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Background: As machine learning becomes increasingly utilized in orthopaedic clinical research, the application of machine
learning methodology to cohort data from the Multicenter ACL Revision Study (MARS) presents a valuable opportunity to translate
data into patient-specific insights.

Purpose: To apply novel machine learning methodology to MARS cohort data to determine a predictive model of revision anterior
cruciate ligament reconstruction (rACLR) graft failure and features most predictive of failure.

Study Design: Cohort study; Level of evidence, 3.

Methods: The authors prospectively recruited patients undergoing rACLR from the MARS cohort and obtained preoperative ra-
diographs, surgeon-reported intraoperative findings, and 2- and 6-year follow-up data on patient-reported outcomes, additional
surgeries, and graft failure. Machine learning models including logistic regression (LR), XGBoost, gradient boosting (GB), random
forest (RF), and a validated ensemble algorithm (AutoPrognosis) were built to predict graft failure by 6 years postoperatively. Val-
idated performance metrics and feature importance measures were used to evaluate model performance.

Results: The cohort included 960 patients who completed 6-year follow-up, with 5.7% (n = 55) experiencing graft failure. Auto-
Prognosis demonstrated the highest discriminative power (model area under the receiver operating characteristic curve: Auto-
Prognosis, 0.703; RF, 0.618; GB, 0.660; XGBoost, 0.680; LR, 0.592), with well-calibrated scores (model Brier score:
AutoPrognosis, 0.053; RF, 0.054; GB, 0.057; XGBoost, 0.058; LR, 0.111). The most important features for AutoPrognosis model
performance were prior compromised femoral and tibial tunnels (placement and size) and allograft graft type used in current
rACLR.

Conclusion: The present study demonstrated the ability of the novel AutoPrognosis machine learning model to best predict the
risk of graft failure in patients undergoing rACLR at 6 years postoperatively with moderate predictive ability. Femoral and tibial
tunnel size and position in prior ACLR and allograft use in current rACLR were all risk factors for rACLR failure in the context
of the AutoPrognosis model. This study describes a unique model that can be externally validated with larger data sets and con-
tribute toward the creation of a robust rACLR bedside risk calculator in future studies.

Registration: NCT00625885 (ClinicalTrials.gov identifier).

Keywords: ACL revision; graft failure; femoral tunnel; tibial tunnel; machine learning

Revision anterior cruciate ligament reconstruction
(rACLR) continues to remain a challenge.42 In patients
undergoing rACLR, the rate of objective graft failure has
been reported to be as high as 13.7%.7,50 Compared with
primary ACLR, rACLR is a more technically demanding

procedure with a 3- to 4-fold increased risk of graft failure
and poorer functional outcomes.49-51

The Multicenter ACL Revision Study (MARS) Group,
created in 2005,29 as well as other studies, has implicated
several predictive factors for outcomes after rACLR. These
include technical factors such as graft type, as well as
patient factors like preoperative knee hyperextension, youn-
ger age, and higher activity level.9 Other investigations
have implicated technical errors in graft preparation, place-
ment, tensioning, and fixation, as well as anatomic factors
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like posterior tibial slope, anterolateral rotary instability,
and meniscal deficiency.14,41 Although these findings have
guided clinical decision-making, rACLR outcomes appear
to be dependent on multiple factors.29 More accurate predic-
tors of graft failure may improve preoperative counseling,
operative management decisions, and cost of care.

Machine learning is increasingly utilized in health care
to harness insights from clinical data sets (big data) to pro-
vide patient-specific predictions of an outcome of interest.3

In the orthopaedic literature, a number of studies on
machine learning have built risk calculators with the poten-
tial for use in a variety of settings from preoperative coun-
seling to advocacy for appropriate reimbursement based
on patient risk.22,23,25,32-34 Yet the lack of standardization
in machine learning methodology, awareness of machine
learning techniques in the orthopaedic community, and
data quality limit the clinical utility of these results.21,24,27

AutoPrognosis is a novel, validated ensemble algorithm
that combines the strongest features of traditional statisti-
cal approaches and popular algorithms like random forest
(RF) and XGBoost to create a single, well-calibrated predic-
tive ‘‘supermodel.’’ AutoPrognosis has been validated in
various orthopaedic subspecialty studies, predicting post-
operative complications after total hip arthroplasty, total
knee arthroplasty, and posterior cervical spinal
fusion.10,39,40 The application of validated machine learn-
ing methodology to MARS cohort data presents a valuable
opportunity to translate data into patient-specific insights.

In this study, we sought to apply novel machine learning
methodology to the MARS cohort data to determine (1) an
optimal predictive model of rACLR graft failure and (2) fea-
tures that are important for the model to be able to accu-
rately predict rACLR graft failure. We hypothesized that
the AutoPrognosis model would have the most robust predic-
tive and discriminative ability for the outcome of interest,
and important features would span surgical, clinical, radio-
graphic, and patient-reported outcome (PRO) variables.

METHODS

Study Participants

MARS Cohort. The MARS Group consists of 83 sports
medicine fellowship–trained surgeons at 52 academic and
private practice sites (ClinicalTrials.gov: NCT00625885).
Institutional review board approval was obtained at all
investigating sites. Between 2006 and 2011, 1233 patients
undergoing rACLR were prospectively enrolled. Eligible
patients underwent rACLR, including a second or greater
rACLR; multiligament reconstructions were excluded.

