
Citation: Xu, X.; Zhang, L.; Qian, Y.;

Fang, Q.; Xiao, Y.; Chen, G.; Cai, G.;

Abula, A.; Wang, Z.; Zhai, E.; et al. A

SERPINE1-Based Immune Gene

Signature Predicts Prognosis and

Immunotherapy Response in Gastric

Cancer. Pharmaceuticals 2022, 15, 1401.

https://doi.org/10.3390/ph15111401

Academic Editors: Armando

Varela-Ramirez, Elisa

Robles-Escajeda, Blanca E.

Ruiz-Medina, Patricia

Talamás-Rohana and Rachid Skouta

Received: 26 October 2022

Accepted: 11 November 2022

Published: 14 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

A SERPINE1-Based Immune Gene Signature Predicts Prognosis
and Immunotherapy Response in Gastric Cancer
Xiang Xu 1,2,3,†, Lipeng Zhang 2,3,†, Yan Qian 1, Qian Fang 1,2,3, Yongbiao Xiao 2,3, Guizeng Chen 1,2,3,
Guojing Cai 1,2,3, Alimujiang Abula 2,3, Zhao Wang 1, Ertao Zhai 1, Jianhui Chen 1, Shirong Cai 1,* and Hui Wu 1,*

1 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University,
Guangzhou 510080, China

2 Department of Gastrointestinal Surgery, The Affiliated Kashi Hospital, Sun Yat-sen University,
Kashi 844099, China

3 Department of Gastrointestinal Surgery, The First People’s Hospital of Kashi Prefecture, Kashi 844099, China
* Correspondence: caishr@mail.sysu.edu.cn (S.C.); wuhui3@mail.sysu.edu.cn (H.W.)
† These authors contributed equally to this work.

Abstract: Immune checkpoint inhibitors (ICIs) therapy has been successfully utilized in the treatment
of multiple tumors, but only a fraction of patients with gastric cancer (GC) could greatly benefit
from it. A recent study has shown that the tumor microenvironment (TME) can greatly affect the
effect of immunotherapy in GC. In this study, we established a novel immune risk signature (IRS) for
prognosis and predicting response to ICIs in GC based on the TCGA-STAD dataset. Characterization
of the TME was explored and further validated to reveal the underlying survival mechanisms and the
potential therapeutic targets of GC. The GC patients were stratified into high- and low-risk groups
based on the IRS. Patients in the high-risk group, associated with poorer outcomes, were characterized
by significantly higher immune function. Further analysis showed higher T cell immune dysfunction
and probability of potential immune escape. In vivo, we detected the expressions of SERPINE1 by the
quantitative real-time polymerase chain reaction (qPCR)in tumor tissues and adjacent normal tissues.
In vitro, knockdown of SERPINE1 significantly attenuated malignant biological behaviors of tumor
cells in GC. Our signature can effectively predict the prognosis and response to immunotherapy in
patients with GC.

Keywords: gastric cancer; tumor microenvironment; immune checkpoint inhibitor; immune risk
signature; tumor mutation load

1. Introduction

Gastric cancer (GC) is one of the most prevalent malignant tumors in humans and is
the fourth leading cause of cancer-related deaths worldwide [1]. At present, the first-line
regimen for advanced GC is based on platinum and fluorouracil with or without cetuximab,
and the second-line regimen is based on paclitaxel with or without ramucirumab. Both
regimens have been commonly used in clinical practice and have improved the prognosis
of patients with advanced GC to some extent. However, the 5-year survival rate of these
patients is still not satisfactory [2–4]. Recently, ICIs have emerged as a new treatment option
for several malignancies, including advanced GC. Interim data for the KEYNOTE-811 study
pre-liminary demonstrated the clinical efficacy and safety of using pembrolizumab (anti-PD-
1 antibody) combined with trastuzumab and chemotherapy as the treatment for patients
with HER-2-positive advanced GC or gastroesophageal junction adenocarcinoma [5]. The
mid-term results showed that the overall response rate (ORR) and disease control rate
(DCR) of the pembrolizumab group was significantly better than that of the placebo group.
Besides, the ATTRACTION-2 study has evaluated the efficacy and safety of nivolumab
(anti-PD-1 antibody) in treating patients with advanced GC in Asia after the failure of two or
more lines of previous chemotherapy. The conclusion revealed a significant improvement
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of OS and PFS in the nivolumab group compared to the placebo group, which was found
to be not likely affected by the level of PD-L1 expression [6].

