by ribosome profiling the absence of both types of modi-
fications seems to affect translation speed similarly.45

Nevertheless, also the context of the anticodon matters. For
instance, N6-threonylcarbamoyladenosine (t6A37) synergizes
with U34 modifications to order the ASL such that it will bind
to the correct mRNA codons. Only when U34 and A37 are fully
modified, will the ASL of tRNALys

UUU bind to AAA and AAG
programmed ribosomes41 and fulfill the function proposed by
Crick.22 Therefore, U34 modifications contribute to the pre-
structuring of the anticodon loop to achieve optimal
translation.42

Wobble uridine modifications require multiple
pathways

Two pathways are responsible for placing the two main classes
of modifications on wobble uridine: The URM1 pathway is
required for 2-thiolation and the Elongator complex needed for
generating xm5U34 modifications (Fig. 2). Pseudouridine Syn-
thase (Pus1) introduces pseudouridine at U34 in tRNAIle

UAU.
46,47

Finally, during the 2’-O-methylation of tRNALeu
UAA tRNA Meth-

yltransferase (Trm7) uses S-adenosylmethionine (SAM) as a
methyl donor together with its cofactor Regulator of Ty1
Transposition 10 (Rtt10).48,49 However, the absence of 2’-O-

Figure 1. Modifications of wobble uridines (U34). (A) Uridine derivatives that can be found at the wobble position (U34) in anticodons of cytoplasmic tRNAs from eukar-
yotes. Modifications to uridine are indicated in red. (structures taken from Modomics21). Abbreviations: ncm5U: 5-carbamoylmethyluridine; ncm5Um: 5-carbamoylmethyl-
2’-O-methyluridine; mcm5U: 5-methoxycarbonyl-methyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine. (B) Detail of the structure of the anticodon stem loop
(ASL) of human tRNALys3UUU. mcm5s2U is highlighted by spheres. Sulfur (yellow), carbon (green), oxygen (red). Note that the nucleobases are arranged in a stacking confirma-
tion (The structure is based on PDB 1FIR).
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methylation in tRNALeu
UAA does not significantly contribute to

phenotypes observed in trm74 yeast since overexpression of
tRNAPhe

GAA is sufficient for rescue experiments, suggesting that
the physiological role of this modification in U34 is minor.49

Interestingly, xm5U34 formation is independent of the presence
of s2U34 while the reverse is not true. In S. cerevisiae s2U34

levels are reduced in the absence of mcm5,11,50 In humans, mice
and S. pombe mcm5 is even strictly required for s2U34

formation.51,52

The URM1 pathway

Ubiquitin Related Modifier 1 (Urm1) is an ubiquitin like pro-
tein (Ubl) first described as a protein modifier in a process
called urmylation.53-55 It was identified through its sequence
homology to bacterial sulfur-carrier proteins53 and is consid-
ered to be a molecular fossil because it is the Ubl that most
closely resembles the ancestors of this class of protein modi-
fiers.56,57 Importantly, Urm1 is the only Ubl described as a pro-
tein modifier and at the same time to act in sulfur transfer,
placing it at the evolutionary intersection of both path-
ways.50,58-67 Like every Ubl, Urm1 is activated by an E1-like
enzyme Ubiquitin Activating 4 (Uba4).53 While the N-terminus
of Uba4 contains an E1 domain, its C-terminal harbors a
rhodanese homology domain (RHD).68,69 The RHD has been
suggested to act as an E2 domain for protein conjugation of
Urm1.70 However, there is no experimental support for this
mechanism and the functionality of the domain rather points
toward sulfur transfer. Two additional core members of the
pathway are Needs Cla4 to Survive 2 and 6 (Ncs2 and
Ncs6),55,71 which form a complex in S. cerevisiae, C. elegans
and S. pombe.8,11 Difficulty in reconstituting the complex in
vitro has prevented its detailed analysis. It is clear that Ncs6, an
iron-sulfur (Fe/S) cluster containing protein,72 and its worm
homolog TUT-1 can bind to tRNA in vitro11 and in vivo.8 The
protein carries 2 predicted zinc-finger domains and a P-
loop.11,73,74 Interestingly, the number of tRNA species that bind
to Ncs6 in vitro exceeds the number of mcm5s2U34 targets.11