Detailed descriptions of the MARS cohort have been previ-
ously published.29

All patients within the MARS cohort completed an
informed consent form and 13-page questionnaire of base-
line patient characteristics, injury and sports participation
history, knee surgical history, medical comorbidities, and
baseline PROs including the Marx activity rating scale,
Western Ontario and McMaster Universities Osteoarthri-
tis Index, Knee injury and Osteoarthritis Outcome Score
(KOOS), 36-Item Short-Form Health Survey (SF-36), and
International Knee Documentation Committee Subjective
Form. Patients were followed up at 2 and 6 years postoper-
atively regarding outcome measures, additional surgeries,
and graft failure. Additionally, the following knee radio-
graphs were obtained in 630 patients from a previous
MARS Group investigation31: bilateral knee standing ante-
roposterior, full-extension lateral, bilateral 45� bent-knee
posterior-anterior, long-leg alignment, and bilateral patel-
lofemoral views. The radiographs were used to measure
femoral and tibial tunnel positions, sagittal view physio-
logical tibial plateau slope angle, leg alignment, and joint
space narrowing. Tunnel position and size were deemed
accurate or compromised by the attending surgeons who
completed the surgeon questionnaires. These determina-
tions were not held to specific numeric measurements.

Surgeons were free to perform and use the surgery and
graft of their preferred choice. If an allograft was used, it
was supplied by MTF Biologics to ensure processing consis-
tency. Surgeons completed a 49-page questionnaire of
intraoperative findings including examination under anes-
thesia results; surgical technique; concomitant cartilage
injury based on modified Outerbridge classification; menis-
cal injuries classified by size, location, degree of tear, and
treatment; and rehabilitation guidelines. These data were
entered into a master database and underwent quality con-
trol checks before data analysis.

Patient Selection. MARS cohort patients who completed
both the follow-up questionnaire and telephone follow-up for
subsequent surgery at 6 years postoperatively were consid-
ered for inclusion in the current study. Patients with missing
data for the outcome variable were excluded from analysis.

Outcomes

The primary outcome of the present study was graft failure
after rACLR, which was ascertained by querying patients.
All patients who reported experiencing graft failure also
reported receiving professional confirmation with opera-
tive report, clinic report, or magnetic resonance imaging
report.

*Address correspondence to Kinjal Vasavada, MD, Department of Orthopedic Surgery, Yale University, 20 York Street, Yale New Haven Hospital,
New Haven, CT 06511, USA (email: kinjal.vasavada@yale.edu) (Twitter/X: @kinjal_vasavada).

yAll contributing members of the MARS Group are listed in the Authors section at the end of this article.
Presented at the 2023 AOSSM Annual Meeting, Washington, DC.
Final revision submitted March 9, 2024; accepted April 3, 2024.

One or more of the authors has declared the following potential conflict of interest or source of funding: This study was funded by the National Institutes
of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant 5R01-AR060846). See Supplemental Material for individual disclo-
sures. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the
OPD and disclaims any liability or responsibility relating thereto.

Ethical approval for this study was obtained from Vanderbilt University (ref No. 070110).

2 MARS Group The Orthopaedic Journal of Sports Medicine



Data Preprocessing and Feature Engineering

We conducted data preprocessing, model creation, evalua-
tion, and interpretation using Python (Version 3.10;
Python Software Foundation),47 the Anaconda distribution
platform,2 and the Jupyterlab interactive development
environment.22 Standard libraries including pandas,37

NumPy,16 scikit-learn (sklearn),38 and Matplotlib were
used for the data analysis and visualization. Descriptive
statistics and table creation were performed using R Ver-
sion 4.1.0 (R Foundation for Statistical Computing).

All data collected for the MARS cohort were considered
for inclusion in the analysis. Significant data preprocess-
ing including feature engineering and imputation of miss-
ing values was conducted in order to yield a usable set of
features for model creation. Nominal (or categorical) fea-
tures were encoded using OneHotEncoder in sklearn,
whereby features are split into their category levels where
categories are unrelated. An example of this is the feature
‘‘current femoral fixation,’’ in which the options are ‘‘combi-
nation,’’ ‘‘cross pin,’’ ‘‘interference screw,’’ ‘‘suture 1 but-
ton/Endobutton,’’ and ‘‘other.’’ Ordinal features like PROs
on a Likert scale, whose categories have a clear order but
the size of differences between categories is not necessarily
quantifiable, were encoded using sklearn category encoder’s
OrdinalEncoder, whereby categories were mapped to
numeric values that preserved the relationships between
categories.46 For all features, category levels were required
to meet a percentage threshold of �0.04 in order to be
encoded and were incorporated into other categories until
the threshold was met. Conditional variables were excluded
from analysis because of low frequencies that could not be
managed without compromising data quality.

Per validated methodology, features with .60% missing
values were excluded. For the remaining features, missing
values were imputed using the validated SimpleImputer in
sklearn. Means were used for continuous and ordinal fea-
tures, and modes used for binary and nominal features.

Model Development and Evaluation

Five machine learning models were developed to predict
graft failure at 6 years postoperatively using preprocessed
patient, clinical, and surgical features. These models

included traditional binary classifiers (logistic regression
[LR], XGBoost, gradient boosting [GB], and RF) and a val-
idated ensemble algorithm (AutoPrognosis).

AutoPrognosis utilizes pipelines to build an ensemble
‘‘supermodel,’’ as depicted in Figure 1. Each pipeline con-
tains an imputation, feature processing, and classification
algorithm, as well as a calibration method. AutoPrognosis
automatically conducts and optimizes hyperparameter
searches for each classification method and selects and
ranks top-performing pipelines based on suspected contri-
bution to overall model performance. AutoPrognosis was
implemented using code first provided by Alaa and van
der Schaar1; LR, RF, and GB were implemented using
the sklearn library; and XGBoost was built using the
XGBoost library.