Previous studies have found that only 10–26% of advanced gastric cancer could
respond to immune checkpoint inhibitors [6–8]. Several biomarkers have been widely
considered to be promising for predicting the immune response of gastric cancer, including
PD-L1 combined positive score (CPS), microsatellite instability-high (MSI-H), tumor muta-
tion load (TML), etc. However, according to the results of the ATTRACTION-2 study, the
survival benefit of nivolumab in GC has nothing to do with the level of PD-L1 expression.
Thus, only using the PD-L1 expression level as a screening criterion may ignore some im-
munotherapy responders. In addition, as another important indicator of immunotherapy
response, MSI-H status was only identified in 22% of GC patients in the TCGA dataset [9].
These indicators share a common characteristic that they are merely based on the inherent
characteristics of tumor cells, while ignoring the interaction between a variety of cells in
the tumor immune microenvironment.

The tumor microenvironment (TME) of solid malignant tumors is extremely com-plex
and heterogeneous, consisting of cancer cells, immune and stromal cells, cytokines, ex-
tracellular matrix (ECM), and vasculature. It could influence the growth of tumor cells
and even their response to immunotherapy, which is mediated by tumor-associated fibrob-
lasts, myeloid-derived suppressor cells, and stromal signal molecules such as transforming
growth factor-β (TGF-β), CD8+ T cells, and NK cells in the immune microenvironment of
tumor [10,11]. Therefore, it is important to have a systematic understanding of tumor cells,
especially the immune microenvironment they reside in to further evaluate and screen
potential immune checkpoint responders.

In this study, we established an immune risk signature (IRS) of GC with genes de-rived
from three immune-related genes (IRGs) databases based on the TCGA-STAD cohort, which
could predict the response to treatment and survival outcomes in GC patients treated with
ICIs therapy. Next, we characterized the molecular and immune profile of the signature,
and further analyzed the relationship between the signature and the TML. Finally, two
independent immunotherapy cohorts of different tumor types were used to verify the
stability and reliability of the signature.

2. Results
2.1. Construction of IRS

We analyzed 375 gastric tumors and 32 normal tissue samples from GC patients available
in the TCGA-STAD cohort and screened 1990 differentially expressed genes (DEGs), including
1093 down-regulated and 897 up-regulated genes (Figure 1B, Table S1). These DEGs were
overlapped with 2979 IRGs using the Venn diagram, resulting in 357 immune-related DEGs
being used for the subsequent regression analysis (Figure 1C, Table S2). A univariate Cox
regression analysis indicated that 23 differentially expressed IRGs were significantly associ-
ated with OS (p < 0.05). Based on the 23 candidate genes above, we identified four IRGs
(SERPINE1, APOD, GNAI1, BMP1) that could be enrolled in the construction of IRS via a
LASSO-Cox regression analysis (Figure 1D,F, Table S3). An IRS based on the expression of
identified candidate genes was calculated for each patient according to the following formula:
risk score = SERPINE1 × (0.1193) + APOD × (0.1189) + GNAI1 × (0.1584) + BMP1 × (0.2991).
A survival analysis showed that a high expression of those four genes was associated with poor
prognosis (Figure S1A–D).

After removing samples without complete clinicopathological characteristics from the
TCGA-STAD cohort, a total of 368 GC patients were included in the subsequent analysis
(Table S4). Based on the IRS, all patients were subdivided into high- (n = 228) and low-risk
groups (n = 140) using the optimal cut-off value. The expression level of the four candidate
genes and the overall survival (OS) with corresponding risk score were displayed in a
heatmap and a scatterplot, respectively (Figure 1E,G).
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Figure 1. Flow chart of the study design and construction of the IRS. (A) Flow chart of our study.
(B) DEGs in GC vs. adjacent normal tissues. (C) These DEGs were intersected with a combined IRGs
set. (D) LASSO coefficient profiles of genes in TCGA-STAD. (E) Heatmap of the risk score consisting
of four IRGs. (F) Selecting the best parameters by ten-fold cross-validation in the LASSO model.
(G) Distribution of risk score, survival time, and status of patients in TCGA-STAD cohort.
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2.2. The Prognostic Value of the IRS