Thus, Ncs2 may provide specificity to the complex. Alterna-
tively, Ncs2 may stabilize or activate Ncs6. NCS2 is the closest
homolog of NCS6 in the yeast genome. However, the critical
residues required for enzymatic function are mutated. The
observation that only one catalytic subunit is required in S. cer-
evisiae suggests a similar mechanism in enzymes that form a
homo-dimer such as TtuA.75 While URM1, UBA4, NCS2 and
NCS6 are required for 2-thiolation, ThioUridine Modification 1
(TUM1), a gene coding for a protein with 2 RHDs, is not essen-
tial for thiolation. However, in the absence of Tum1, levels of
s2U34 are significantly reduced and the ratio between modified
and unmodified tRNA changes.11,58,63,67

In addition to this core set of proteins, there is another
group that is essential for thiolation by more generally affecting
sulfur pathways. NiFS like 1 (Nfs1), a cysteine desulfurase that
converts cysteine into alanine using pyridoxal phosphate as a
cofactor acts upstream of several cellular sulfur pathways.76

During this reaction, Nfs1 feeds sulfane sulfur to its acceptor
protein. Uba4 uses the sulfur and transfers it into the down-
stream cascade for 2-thiolation.62 The exact mechanism of
Tum1 in this reaction is unclear. Tum1 receives sulfur from
Nfs1 and appears to stimulate its activity.63 This suggests that it
acts as an enhancer of the transfer reaction or as a sulfur relay.
Since Tum1 is not essential for 2-thiolation, the transfer step
via Tum1 can be bypassed. Therefore, Tum1 may affect 2-thio-
lation through an indirect mechanism by rerouting sulfur path-
ways. Finally, proteins required for iron-sulfur (Fe/S) cluster
biogenesis and assembly are essential for 2-thiolation. These
are: Cytosolic Iron-sulfur protein Assembly 1 (Cia1), Nucleo-
tide Binding Protein 35 (Nbp35) and Cytosolic Fe/S cluster
Deficient 1 (Cfd1), which are all components of the CIA com-
plex.77,78 The CIA complex works in conjunction with IScU
homologs 1 and 2 (Isu1 and Isu2), 2 proteins that reside in the
mitochondrial matrix and are required for Fe/S cluster genera-
tion.79 Additional proteins required for Fe/S cluster formation
are, therefore, likely to affect 2-thiolation but have not been
tested specifically. Whether Fe/S cluster formation affects s2U34

formation directly or indirectly via the formation of mcm5U34

Figure 2. Model of the URM1 pathway and the Elongator complex. Schematic representation of the 2 pathways cooperating in mcm5s2U34 formation. In the URM1 path-
way (left), sulfur is mobilized by Nfs1 with the help of Tum1. Uba4 activates Urm1, leading to a thiocarboxylate at Urm1’s C-terminus, which acts as a sulfur carrier. Finally,
the Ncs2�Ncs6 complex binds to and activates tRNA in the thiolation reaction and transfers the sulfur from Urm1 to uridine. The Elongator complex consists of twice
Elp1-Elp6. Elp1 dimerizes via its C-terminus and acts as a platform for Elp2 and Elp3 binding in a wing-like structure. A ring of Elp4-Elp6 binds to one of the wings (Hand-
edness is only partially represented in this model).102,103
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will need to be determined.80 Recently, a Fe/S cluster was iden-
tified in Ncs6 and its archaeal homolog TtuC.72 However, its
requirement for s2U34 formation remains to be demonstrated.

The Elongator complex

The Elongator complex is at the heart of mcm5 and ncm5 side
chain formation at U34. The complex has been reported to act
in numerous cellular processes including transcription, DNA
damage response, exocytosis, telomere gene silencing, DNA
demethylation and wobble uridine modification.6,81-88 Impor-
tantly, all known phenotypes of Elongator-minus yeast, except
for the defect in U34 modification itself, can be rescued by over-
expression of tRNA that are normally mcm5s2U34 modi-
fied.12,45,51,88-95 Nevertheless, the question of whether different
functions exist in other species is very persistent, in part due to
the fact that tRNA overexpression experiments in metazoans
are more difficult to perform than in yeast.