The study cohort was split 80:20 into a training and
held-out test cohort. Fivefold stratified cross-validation
with the training cohort was used to determine each mod-
el’s discriminative power and calibration. The held-out test
cohort was used to evaluate model performance, reported
as mean and standard error.

Validated performance metrics were used to measure
discrimination and calibration. The area under the
receiver operating characteristic curve (AUROC) is the
probability the predictive model correctly assigns a patient
who experienced the outcome of interest a higher risk than
a patient who did not. AUROC values \0.7 indicate low
discriminative power, values from 0.7 to 0.9 indicate mod-
erate discriminative power, and values .0.9 indicate high
discriminative power.12 The area under the precision-
recall curve (AUPRC) is the probability that a model cor-
rectly predicts which patients experience the outcome of
interest while minimizing false-positive results. AUPRC
is useful in the setting of an imbalanced data set like
MARS. The closer the AUPRC is to 1 and the higher it is
compared with the baseline AUPRC (a result of random
prediction), the closer the model is to an ideal classifier.

Calibration is a measure of how closely the model’s pre-
dictions match the outcomes seen in the study cohort. The
Brier score, a measure of both model calibration and dis-
criminative power, is measured by taking the mean square
error between values observed in the data and probabili-
ties predicted by the model. Brier scores range between
0 and 1, and a lower score indicates superior performance.

Figure 1. AutoPrognosis design diagram.
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Feature Importance

The Friedman partial dependence function and derived
partial dependence plot (PDP)–based feature importance
were used to determine the most important individual fea-
tures based on their contribution to a model’s predictive
ability by assessing the average effect in predicted risk
when a feature’s value is altered.13 The caveat with PDP
feature importance as a measure is that an important fea-
ture can have a large contribution to a model’s predictive
ability without necessarily being important in a model’s
discriminative ability. Therefore, feature importance was
also calculated using perturbation-based feature impor-
tance, which ranks features in terms of AUROC and
AUPRC loss with modification of an individual feature.
Features identified using perturbation-based importance
were key to model discriminative ability.

We reported the most important features that appear in
the top 10 in PDPs and both perturbation-based feature
importance measures, as these are key to both model pre-
dictive and discriminative ability. For each of these fea-
tures, individual feature behavior in model prediction
was further elucidated using PDPs. Furthermore, the use
of multiple feature importance measures serves as an addi-
tional check to prevent inappropriate importance designa-
tions, because the black-box nature of algorithms such as
AutoPrognosis can give importance to nonphysiological
patient features that affect a small portion of patients in
the cohort (eg, surgeon years of experience).

RESULTS

Study Population

Of the complete MARS cohort of 1233 patients, 273 (22.1%)
patients were excluded from the study (82 had incomplete
data and 191 had inadequate follow-up). The final study
cohort used for analysis was 960 (77.9%) patients.

The baseline cohort characteristics and key variables
are summarized in Appendix Tables A1 to A4. Variables
in the tables represent only a fraction of the total number
of variables in the data set that underwent preprocessing
and were eventually included in the model. Of the 960
patients, 530 (55.2%) were male. The median age of the
cohort was 26 years, and the median body mass index

was 25.1. Most often, patients were White, did not smoke,
and lived with 2 other people. Patients had a median of 15
years of education and worked 40 h/wk. The reported
mechanism of injury was most often nontraumatic with
gradual onset (n = 512; 53.3%). At the time of initial injury,
706 (74.3%) patients were playing sports, 230 (24.3%) had
contact with another player, 254 (26.9%) were jumping,
and 728 (77.7%) felt or heard a pop. Most patients (88%)
were undergoing their first rACLR, at a median of 3.7
years from their previous ACLR, and 283 (29.5%) patients
underwent revision with the surgeon who had performed
their previous ACLR. In rank order, autograft (n = 474;
49.4%), followed by allograft (n = 456; 47.5%) and combina-
tion graft (n = 29; 3.0%), was the most frequently used
graft type for the current revision surgery.

Model Performance

Using the MARS cohort subset of 960 patients who com-
pleted 6-year follow-up, 5.7% (n = 55) of whom experienced
graft failure, we built 5 algorithms predicting the risk of
graft failure after rACLR. Pipelines were used to build
the weighted ensemble AutoPrognosis model (Table 1).

While all models had moderate to good discriminative
power, AutoPrognosis demonstrated the highest discrimi-
native power compared with other models (AUROC,
0.703 6 0.036) (Table 2). The AutoPrognosis model was
well calibrated, with calibration scores similar to those of
the other studied models (Brier score, 0.053 6 0.001).
The AutoPrognosis model’s AUPRC (0.152 6 0.043) outper-
formed most models and had scores similar to those of the
XGBoost and GB models. A baseline AUPRC of 0.057
would be demonstrated if a classifier were to generate ran-
dom predictions. A confusion matrix for AutoPrognosis
that was created using the held-out test cohort, with
a threshold of 0.05729, is illustrated in Table 3. The
receiver operating characteristic curves and precision-
recall curves for the AutoPrognosis and LR models are
illustrated in Figure 2.