The Kaplan–Meier(K-M) survival analysis and log-rank test were employed to further
identify the survival prediction power of the IRS in GC patients. The result showed
that the OS of the high-risk group was much worse than that of the low-risk group (log-
rank test, p < 0.0001; Figure 2A), indicating that a higher risk score could predict a worse
prognosis. This association remained markedly significant in the multivariate Cox model
after controlling several clinical features (HR, 0.37 [0.21–0.63], p < 0.001, Figure 2D). These
clinical features were chosen because they have relatively complete data, and furthermore
can affect the prognosis of cancer patients.
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Figure 2. Relationship between risk score and patients’ survival in different cohorts of GC patients.
K–M curves of OS according to risk groups in the TCGA-STAD discovery cohort (A), GSE62254
validation cohort (B), and GSE26253 validation cohort (C). Forest plot of multivariate regression
analyses showing the association between risk score and patients’ survival in the three cohorts (D–F).

To further explore the prognostic value of the established IRS in different datasets, the
K–M survival analysis and log-rank test were applied to the Gene Expression Omnibus
(GEO) validation datasets. Heatmaps of the four identified IRGs expression levels and
scatterplots of the OS with corresponding risk scores in two validation cohorts were shown
in Figure S1E–H. As expected, patients with a low-risk score experienced significantly better
OS compared with patients with a high-risk score (GSE62254: log-rank test, p < 0.0001,
Figure 2B; GSE26253: p < 0.0001, Figure 2C). The multivariate Cox regression analysis
further revealed that our immune risk signature could serve as an independent predictor
of patients’ survival after being adjusted by clinicopathologic features including age, sex,
Lauren classification, and American Joint Committee on Cancer (AJCC) stage in the two
validation cohorts (GSE62254: HR, 0.47 [0.32–0.68], p < 0.001, Figure 2E; GSE26253: HR,
0.46 [0.33–0.63], p < 0.001, Figure 2F).
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2.3. Estimation of TME Immune Infiltration and ICIs Response

Considering that the genes included in the IRS were extracted from the IRGs database,
we speculated that they might regulate the immune cells infiltration. A single sample gene
set enrichment analysis (ssGSEA) was applied to identify the immune cell infiltration pat-
terns and to calculate the normalized enrichment scores of 28 immune cell subpopulations
(Figure 3A,C). The result demonstrated that anti-tumor lymphocyte cell subpopulations
were enriched in the high-risk group, including activated CD4+ T cell, central memory
CD4+ T cell, central memory CD8+ T cell, effector memory CD4 T cell, effector memory
CD8 T cell, natural killer cell, natural killer T cell, and type 1 T helper cell. In addition,
pro-tumor lymphocyte cell subpopulations, such as immature dendritic cell, macrophage,
myeloid-derived suppressor cell (MDSC), plasmacytoid dendritic cell and regulatory T cell
were also significantly enriched in the high-risk group. Similar results were found for the
GEO validation datasets (GSE62254: Figure S2A,C; GSE26253: Figure S2B,D).

Ten kinds of pathways were quantified by using ssGSEA as well. These analyses
confirmed that the high-risk group was significantly associated with epithelial to mes-
enchymal transition (EMT), pan-fibroblast TGF-β response signature (Pan-F-TBRS), TGF-β,
WNT target, and angiogenesis pathways, whereas the low-risk group was associated with
DNA damage repair, immune checkpoint, mismatch repair, and nucleotide excision repair
pathways (Figure 3D). Figure 3B shows a positive correlation between expression of most
of the four IRGs and immune checkpoint-relevant genes. We also found the risk score was
significantly and positively correlated to immune checkpoint-relevant genes and IRGs.

To further explore the fractions of stromal and immune cells in GC tissues, estimation
of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE)
algorithm was applied to calculate the immune, ESTIMATE, stromal scores, and tumor
purity. The results illustrated that patients in the high-risk group had significantly higher
immune, ESTIMATE, stromal scores, but lower tumor purity compared with those in the
high-risk group (Figures 3E and S3A–C). In addition, the cytolytic activity score, an assess-
ment of anti-tumor immune activity, was also higher in the high-risk group (Figure S3D).