The Elongator complex consists of 6 subunits: Elp1-
Elp6.81,96,97 Each is present twice in the holo complex, which
can be divided in two sub-complexes: Elp1-Elp3 and Elp4-
Elp6. The latter subunits, between 30–50 kDa in size, have very
similar RecA folds and assemble into a heterohexameric ring
structure that resembles RecA-like ATPase complexes.98 How-
ever, the subunits lack the P-loop motif, which is characteristic
for ATPases.98 Importantly, the Elp4-Elp6 complex binds
tRNA in an ATP dependent manner, where high levels of ATP
decrease the affinity of tRNA for the complex. The Elp1-Elp3
subcomplex contains Elp3, which is the catalytic subunit of the
complex.96,99 Elp3 carries an N-terminal radical SAM binding
domain and a C-terminal histone acetyltransferase (HAT)
domain.96,100 Interestingly, in the archaeon Methanocaldococ-
cus infernus a homolog of Elp3 is sufficient for U34 modifica-
tion, while all other Elongator subunit genes are absent from its
genome.101 Elp1 and Elp2 are both WD40 domain containing
proteins. Two subunits of Elp1 dimerize via their C-terminal
domains, while one subunit of Elp2 and Elp3 associates with
each Elp1 subunit at either side.102,103 This generates a wing-

like structure. Surprisingly, in the holo complex, a ring of
Elp4-Elp6 is associated with the front of the left wing (Fig. 2)
resulting in an asymmetric assembly, which is in contrast to
previous models.98,102-105 The role of the asymmetry still needs
to be determined as well as the position of the tRNA in the
complex.

In addition to the Elongator complex, Kluveromyces lactis
Toxin Insensitive 11–14 (Kti11-Kti14), Suppressor of Initiation
of Transcription 4 (Sit4), Sit4 associated protein 185 and 190
(Sap185 and Sap190), tRNA Methyltransferase 9 and 112
(Trm9 and Trm112) are required for mcm5U34 and ncm5U34

formation. Elp1-Elp6, Kti11, Kti12, Kti14, Sit4, Sap185 and
Sap190 are essential for the formation of cm5U34, which is
believed to be the precursor of mcm5 and ncm5.6,58,106 The lack
of Kti13 leads to reduced levels of xm5 formation.6,58 Finally,
the Trm9�Trm112 complex uses SAM to synthesize
mcm5U34.

107 Whether cm5U34 or an intermediate precursor
serves as the direct methylase substrate is not clear, yet. The
observation that both trm9 and trm112 mutants accumulate
ncm5U34 and ncm5s2U34, however, suggests the existence of an
enzyme required for formation of ncm5U34 (and ncm5s2U34)
from cm5U34.

107,108 The identity of this activity is still not
known, leading to contradicting ideas of how to rationalize
these later steps of the U34 modification pathway.106-110

Elongator regulation by phosphorylation

Strikingly, tRNAs that carry Elongator-dependent mcm5s2U34

can be cleaved by zymocin between anticodons position 34 and
35.111-113 Zymocin is a trimeric (abg) tRNase toxin complex
produced from K. lactis that kills yeasts including S. cerevi-
siae.114-116 In line with this lethal mode of tRNase action,
genetic studies have shown that mutations in Elongator genes
trigger zymocin resistance and additional Elongator related fac-
tors (Kti11-Kti14, Sit4, Sap185 and Sap190) were genetically
identified on the basis of zymocin survivor screens.58,112,117-136

Rather than affecting the assembly or the integrity of the Elon-
gator complex, these proteins appear to be regulatory.