Feature Importance

Features deemed important for AutoPrognosis differed
from those for LR model performance. For AutoPrognosis,
the 10 most important features based on PDP and

TABLE 1
List of 3 Pipelines Fitted to MARS Cohorta

Pipeline Dimensionality Reduction; Scaler; Classifier Hyperparameters Weight

1 Variance threshold; MaxAbs scaler; random
forest

({threshold=0.001}, None, {n_estimators=50,
max_depth=4})

0.333

2 FastICA; MaxAbs scaler; Catboost ({n_components=3}, None, {n_estimators=100, depth=5,
grow_policy=‘‘SymmetricTree’’})

0.417

3 None; none; Catboost (None, None, {n_estimators=100, depth=3,
grow_policy=‘‘Depthwise’’})

0.250

aMARS, Multicenter ACL Revision Study.
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perturbation-based feature importance measures are listed
in Table 4. Although important features varied by ranking
methodology, compromised prior ACLR femoral tunnel
position and size, compromised prior ACLR tibial tunnel
position and size, and graft type used in current rACLR
ranked in the top 10 regardless of methodology. Therefore,
these features were deemed most important for both Auto-
Prognosis model predictive and discriminative ability.

PDP-based importance calculations for AutoPrognosis
demonstrated the following top 5 contributors to model
predictive ability: surgeon years of experience, contralat-
eral hamstring tendon graft use in prior ACLR, compro-
mised prior ACLR femoral tunnel position and size, and
prior ACLR femoral tunnel position measured via preoper-
ative radiographs (with techniques 1 and 2). AutoProgno-
sis perturbation-based calculations showed the following

top 5 contributors to AUROC performance: prior ACLR
femoral tunnel position and size, prior ACLR tibial tunnel
position and size, current rACLR graft type, prior ACLR
graft choice, and current rACLR femoral tunnel position
and size. Perturbation-based calculations showed the fol-
lowing top 5 contributors to AUPRC performance: current
rACLR graft type, prior ACLR femoral tunnel position and
size, prior ACLR tibial tunnel position and size, prior
ACLR tibial fixation method, and patellar tendon autograft
use in prior ACLR. Other important features included
baseline PRO scores (SF-36 subscale scores for physical
function and KOOS Activities of Daily Living), baseline
age, sex, body mass index, and sports activity at time of
injury (Table 5).

For the top 3 AutoPrognosis features across all impor-
tance measures, PDPs illustrate the feature’s relative con-
tribution and behavior in model prediction (Figure 3).
Within current graft type, allograft use as a category had
the largest relative contribution to predicted risk of graft
failure (Figure 3A). Regarding prior ACLR, compromised
femoral position and tunnel size (Figure 3B) and compro-
mised tibial position and tunnel size (Figure 3C) were
the largest contributors to predicted risk of current rACLR
graft failure.

DISCUSSION

As graft failure continues to be a devastating complication
of rACLR, it remains a challenge to predict failure on
a patient-specific level. The most important finding of
this study was that of all the described models in this
machine learning analysis, AutoPrognosis, appeared to
best predict rACLR graft failure with moderate discrimina-
tive power. The most important features for AutoPrognosis
model performance and discriminative power were both
the femoral and tibial tunnel placements and sizes during
the prior ACLR and the graft type that was used in current
rACLR. Specifically, compromised ACL femoral and tibial
tunnel positions and sizes, and allograft use were associ-
ated with an increase in contribution to the model’s pre-
dicted risk of graft failure. The AutoPrognosis algorithm

TABLE 2
Discrimination and Calibration Statisticsa

Method AUROC AUPRC Brier Score

AutoPrognosis 0.703 6 0.036 0.152 6 0.043 0.053 6 0.001
LR 0.592 6 0.018 0.116 6 0.036 0.111 6 0.021
XGBoost 0.680 6 0.021 0.150 6 0.072 0.058 6 0.006
GB 0.660 6 0.020 0.151 6 0.063 0.057 6 0.006
RF 0.618 6 0.062 0.129 6 0.051 0.054 6 0.001

aData are presented as mean 6 SD. AUPRC, area under the
precision-recall curve; AUROC, area under the receiver operating
characteristic curve; GB, gradient boosting; LR, logistic regres-
sion; RF, random forest.

TABLE 3
AutoPrognosis Model Confusion Matrixa

Predicted Positive Predicted Negative

Observed positive 6 5
Observed negative 18 163

aData are presented as No. of observations. Accuracy = 0.880;
F1 score = 0.343.

Figure 2. (A) Receiver operating characteristic curves and (B) precision-recall curves for the AutoPrognosis and logistic regres-
sion models.
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TABLE 4
AutoPrognosis Feature Ranking Based on PDP and Perturbation-Based

(AUROC Loss and AUPRC Loss) Feature Importance Measuresa

Feature
PDP Importance

Rank
Perturbation Importance

Rank (AUROC Loss)
Perturbation Importance

Rank (AUPRC Loss)

Surgeon years of experience 1 277 304
Contralateral hamstring tendon graft use in

previous ACLR
2 182 160

Compromised prior ACLR femoral tunnel
position and size

3b 1 2

Prior ACLR femoral tunnel position in preop
sagittal view radiographs (measurement
technique 1)c

4 35 303

Prior ACLR femoral tunnel position in preop
sagittal view radiographs (measurement
technique 2)d

5 15 52

Baseline age 6 27 307
Compromised prior ACLR tibial tunnel

position and size
7b 2 3

SF-36 PCS subscore 8 118 281
KOOS-ADL subscore 9 278 26
Graft type used in current rACLR 10b 3 1

aBolded features are those that rank within the top 10 in all feature importance measures for the AutoPrognosis model. ACLR, anterior
cruciate ligament reconstruction; ADL, Activities of Daily Living; AUPRC, area under the precision-recall curve; AUROC, area under the
receiver operating characteristic curve; KOOS, Knee injury and Osteoarthritis Outcome Score; LR, logistic regression; PCS, physical com-
ponent summary; PDP, partial dependence plot; preop, preoperative; SF-36, 36-Item Short-Form Health Survey.

bFeatures that were ranked within the top 10 for LR based on PDP feature importance measurements.
cRecorded as a percentage of the distance from the femoral tunnel location to the Blumensaat line.
dMeasured as a percentage of the distance from the femoral tunnel position to the cortex width.