To the best of our knowledge, a patient’s response to immunotherapy can be inferred
by the immunophenoscore (IPS) and tumor immune dysfunction and exclusion (TIDE)
score [12,13]. Our result revealed that patients in the high-risk group displayed higher
TIDE scores and lower IPS than those in the low-risk group (Figure 3F,G). These data also
suggested that patients in the low-risk group might be more sensitive to immunotherapy
compared with those in the high-risk group. In addition, the high-risk group showed
significantly higher T cell dysfunction and T cell exclusion scores. (Figure S3E,F). Previous
studies have demonstrated the important role of cancer-associated fibroblasts (CAFs)
in shaping the immunosuppressive TME by regulating tumor-associated myeloid cells
(TAMs) to induce a pro-tumor phenotype [14]. Thus, we calculated CAF scores in this
study and found it significantly higher in the high-risk group (Figure S3G). Moreover, the
low-risk group was found to exhibit higher MSI (Figure S3H). We also detected the relative
expression levels of marker genes of CAFs (MMP2, ACTA2, TAGLN, THY1, TNC, PDPN,
PDGFRA, PDGFRB, GLI1, CXCL12, GREM1, and VIM) [15,16] and T cell exhaustion (LAG3,
CTLA4, PD1, PD-L1, and HAVCR2) [17], which were consistent with the results calculated
by the TIDE algorithm (Figure S3I,J).

We further validated TIDE scores and IPS in the GSE62254 and GSE26253 cohorts.
Consistently, our analysis also revealed that the TIDE score was significantly elevated in
the high-risk group (Figure S3L,M), and IPS was significantly decreased in the high-risk
group, but the difference of IPS in the GSE62254 cohort was not significantly different
(Figure S3N,O). These results together indicated that GC patients with lower risk scores
were more sensitive to immunotherapy.
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test, ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not statistically significant.

2.4. Somatic Variations in Two Subgroups

Among the 368 enrolled TCGA-STAD patients, 365 patients had available somatic
mutation data, and three patients without somatic mutation data were excluded from the
subsequent analysis. Next, a differential somatic mutation analysis was performed between
high- and low-risk groups in the TCGA-STAD cohort. In the top 20 genes, the highest
mutation frequency, all of them harbored higher mutation frequency in the low-risk group
than in the high-risk group except for TP53 (Figure 4A,B).
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Figure 4. Comparison of tumor mutations between high- and low-risk groups. (A,B) The oncoPrint
of high- and low-risk groups in the TCGA-STAD cohort. (C) TML difference in the high- and low-risk
groups. Wilcoxon test, *** p < 0.001. (D) Kaplan–Meier curves for high- and low-TML groups of the
TCGA-STAD cohort. Log-rank test, p = 0.011. (E) The relationship between risk score and TML in
TCGA-STAD cohort (Spearman test, p < 0.0001). The dotted color indicates the ACRG molecular
subtypes of GC. (F) TML difference in different ACRG molecular subtypes of the TCGA-STAD cohort.
Steel–Dwass test, * p < 0.05; *** p < 0.001; ns, not statistically significant. (G,H) Distribution of
the risk score and percentage of the high-risk group in different ACRG molecular subtypes of the
TCGA-STAD cohort. Steel–Dwass test, **** p < 0.0001; ns, not statistically significant.
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A lot of evidence has demonstrated that higher TML is correlated with an improved
response to ICIs therapy and prolonged OS [18,19]. Thus, we compared the TML between
high- and low-risk groups and found patients in the low-risk group behaving a significantly
higher TML than those in the high-risk group (Figure 4C). Moreover, patients with high
TML had a significantly better OS compared to patients with low TML (Figure 4D).

In 2015, Cristescu et al. classified GC into four molecular subtypes based on the inte-
grated genetic characteristics: MSI, MSS/EMT, MSS/TP53+ and MSS/TP53. A significant
negative correlation was observed between TML and risk score (Spearman coefficient:
R = −0.35, p < 0.0001, Figure 4E). Of the four subtypes, MSI showed the best overall
prognosis, followed by MSS/TP53+, MSS/TP53−, and MSS/EMT [20]. We assessed the
relationship between four molecular subtypes and TML in the TCGA-STAD cohort, and
we found that the MSI subtype was associated with the highest TML, while the MSS/EMT
subtype demonstrates the lowest TML of the four subtypes (Figure 4F). We also explored
the distributions of risk scores in the four subtypes of GC from TCGA-STAD, GSE62254,
and GSE26253 cohorts, respectively. As a consequence, most patients with high-risk scores
were located in the MSS/EMT subtype group (TCGA-STAD: Figure 4G,H; GSE62254:
Figure S4A,C; GSE26253: Figure S4B,D).