Figure 3. Phosphomodification of Elongator subunit Elp1. (A) Elp1 electrophoretic mobility shifts based on anti-HA Western blots are diagnostic for Elongator de-/phos-
phorylation.130,134 In the kti12 and the kinase-dead hrr25/kti14 mutants, hypophosphorylated forms of Elp1-HA accumulate while sit4 phosphatase mutants induce Elp1-
HA hyperphosphorylation. Wild-type (wt) cells maintain both isoforms of Elp1-HA, which mediate sensitivity (S) to growth inhibition by the tRNase toxin zymocin (killer
assay: lower panel; for details see text). Zymocin resistance (R) associates with Elp1 phosphorylation defects in kti12, hrr25/kti14 and sit4 mutants. (B) Elongator phosphor-
ylation model. Kti12 interacts with Elongator (and kinase Hrr25) thereby potentially activating Elp1 phosphorylation. In support of this, Elp1 is found to be hypophos-
phorylated in kti12 and hrr25/kti14 cells (see A). PPase: protein phosphatase (Sit4); Kinase: Hrr25/Kti14.
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Consistent with this, a casein kinase 1 (CK1) isozyme (Kti14,
also called: Hrr25), type-2A protein phosphatases
(Sit4�Sap185; Sit4�Sap190) and an Elongator interactor
(Kti12)124,127,129 were all shown to affect the phosphorylation
state of Elp1, which through dimerization assembles holo-Elon-
gator.98,102,103,137 Elp1 is present as a hypophosphorylated iso-
form in kti12 and hrr25 mutants and is hyperphosphorylated
in sit4 mutants, while wild-type cells maintain both forms
(Fig. 3).130,131,134 This suggests that Elongator function may be
phosphoregulated, which is in line with reports that tRNA
modifications including mcm5s2U34 can change in response to
chemical stress and cell cycle progression.106,138-140

Subsequently, phosphorylation sites on Elp1 and other Elon-
gator subunits were identified using mass spectrometry.141,142

Among those mapped on Elp1, 2 (Ser-1198, Ser-1202) appear to
be directly phosphorylated by Hrr25 confirming the genetic data
that the CK1 isozyme has Elongator kinase activity. The analysis
of phosphosite mutations revealed that Elp1 phosphorylation
largely plays a positive role for Elongator activity.142 Accord-
ingly, profiling modified U34 nucleosides in tRNAs from these
phosphosite mutants by LC-MS/MS showed loss of ncm5U34

and mcm5U34 formation.142 The finding that normal phosphole-
vels at Ser-1209 were detectable in a kinase-dead hrr25
mutant134 implies that (at least) one additional Elongator kinase
ought to exist.142 Furthermore, altered interaction between Elon-
gator, Hrr25 and Kti12 was seen in several Elp1 phosphosite
mutants, in line with data showing that hrr25 mutants unable to
phosphorylate Elp1 affect Elongator association with
Kti12.134,142 The data, therefore, suggest that normal Elongator
interaction with Kti12 and proper tRNA modification are facili-
tated by phosphorylation of Elp1.

Regulation of s2U34 formation

Whether the URM1 pathway is regulated is not clear. Most
reports describing changes in mcm5s2U34 levels in response to
chemical stress do not separate the contribution of mcm5 and
s2 formation.138,143,144 However, the analysis of 2-thiolation
has shown that s2U34 levels are decreased in response to high
temperatures or in growth media lacking a sulfur
source.140,145-148 This is not a consequence of de-thiolation but
depends on active transcription of tRNA by RNA polymerase
III, since the use of inhibitors or temperature sensitive alleles
of RNA polymerase III prevents the decrease in s2U34.

140,147

Interestingly, the decrease in s2U34 is reversible when yeast is
shifted back to ambient temperature, which seems like a pre-
requisite for active regulation. However, the kinetics for up-
and downregulation of 2-thiolated tRNA are in the range of
several hours.140,147 This is in contrast to the idea that modifi-
cation-specific changes to translation could provide a fast
switch under stress conditions. The environmental stress
response that elicits an extensive transcriptional change in
response to various stress conditions peaks after 30 min.149 A
translational rewiring by reducing 2-thiolation would therefore
accompany or even follow the transcriptional response to high
temperatures rather than being an active driver of such a cel-
lular transition.140

But what could be mechanisms for regulation? Different
high-throughput analyses have identified phosphosites in

Tum1, Ncs2 and Ncs6.150,151 However, to date none of these
sites has been shown to affect s2U34 formation in vivo. Interest-
ingly, Uba4 and Ncs6 were identified as targets for protein
urmylation65,152 and similarly ATP3BP, the human Ncs6
homolog.60 However, these studies were performed using
increased levels of Urm1 and oxidizing reagents. To show the
in vivo relevance of urmylation it will be crucial to perform
similar experiments under physiological conditions.