TABLE 5
Top 10 Important Features by Feature Importance Measurea

Rank PDP Importance
Perturbation Importance

(AUROC Loss)
Perturbation Importance

(AUPRC Loss)

1 Surgeon years of experience Prior ACLR femoral tunnel position
and size

Current rACLR graft type

2 Contralateral hamstring tendon graft
use in prior ACLR

Prior ACLR tibial tunnel position and
size

Prior ACLR femoral tunnel position
and size

3 Compromised prior ACLR femoral
tunnel position and size

Current rACLR graft type Prior ACLR tibial tunnel position and
size

4 Prior ACLR femoral tunnel position in
preop sagittal view radiographs
(measurement technique 1)

Prior ACLR graft choice Prior ACLR tibial fixation method

5 Prior ACLR femoral tunnel position in
preop sagittal view radiographs
(measurement technique 2)

Current rACLR femoral tunnel
position and size

Patellar tendon autograft use in prior
ACLR

6 Baseline age Surgeon’s opinion on cause of prior
ACLR failure

Patient sex

7 Compromised prior ACLR tibial tunnel
position and size

Patellar tendon autograft use in prior
ACLR

Baseline work status

8 SF-36 PCS subscore Ipsilateral patellar tendon graft use in
prior ACLR

Sports activity involving the ipsilateral
knee at the time of injury

9 KOOS-ADL subscore Technical cause of prior ACLR failure
(in the surgeon’s opinion)

Baseline BMI

10 Graft type used in current rACLR Prior ACLR tibial fixation method BPTB graft source for prior ACLR
graft

aACLR, anterior cruciate ligament reconstruction; ADL, Activities of Daily Living; AUPRC, area under the precision-recall curve;
AUROC, area under the receiver operating characteristic curve; BMI, body mass index; BPTB, bone–patellar tendon–bone; KOOS, Knee
injury and Osteoarthritis Outcome Score; PCS, physical component summary; PDP, partial dependence plot; preop, preoperative; SF-36,
36-Item Short-Form Health Survey.
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and aforementioned findings build on previous studies that
have reported on risk factors for rACLR graft failure.

Of the identified key features, several have been previ-
ously implicated as drivers of graft failure risk after
rACLR. Conversely, several features previously demon-
strated as important, like age and sex, were not found to
be important features in the current analysis.5,20 When
considering the implications of these findings, it is impor-
tant to note that important features must be seen within
the context of the predictive model. Important features
(or lack thereof) should not be interpreted as having causal
relationships or lack thereof with the outcome of interest,
and predictive models should not be interpreted as explan-
atory models.

The present study is the first to conduct a machine
learning analysis of the MARS cohort in order to deliver
patient-specific risk predictions of rACLR outcomes. Our
findings present an opportunity to influence rACLR risk
stratification from a subjective consideration based on

surgeon knowledge and experience to an evidence-based
quantitative measure. A risk calculator built with our
model has the potential to guide preoperative counseling,
shared decision-making, and intentional risk mitigation.
Furthermore, in a health care environment where cost con-
tainment has increased in importance21,36 and cost esti-
mates for a single rACLR (in 2008 US dollars) were
reportedly a median of $20,501.93 (range, $14,420.72-
$51, 211.13), more accurate risk stratification may allow
for fairer risk-adjusted reimbursement.6

Compromised femoral and tibial tunnel positions and
sizes in prior ACLR procedures were found to be important
contributors in the risk of current rACLR graft failure in
the present study. In previous studies, femoral tunnel mal-
positioning has been extensively studied and widely
accepted as a risk factor for graft failure,8,15,35,43-45 and it
is one of the most commonly cited reasons for primary
ACLR graft failure by surgeons, including those in the
MARS Group. Although prior femoral tunnel position has
not necessarily been implicated as a predictor for current
rACLR graft failure in a previous MARS Group investiga-
tion,8 prior tunnel position and size are important consid-
erations in rACLR planning.

Poorly positioned and sized prior tunnels may lead to
ongoing challenges in the current rACLR with respect to tun-
nel preparation potentially requiring grafting and identifica-
tion of osseous landmarks to establish the appropriate
footprint.11 While degree of femoral or tibial tunnel malposi-
tioning and enlargement were not quantitatively measured
in the MARS data set, the presence of a type 2 tunnel with
slight malpositioning may compromise ideal placement of
the revision tunnel, especially in a single-stage procedure
where the graft is most at risk of sliding anteriorly.26