2.5. Immunotherapeutic Benefits Predicted by the IRS

To evaluate the potential application value of IRS in predicting patients’ response to
ICIs therapy, we further analyzed our IRS in two cohorts of urothelial cancer (IMvigor210)
and melanoma (GSE91061) with integrated clinical information of immunotherapy. Patients
in the two cohorts were stratified into high- or low-risk groups based on the IRS, respectively.
K-M survival analysis showed that patients in the low-risk group had a much better
prognosis than those in the high-risk group from the IMvigor210 cohort (log-rank test,
p = 0.0013, Figure 5A). Patients with complete or partial response disease (CR/PR) tended
to have a decreased risk score compared with those with stable or progressive disease
(SD/PD) in the IMvigor210 cohort (Wilcoxon test, p = 0.026, Figure 5B). We also found that
patients in the low-risk group had a better response to immunotherapy than patients in
the high-risk group (Pearson’s Chi-squared test, p = 0.0002, Figure 5C) in the IMvigor210
cohort. A similar outcome was observed in the GSE91061 cohort (log-rank test, p = 0.024,
Figure 5D; Wilcoxon test, p = 0.042, Figure 5E; Fisher’s exact test, p = 0.0315, Figure 5F).
Moreover, in the IMvigor210 cohort, low-risk group patients possessed higher TML and
neoantigen burden (Figure S5A,B). Taken together, our results suggested that IRS could
be applied to predict patients’ response to immunotherapy and their prognosis both in
urothelial cancer and melanoma.

2.6. Construction and Verification of Nomogram

We built a nomogram combining risk score and independent clinical prognostic factors
including age, sex, and AJCC stage, to predict the probability of 3-year and 5-year OS in the
TCGA-STAD cohort (Figure 6A). The calibration curve illustrated that the predictions and
actual observations matched well (Figure 6B). Furthermore, the nomogram was validated
in the GSE62254 and GSE26253 gastric cancer datasets, and the 3-year and 5-year calibration
curves are respectively shown in Figures 6C and S5C.

We further compared the area under the curve analyses (AUC) for the risk score, TML,
PD-L1 expression level, TIDE score, and IPS, we found the risk score to have the best ability
of predicting prognosis in GC patients (Figure S5D).
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Figure 5. Response to immunotherapy in patients of urothelial cancer and melanoma with different
risk groups divided by risk score. (A) K–M curve for patients of urothelial cancer in the high- and
low-risk groups in the IMvigor210 cohort. Log-rank test, p = 0.0013. (B) Risk score in groups with
a different clinical response to immunotherapy in the IMvigor210 cohort. Wilcoxon test, * p < 0.05.
(C) The proportion of patients with a response to immunotherapy in high- and low-risk groups in the
IMvigor210 cohort. Pearson’s Chi-squared test, p = 0.0002. (D) K–M curve for patients of melanoma
in the high- and low-risk groups in the GSE91061 cohort (Log-rank test, p = 0.024). (E) Risk score in
groups with a different clinical response to immunotherapy in the GSE91061 cohort. Wilcoxon test,
* p < 0.05. (F) The proportion of patients with response to ICIs therapy in high- and low-risk groups
in the GSE91061 cohort. Fisher’s exact test, p = 0.0315.
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2.7. Validation of the IRGs in Clinical Tissue Samples

To further confirm the reliability of the identified IRGs, we used qPCR to compare
the mRNA expression of 32 pairs of matched GC and adjacent gastric tissue samples.
The protein expression of SERPINE1 in four paired GC and adjacent gastric tissues was
measured by Western blotting. The results showed that all four mRNA were significantly
overexpressed in GC tissues compared with adjacent normal tissues (Figure 7A–D). Similar
results were obtained in Western blotting analysis, in which SERPINE1 was significantly
overexpressed in GC tissue (Figure 7E).
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Figure 7. SERPINE1 promotes the malignant biological behaviors of GC cells. SERPINE1 (A), APOD
(B), GANI1 (C) and BMP1 (D) mRNA and SERPINE1 (E) protein levels were measured in GC tissues,
and adjacent normal tissues were paired by qPCR and Western blotting, respectively. Western
blotting analyses of SERPINE1 protein levels in GC cell lines (F). Western blot and qPCR analyses
of SERPINE1 levels in GC cell lines transfected with the siSERPINE1 (G–J). CCK8 assay of cell
growth with SERPINE1 silencing and control group (K,L). Representative images and quantification
of migration and invasion in SERPINE1 silencing and control GC cell lines (M,N,P,Q). Apoptosis
assay and the quantitative analysis of SERPINE1 in silencing and control group (O,R,S). Data were
presented as the mean ± SD. Wilcoxon test, * p < 0.05; ** p < 0.01; **** p < 0.0001.