The role of phosphorylation for U34 regulation

Although the precise role for Elp1 phosphorylation is unclear,
two options can be envisaged. On the one hand, phosphoryla-
tion could act as an ‘on/off’ switch for Elongator’s U34 modify-
ing activity, for example, in response to cellular stress. If
translation of some mRNAs were dependent on U34 modifica-
tion and hence tunable by Elongator,12,90,91,153,154 this raises
the possibility that Elongator is part of a translational control-
mechanism that functions through its role as a U34 modifier.
Such role is consistent with loss-of-function phenotypes asso-
ciated with Elp1 phosphosite substitutions, kinase-dead hrr25
mutations and inhibition by ATP analogs of an analog-sensi-
tive Hrr25-I82G kinase variant.134,142 Although Hrr25 operates
in many cellular functions,155 which complicates the analysis
of Elp1 phosphorylation signals, its kinase activity is required
for full functionality of ribosomes and U34 containing
tRNAs.134,142,156-158 This is congruent with a role of the kinase
in the regulation of a cell’s capacity for proper mRNA transla-
tion and protein synthesis. Finally, hrr25 and Elongator
mutants are sensitive to DNA damaging mutagens.87,159 Since
efficient translation of the RNR1 message coding for RiboNucle-
otide Reductase subunit 1, involved in the DNA damage
response (DDR) requires U34-modified tRNAs,160 Elp1 phos-
phorylation may link up to the known role the Hrr25 kinase
plays in expression of other DDR genes, i.e. RNR2 and RNR3.159

On the other hand, Elongator might require dynamic
sequential phosphorylation and dephosphorylation cycles of
Elp1 to carry out its tRNA modification reaction.101,161 It was
shown that phosphatase mutants like sit4 or sap185sap190
trapped Elp1 in a slower-migrating, hyperphosphorylated form
whereas hrr25 kinase and kti12 mutants led to the presence of a
fast-migrating, hypophosphorylated Elp1 isoform (Fig. 3). Both
types of mutations cause loss-of-function phenotypes, suggest-
ing that the functionality of Elongator requires sequential de-/
phosphorylation of Elp1. Thus, dynamic de-/phosphorylation
may impact on the catalytic activity of Elp3, its localization or
even its ability to interact with accessory factors or substrate
tRNAs. Importantly, the C-terminus of Elp1, which is phos-
phorylated, is required for dimerization and is adjacent to a
basic region that is crucial for Elongator activity and tRNA
binding.102,103,142,162 Thus, Elp1 phosphorylation may affect
holo-Elongator dimerization as well as interaction with partner
proteins or its tRNA substrates.

The dynamic model is further supported by the observation
that the right balance between hypo- and hyperphosphorylated
Elp1 isoforms appears critical for Elongator activity (Fig. 3).
This may explain why the presence of exclusively one of the
two isoforms results in Elongator loss of function (Fig. 3) and
antagonistic de-/phosphorylation of Elp1 by phosphatase/
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kinase activities may indeed control its activity.121,129-131,134

Although this contradicts the idea that Elp1 phosphorylation
acts as an ‘on/off’ switch, data showing that loss of U34 modifi-
cations is similar in elp1, hrr25, kti12, sit4 and sap185sap190
mutants with opposite Elp1 phosphorylation states (Fig. 3)
agree with the dynamic phosphorylation model.58,131 However,
this would predict that mimicking constitutive phosphorylation
on at least some of the Elp1 phosphosites may inhibit Elongator
function. Surprisingly, all of the phosphomimetic ELP1 alleles
tested in zymocin assays conferred growth arrest by the tRNase
indicating proper Elongator functioning in the U34 modifica-
tion pathway.142 However, whether these mutations are not
fully phosphomimetic and thus allowed for residual Elongator
activity, has not been analyzed. Thus, although removal of
phosphorylation sites provides evidence that Elp1 phosphoryla-
tion acts positively on Elongator function, a requirement for
dynamic de-/phosphorylation still needs to be shown. Further-
more, it is possible that inhibitory Elp1 phosphosites exist,
which were not identified by Abdel-Fattah and colleagues.142