Additionally, while bone graft procedure data and phys-
iological tibial plateau slope angle measurements were
included in model creation, they were not deemed impor-
tant features. Of note, an ideally positioned prior tunnel
had a higher contribution to risk of graft failure in the cur-
rent model compared with an isolated malpositioned tun-
nel. It is important to note that the combination of tunnel
position and size was highly predictive, but compromised
tunnel position alone or size alone was less predictive
than ideal tunnels. While the mechanism of this remains
to be investigated, the extraction of hardware and reuse of
the existing ideally placed tunnel may present unique chal-
lenges including iatrogenic loss of cortical containment or
tunnel interference due to retained implants, sclerotic
bone, or residual tissue.48 Although there is a dearth of lit-
erature investigating the role of the tibial tunnel in rACLR
graft failure, studies have demonstrated the importance of
tibial tunnel positioning in restoring knee stability and min-
imizing graft impingement in extension.18,19 While optimal
femoral positioning may restore rotational control and
improve coronal graft obliquity, in the setting of vertical
graft position in the sagittal plane, tibial tunnel placement
remains important in preventing instability.4 Similar to
the femoral tunnel, prior tibial tunnel positioning and sizing
may impact the ability to optimize tibial tunnel placement
in the current rACLR, rendering it an important indepen-
dent predictor of graft failure.

Figure 3. Partial dependence plots of predicted risk of graft
failure after revision anterior cruciate ligament reconstruction
(ACLR) based on (A) graft type used in current revision ACLR,
(B) femoral tunnel placement in prior ACLR, and (C) tibial tun-
nel placement in prior ACLR.
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Allograft use is a known risk factor for rACLR graft fail-
ure compared with autograft use, as demonstrated by pre-
vious MARS investigations of graft failure by the 2- and 6-
year postoperative time points.28,30 Our results echo these
findings and similarly implicate current graft type as an
important feature in the present model.

Limitations

There were several limitations to the present study. First,
because of the relative rarity of graft failure as an outcome,
our data set was imbalanced. However, to address poten-
tial concern of overfitting and overprediction of negative
outcomes, all models were evaluated with the AUPRC,
wherein AutoPrognosis demonstrated superior perfor-
mance. Second, we must acknowledge that any biases repre-
sented in the data may be amplified by machine learning
methods, potentially furthering biases against underrepre-
sented patient populations including women, ethnic minor-
ities, and patients of lower socioeconomic status.17 Finally,
while graft failure is used as a quantitative proxy for patient
outcomes, it is only one of several determinants of patient
success or failure. Further studies analyzing PROs, reoper-
ations, risk for posttraumatic osteoarthritis, and graft sur-
vival could provide additional insight and support the
development of a bedside risk calculator to aid in risk strat-
ification and counseling of patients undergoing rACLR.

CONCLUSION

The present study demonstrated the ability of the novel
AutoPrognosis machine learning model to best predict
the risk of graft failure in patients undergoing rACLR at
6 years postoperatively with moderate predictive ability.
Femoral and tibial tunnel sizes and positions in prior
ACLR and allograft use in current rACLR were all risk fac-
tors for rACLR failure in the context of the AutoPrognosis
model. This study describes a unique model that can be
externally validated with larger data sets and contribute
toward the creation of a robust rACLR bedside risk calcu-
lator in future studies.
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APPENDIX

APPENDIX TABLE A1
Characteristics and PRO Scores of the MARS Cohort Included in the Machine Learning Analysis (N = 960 Patients)a

Variable Value Variable Value

Age, y 26.00 (19.00-35.00) Giving-way episodes since injury 5.00 (2.00-12.00)
Missing data 0 (0) Missing data 59 (6.1)

Sex Reinjuries 1.00 (1.00-2.00)
Male 530 (55.2) Missing data 34 (3.5)
Female 430 (44.8) Previous ACLR on contralateral knee
Missing data 0 (0) No 862 (89.8)

BMI, kg/m2 25.10 (22.40-28.20) Yes 98 (10.2)
Missing data 5 (0.5) Missing data 0 (0)

Smoking status KOOS
Nonsmoker 743 (78.4) Symptoms 67.86 (53.57-82.14)
Quit 121 (12.8) Missing data 2 (0.2)
Current 84 (8.9) Pain 75.00 (61.11-86.11)
Missing data 12 (1.3) Missing data 2 (0.2)

Ethnicity ADL 86.76 (69.12-95.59)
White 817 (85.6) Missing data 1 (0.1)
Other 43 (4.5) Sports/Rec 45.00 (25.00-65.84)
Black 36 (3.8) Missing data 5 (0.5)
Hispanic 31 (3.2) Knee-related QoL 31.25 (18.75-43.75)
Asian 27 (2.8) Missing data 0 (0)
Missing data 6 (0.6) WOMAC

Marital status Stiffness 75.00 (50.00-87.50)
Single 589 (61.7) Missing data 2 (0.2)
Married 323 (33.8) Pain 85.00 (70.00-95.00)
Separated 43 (4.5) Missing data 3 (0.3)
Missing data 5 (0.5) ADL 86.76 (69.12-95.59)

Members in household, n 2.00 (1.00-3.00) Missing data 2 (0.2)
Missing data 66 (6.9) SF-36

Education level, y 15.0 (12-17) Physical function 44.88 (38.09-52.82)
Missing data 5 (0.5) Missing data 0 (0)

Work status Role physical 42.16 (32.36-54.40)
Working full time 448 (47.3) Missing data 0 (0)
Student 319 (33.7) Body pain 46.06 (37.18-51.13)
Other 119 (12.6) Missing data 4 (0.4)
Working part time 61 (6.4) General health 55.32 (50.55-61.51)
Missing data 13 (1.4) Missing data 2 (0.2)

Workload, h/wk 40.00 (20.00-50.00) Vitality 52.09 (45.85-58.33)
Missing data 180 (18.8) Missing data 2 (0.2)

Playing sports at time of injury Social function 45.94 (40.49-56.85)
No 244 (25.7) Missing data 2 (0.2)
Yes 706 (74.3) Role emotional 51.99 (40.33-55.88)
Missing data 10 (1.0) Missing data 1 (0.1)

Contact with another player Mental health 50.01 (41.56-55.64)
No 717 (75.7) Missing data 2 (0.2)
Yes 230 (24.3) PCS 45.94 (39.10-52.82)
Missing data 13 (1.4) Missing data 5 (0.5)

Jumping at time of injury MCS 52.70 (43.95-57.94)
No 691 (73.1) Missing data 5 (0.5)
Yes 254 (26.9) Marx 11.00 (4.00-16.00)
Missing data 15 (1.6) Missing data 5 (0.5)

Felt/heard a pop at time of injury IKDC 51.72 (39.08-64.37)
No 209 (22.3) Missing data 2 (0.2)
Yes 728 (77.7)
Missing data 23 (2.4)

Time to swelling, h 4.00 (2.00-10.00)
Missing data 67 (7.0)

aData are originally from the MARS Group (2010).27 Continuous variables are presented as median (interquartile range); categorical vari-
ables and missing data are presented as n (%). ACLR, anterior cruciate ligament reconstruction; ADL, Activities of Daily Living; BMI, body
mass index; IKDC, International Knee Documentation Committee; KOOS, Knee injury and Osteoarthritis Outcome Score; MARS, Multicenter
ACL Revision Study; MCS, mental component summary; PCS, physical component summary; PRO, patient-reported outcome; Rec, Recreation;
QoL, Quality of Life; SF-36, 36-Item Short-Form Health Survey; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
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APPENDIX TABLE A2
Previous Procedures on Affected Knee (N = 960 Patients)a

Variable Value Variable Value

Medial meniscus Previous medial meniscal surgery
Debridement No 604 (62.9)

No 661 (68.9) Yes, excision 279 (29.1)
Yes 299 (31.1) Yes, repair not healed/unstable 51 (5.3)
Missing data 0 (0) Yes, repair healed/stable 26 (2.7)

Repair Missing data 0 (0)
No 869 (90.5) Previous lateral meniscal surgery
Yes 91 (9.5) No 769 (80.4)
Missing data 0 (0) Yes, excision 148 (15.5)

Transplant Yes, repair 39 (4.1)
No 958 (99.8) Missing data 4 (0.4)
Yes 2 (0.2) Previous graft type (most recent only)
Missing data 0 (0) Autograft 659 (68.6)

Lateral meniscus Allograft 269 (28.0)
Debridement Both autograft and allograft 23 (2.4)

No 794 (82.7) Missing data 9 (0.9)
Yes 166 (17.3) Previous graft source
Missing data 0 (0) BPTB 509 (53.0)

Repair Soft tissue 363 (37.8)
No 912 (95.0) Both BPTB and soft tissue 8 (0.8)
Yes 48 (5.0) Other 80 (8.3)
Missing data 0 (0) Missing data 0 (0)

Transplant — Prior femoral fixation
Previous articular cartilage surgeries Interference screw 583 (60.9)

No 847 (88.2) Suture and Endobutton 164 (17.1)
Yes 113 (11.8) Cross pin 115 (12.0)
Missing data 0 (0) Other 77 (8.0)

ACL repair Combination 18 (1.9)
No 915 (95.3) Missing data 3 (0.3)
Yes 45 (4.7) Prior femoral tunnel position
Missing data 0 (0) Compromised (position) 546 (58.0)

ACL intra-articular reconstruction Ideal 313 (33.2)
No 47 (4.9) Compromised (position and size) 47 (5.0)
Yes 913 (95.1) Compromised (size) 36 (3.8)
Missing data 0 (0) Missing data 18 (1.9)

ACL extra-articular reconstruction Prior tibial fixation
No 950 (99) Interference screw 674 (70.6)
Yes 10 (1.0) Other 106 (11.1)
Missing data 0 (0) Combination 94 (9.8)

PCL intra-articular reconstruction Suture and post 54 (5.7)
No 955 (99.5) Intrafix 27 (2.8)
Yes 5 (0.5) Missing data 5 (0.5)
Missing data 0 (0) Prior tibial tunnel position

MCL repair/reconstruction Ideal 581 (61.2)
No 944 (98.3) Compromised (position) 258 (27.2)
Yes 16 (1.7) Compromised (size) 86 (9.1)
Missing data 0 (0) Compromised (position and size) 20 (2.1)

LCL repair/reconstruction — Missing data 11 (1.1)
Posterolateral corner reconstruction —

aData are originally from the MARS Group (2010).27 Variables and missing data are presented as n (%). Dashes indicate no procedures
were performed. ACL, anterior cruciate ligament; BPTB, bone–patellar tendon–bone; LCL, lateral collateral ligament; MARS, Multicenter
ACL Revision Study; MCL, medial collateral ligament; PCL, posterior cruciate ligament.
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APPENDIX TABLE A3
Preoperative Radiographic Measurements (N = 960 Patients)a

Preoperative Radiographic Measurement Value

Sagittal view femoral tunnel position
Technique 1b 0.39 (0.32-0.46)

Missing data 502 (52.3)
Technique 2c 0.33 (0.27-0.39)

Missing data 502 (52.3)
Sagittal view tibial tunnel positiond 0.33 (0.27-0.39)

Missing data 492 (51.3)
Sagittal view physiological tibial plateau slope angle 6.30 (4.30-8.80)