For example, although Elp1 phosphorylation at Thr-1212 was
not detected by MS/MS, a substitution of this residue caused
zymocin resistance suggesting that it represents a phosphosite
in vivo.142 To conclude, while there is clearly more to learn
about Elongator phosphorylation, experimental evidence dem-
onstrates that the kinase Hrr25 affects Elongator’s tRNA modi-
fication function by phosphorylating (potentially reversible)
phosphoacceptor sites in the Elp1 subunit.

Elongator regulation through Kti11, Kti12 and Kti13
proteins

Although the precise role of Kti12 is unclear, the yeast protein,
its plant ortholog (DRL1/ELO4) and PSTK, a tRNA binding
kinase, carry N-terminal P-loop motifs typical of nucleotide
binding proteins.118,163-166 Consistent with a functional role for
this domain, a P-loop truncation of Kti12 triggers defects typi-
cal of Elongator mutants.124 Importantly, Kti12 supports Elp1
phosphorylation and interacts with the Hrr25 kinase in an
Elongator-dependent fashion.121,124,125,167 kti12 knockouts
abolish Hrr25 interaction with Elongator, cause loss of U34

modification and trigger the formation of hypophosphorylated
Elp1 isoforms (Fig. 3) similar to a hrr25 kinase mutant.58,127,134

This led to the proposal that Kti12, through recruitment of
Hrr25 to Elongator, positively acts on Elongator’s U34 modifi-
cation function.134 Intriguingly, KTI12 overexpression triggers
the accumulation of hyperphosphorylated Elp1 isoforms and
suppresses zymocin sensitivity, which is typical of sit4 phospha-
tase mutants (Fig. 3).118,130,133 This effect, however, is likely not
caused by altered Elongator interactions in contrast to Elp1
phosphorylation defects, which enhance Kti12 associa-
tion.134,142 Furthermore, zymocin suppression through excess
Kti12 can be rescued by overexpression of SIT4.130 These
genetic interactions suggest a negative role of Kti12 for Sit4
phosphatase function. In support of this idea, multi-copy
KTI12 was found to suppress the rapamycin-resistance of a
mutant lacking Resistant to Rapamycin Deletion 1 (Rrd1), a
Sit4 activator protein and TOR pathway component, which has
not been reported to directly relate to Elongator function.92 It
will be interesting to study whether this additional role for

Kti12 can be separated from its ability to regulate Elongator
phosphorylation.

Two additional Elongator regulatory factors are Kti11/
Dph3 and Kti13/Ats1. Kti11 is a metal binder and electron
transfer protein that copurifies with Fe/S cluster containing
complexes including Elongator and Dph1�Dph2.126,168,169
Moreover, it forms a dimer with Kti13 shown to promote U34

modification by Elongator and diphthamide synthesis by
Dph1�Dph2.132,136,170,171 Diphthamide is an exotic modifica-
tion of translation Elongation Factor 2 (EF2),142,172 which cat-
alyzes ribosomal translocation during translation elongation
and is, therefore, essential for protein synthesis and cell viabil-
ity. Diphthamide-modified EF2 can be inhibited by cytotoxic
ADP ribosylases173 including diphtheria toxin (DT).172,174 As
a consequence, KTI11 mutations confer resistance against DT
and the zymocin tRNase.123,132,172 Thus, Kti11 and Kti13
appear to partake in U34 anticodon modifications by Elonga-
tor and diphthamide synthesis on EF2174-176 presumably by
providing electrons170,171 to the Fe/S clusters in Elp3100 and
Dph1�Dph2.177 With the recent identification of a Kti11
reductase in yeast (Cbr1) that affects Elongator activity,178 it
will be important to clarify the precise roles of Kti11 and
Kti13 and study their potential to modulate the electron flow
required for both the tRNA and the EF2 modification
pathways.

U34 modification dependent tRNase ribotoxins

Zymocin inhibits yeast growth through a complex mode of
action that involves chitinolysis of the cell wall, tRNase toxin
(g-toxin) uptake, anticodon cleavage and depletion of tRNAs,
eventually resulting in cell death.111,112,114,115,117 Thus, zymocic-
ity relies on the inhibition of mRNA translation and protein
biosynthesis, reminiscent of bacterial anti-phage tRNase and
colicin-type anticodon nucleases.112,179-181 Importantly, up-reg-
ulating tRNA repair by overproducing the 2-component system
from T4 phage (Rnl1-Pnkp) or tRNA ligase from plants
(AtTRL1) suppresses anticodon cleavage and depletion of
tRNAGlu

UUC.
116 This suggested that the incision generated at the

30 side of the modified wobble base is compatible with sealing
and healing functions of heterologous ligases, and that tRNA
repair can be an efficient antidote toward lethal anticodon
damage by microbial tRNases.116 This principle was further
supported by findings that the inability of the yeast tRNA ligase
Trl1 to repair the anticodon damage can be rectified by shuf-
fling genetically engineered ligase constructs. Interestingly,
when the domains from AtTRL1 and Trl1 were swapped, the
plant ligase domain plus the yeast healing domain rescued S.
cerevisiae cells against depletion of tRNAGlu

UUC. Thus, differences
in the ligase component of the plant versus yeast enzymes likely
account for tRNase antidote functions.116 Intriguingly, PaT, a
zymocin-related tRNase ribotoxin complex from Pichia aca-
ciae, exploits a second site resulting in nucleotide excision
rather than incision.111,182 Hence, tRNA damage by PaT evades
reconstitution of a functional ASL by the repair system, which
is why plant AtTRL1 ligase fails to suppress PaT toxicity.182,183

Other than suppressing zymocin action through direct
repair, tRNA protection can also be provided by higher-than-
normal levels of tRNAGln

UUG, tRNA
Glu
UUC and tRNALys

UUU, which are
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targeted for cleavage by the ribotoxin. In fact, a screen for
zymocin insensitive mutants identified several tRNAGlu

UUC loci as
copy-dependent suppressors of the tRNase ribotoxin.118 Inter-
estingly, this suppression can be efficiently countered by
overexpressing the catalytic subunit of U34 methylase
(Trm9�Trm112), suggesting that it is hypomodified tRNAGlu

UUC,
which in excess is able to bypass zymocicity.58,113 However, full
resistance to zymocin is only conferred by mutations in ELP,
KTI or URM1 pathway genes that trigger the loss of mcm5s2U34

modifications in tRNA.
Since the U34 modification pathways are conserved and ele-

ments of the Elongator pathway can be functionally exchanged
between yeast and plants,135,184 it was obvious to apply the yeast
tRNase toxins to metazoans. Preliminary findings indicate that
tRNase expression not only inhibits yeast growth but also affects
the viability of vertebrate cells (RS & SL, data not shown). This
is consistent with HeLa cell growth inhibition as well as hyper-
sensitivity reactions in response to transient tRNase induction
and tRNA cleavage in planta.185,186 Similarly, bacterial PrrC-
type anticodon nucleases were found to be lethal when expressed
in yeast.187 Importantly, using cytotoxic tRNase to study the for-
mation of microbial biofilms suggests that tRNA cleavage may
also be used in cell-cell communications.181,187 Thus, it is
tempting to exploit tRNase ribotoxins as anti-proliferative agents
for use in biomedical interventions against infections by micro-
bial, fungal or viral pathogens or to prevent undesired growth
of tumor cells whose proliferation heavily relies on protein
synthesis and therefore, proper tRNA function.181,188