Missing data 483 (50.3)
Coronal AP view tibial tunnel positione 0.45 (0.43-0.48)

Missing data 484 (50.4)
Coronal AP view physiological femoral-tibial tunnel angle 15.80 (11.50-20.40)

Missing data 495 (51.6)

aData are originally from the MARS Group (2013).29 Continuous variables are presented as median (IQR); missing data are presented as n
(%). AP, anteroposterior; MARS, Multicenter ACL Revision Study.

bRecorded as a percentage of the distance from the femoral tunnel location to the Blumensaat line.
cMeasured similarly as above, as a percentage, from the femoral tunnel position to the cortex width.
dExpressed as a percentage of the tibial tunnel (center to anterior) to the tibial plateau width.
eExpressed as a percentage of the tibial tunnel (center to medial) to the tibial plateau width.
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APPENDIX TABLE A4
Surgical Information at Time of MARS Study Enrollment (N = 960 Patients)a

Variable Value Variable Value

Time since last ACLR, y 3.70 (1.50-8.80) Tibial fixation

Missing data 10 (1) Interference screw 565 (59.0)

Surgeon years of experience 16.00 (8.00-20.00) Combination 199 (20.8)

Missing data 0 (0) Intrafix 90 (9.4)

No. of revisions Suture and post or button 50 (5.2)

1 845 (88.0) Other 54 (5.6)

2 99 (10.3) Missing data 2 (0.2)

3 16 (1.7) Medial meniscal pathology/treatment

Missing data 0 (0) Normal 537 (55.9)

Surgeon’s opinion of failure Excision 262 (27.3)

Traumatic 336 (35.3) Repair 126 (13.1)

Combination 335 (35.2) Other 35 (3.6)

Technical 206 (21.7) Missing data 0 (0)

Biological 74 (7.8) Lateral meniscal pathology/treatment

Missing data 9 (0.9) Normal 628 (65.4)

Surgeon’s revision of their own failure Excision 234 (24.4)

No 672 (70.4) Other 48 (5.0)

Yes 283 (29.5) Repair 50 (5.2)

Missing data 5 (0.5) Missing data 0 (0)

Injury mechanism LFC articular cartilage pathology

Nontraumatic, gradual onset 512 (53.3) Grade 1 (normal) 692 (72.1)

Nontraumatic, sudden onset 257 (26.8) Grade 2 141 (14.7)

Traumatic, noncontact 123 (12.8) Grade 3 75 (7.8)

Traumatic, contact 66 (6.9) Grade 3/4 or 4 52 (5.4)

Missing data 2 (0.2) Missing data 0 (0)

Surgical exposure technique MFC articular cartilage pathology

1-incision (AM portal) 430 (45.1) Grade 1 (normal) 548 (57.1)

1-incision (transtibial) 339 (35.5) Grade 2 223 (23.3)

2-incision 179 (18.8) Grade 3 125 (13.0)

Arthrotomy/other 6 (0.6) Grade 3/4 or 4 63 (6.6)

Missing data 6 (0.6) Missing data 1 (0.1)

Graft type LTP articular cartilage pathology

Autograft 474 (49.4) Grade 1 (normal) 794 (82.7)

Allograft 456 (47.5) Grade 2 128 (13.3)

Both autograft and allograft 29 (3.0) Grade 3 33 (3.4)

Missing data 1 (0.1) Grade 3/4 or 4 5 (0.5)

Graft source Missing data 0 (0)

BPTB 485 (50.6) MTP articular cartilage pathology

Soft tissue 444 (46.3) Grade 1 (normal) 859 (89.9)

Other 29 (3.0) Grade 2 67 (7.0)

Missing data 2 (0.2) Grade 3 15 (1.6)

Femoral tunnel position Grade 3/4 or 4 14 (1.5)

Entirely new tunnel 477 (49.8) Missing data 5 (0.5)

Optimum position 259 (27.0) Patellar articular cartilage pathology

Blended new tunnel 173 (18.1) Grade 1 (normal) 682 (71.0)

Added second tunnel 29 (3.0) Grade 2 176 (18.3)

Other 20 (2.1) Grade 3 94 (9.8)

Missing data 2 (0.2) Grade 3/4 or 4 8 (0.8)

Femoral fixation Missing data 0 (0)

Interference screw 549 (57.4) Trochlear articular cartilage pathology

Suture and Endobutton 204 (21.3) Grade 1 (normal) 771 (80.3)

Cross pin 114 (11.9) Grade 2 77 (8.0)

Combination 51 (5.3) Grade 3 73 (7.6)

Other 39 (4.1) Grade 3/4 or 4 39 (4.1)

Missing data 3 (0.3) Missing data 0 (0)

Tibial tunnel position Biological enhancement used

Optimum position 569 (59.4) No 879 (91.9)

Blended new tunnel 180 (18.8) Yes 77 (8.1)

Entirely new tunnel 162 (16.9) Missing data 4 (0.4)

Added second tunnel 28 (2.9)

Same tunnel aperture but compromised position 19 (2.0)

Missing data 2 (0.2)

aData are originally from the MARS Group (2010).27 Continuous variables are presented as median (interquartile range); categorical variables and missing

data are presented as n (%). ACLR, anterior cruciate ligament reconstruction; AM, anteromedial; BPTB, bone–patellar tendon–bone; LFC, lateral femoral con-

dyle; LTP, lateral tibial plateau; MARS, Multicenter ACL Revision Study; MFC, medial femoral condyle; MTP, medial tibial plateau.
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