The origin of phenotypes of U34 defects

Exploiting U34 modifications to kill competing yeasts is a curi-
ous strategy for pathogenicity. But what are the molecular

mechanisms that underlie the pleiotropic phenotypes that we
observe in organisms with inappropriate levels of U34 mod-
ification? The absence of wobble uridine modifications is
accompanied by increased sensitivity to biotic and abiotic
stresses and defects in numerous cellular processes including
transcription, DDR, exocytosis, telomere gene silencing and
DNA demethylation.6,81-85,87,88 In prokaryotes, s2U34 deficient
tRNAs are poor substrates for aminoacyl-tRNA synthetases.189

This however, does not appear to be the case in eukaryotes and
can, therefore, not explain the observed phenotypes.20

Most strikingly in yeast, except for the U34 modification
defects, all known phenotypes can be rescued by overexpression
of tRNAs that would normally be decorated by mcm5s2U34 (see
above). In S. cerevisiae, overexpression of tRNAGln

UUG and
tRNALys

UUU efficiently rescues the defects. This is in good agree-
ment with ribosome-profiling experiments, which found that
the codons CAA and AAA decoded by tRNAGln

UUG and
tRNALys

UUU, respectively, slow down during translation while a
slow down at GAA (decoded by tRNAGlu

UUC) was not detected
consistently.45,91 Computational attempts to identify transcripts
that are enriched in A-ending codons as well as several
screens and proteomics studies have reported targets that are
downregulated at the protein level in U34 modification
mutants.143,146,160,190 Interestingly, it is possible to rescue the
levels of some of these target proteins by using engineered gene
constructs that have AAA codons exchanged by AAG.51,191

However, in contrast to tRNA overexpression, none of these
synthetic codon rescue experiments has suppressed the under-
lying phenotype. Failure to do so can have several reasons:
First, the phenotypes may be triggered by the loss of function
of a group of proteins rather than by the absence of individual
proteins (Fig. 4A). Second, instead of a loss-of-function pheno-
type, the effects may be triggered by a cytotoxic gain-of-func-
tion (Fig. 4B). This concept is based on the recent findings that

Figure 4. Two models to explain phenotypes of U34 modification mutants. (A) Specific mRNA enriched in codons that depend on tRNA modifications are translated at
lower rates. This leads to reduced levels of the protein encoded by this transcript triggering a loss-of-function phenotype. (B) Ribosomes slow down when translating
codons that depend on tRNA modifications. The slowdown perturbs the optimized equilibrium between speed of protein synthesis and protein folding. The increased
rate of protein stress leads to a systemic failure in protein homeostasis and the aggregation of endogenous proteins that associates with it in a toxic gain-of-function sce-
nario. This can either affect viability of the cells directly or by changing cellular signaling (Street signs with “30” indicate slow speed of ribosomes).
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U34 modification mutants as well as other dysfunctional tRNA
modification pathways are characterized by protein homeosta-
sis defects.45,139,154 In yeast, these lead to the aggregation of
endogenous metastable proteins in the cytoplasm.45 In mouse
brains, the same modification defects induce the unfolded pro-
tein response in the endoplasmatic reticulum, which triggers
differentiation defects in neuronal precursors, leading to micro-
cephaly.52 Thus, proteotoxic stress provides an alternative
mechanism (Fig. 4B) to explain the pleiotropic phenotypes. In
this scenario, codon-specific translation defects perturb the
equilibrium of mRNA-translation dynamics and peptide-chain
folding that has been optimized during evolution to ensure
accurate protein synthesis, folding and homeostasis. As a result,
proteotoxic stress alone or in combination with the standard
model that favors reduction of individual proteins (Fig. 4A), is
likely the main trigger for pleiotropic defects by severely rear-
ranging the cellular proteome or by interfering with down-
stream signaling of the affected cells.

Importantly, the underlying mechanism of U34 defects has
significant consequences for our options to remedy phenotypes,
particularly in the context of human disease: The loss-of-func-
tion model suggests that the identification of undertranslated
mRNAs will lead to treatment options by enhancing the activity
of their encoded proteins. In contrast, the protein-homeostasis
model suggests that instead of repairing individual proteins,
our response rather has to focus on alleviating proteotoxicity or
signaling output that is induced downstream of proteotoxic
stress.
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