2.8. Silencing of SERPINE1 Inhibited the Proliferation, Invasion, Metastasis but Promoted the
Apoptosis of GC Cells

SERPINE1 protein levels in five human GC cell lines were measured by Western
blotting analyses as demonstrated in Figure 7F. We chose two cell lines (AGS, MKN1)
which express high amounts of SERPINE1. Next, these cells were transfected with siRNA,
and the silencing effect of siRNA was validated by qPCR and Western blotting analyses
(Figure 7G–J). As shown in Figure 7K–S, silencing of SERPINE1 resulted in inhibited
growth, migration, and invasion capacities in both AGS and MKN1 GC cell lines. Moreover,
SERPINE1 silencing significantly increases apoptosis in both AGS and MKN1 cells.
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3. Discussion

ICIs therapy has proven its high suppression efficacy in tumor initiation and develop-
ment in patients with advanced GC [6,7]. Only a handful of GC patients could truly benefit
from ICIs therapy due to the high heterogeneity. Hence, the identification of potential
responders to ICIs before treatment initiation could be reasonable. However, accurately
predicting the response to ICIs therapy has never been an easy task to achieve. Previous
studies have shown that TME plays an important role in both tumor progression and
patient response to immunotherapy [21,22]. Therefore, a deeper understanding of TME
immune infiltration can provide us with a very powerful tool to identify patients responsive
to GC ICIs therapy. In this study, by using the transcriptome profile of the TCGA-STAD
cohort, a robust prognostic IRS based on four IRGs was developed, and its efficacy was
further verified in four independent validation cohorts including two immunotherapy co-
horts. Therefore, the IRS could be possible to characterize the TME cell infiltration patterns
and serve as a potential biomarker for predicting the prognosis and responsiveness to ICIs
therapy in GC patients.

The four genes (SERPINE1, APOD, GNAI1, BMP1) involved in the IRS have been
previously reported to be associated with the prognosis of GC. SERPINE1 (Serpin peptidase
inhibitor, clade E, member 1) is the main regulator of the plasminogen activator (PA) system
which relates to the tumor growth, invasion, and metastasis via the activation of matrix
metalloproteinases (MMPs) as well as latent growth factors [23]. High SERPINE1 expression
has been observed in several tumor types and has been described as a poor prognostic
marker [23–25]. Next, we silenced SERPINE1 to further investigate their effects on AGS
and MKN1 cells in vitro. The results demonstrated that silencing SERPINE1 significantly
inhibited the proliferation, invasion, and metastasis, but promoted the apoptosis of GC
cells. APOD, which encodes a component of high-density lipoprotein has been reported
to promote cell migration through interaction with growth factors [26]. A higher APOD
expression level detected in breast and colorectal cancer tissues has been proven to be
associated with a poor prognosis [27,28]. BMP1 (bone morphogenetic protein 1) is a
member of the astacin superfamily, whose main function is to promote the formation
and development of the extracellular matrix [29]. It is well known that the extracellular
matrix acts as a repository of TGF-β whose release relies heavily on BMP1 [30]. Therefore,
activation of the TGF-β signaling pathway requires BMP1 [31]. In GC, BMP1 can promote
the development of cell growth and metastasis through activation of the TGF-β signaling
pathway [32], consistent with our previous results in signal pathway analysis via ssGSEA.
GNAI1 (G protein subunit alpha i1) is a member of the Gαi family and functions to suppress
adenylate cyclase activity. To date, only a handful of studies have shown that the high
expression and low DNA hypermethylation of GNAI1 were significantly associated with
poor prognosis in GC [33].

In this study, preliminary findings of phenotype analysis confirmed a better immune
status of GC patients in the high-risk group from the TCGA-STAD cohort. This interest-
ing phenomenon is yet to be explained in previous studies on immune-related genes of
GC [34–36]. We speculated that an inhibitory program might facilitate cancer cells escaping
from host immune surveillance. Tumor cells with high TML tend to have a relatively high
level of tumor antigen. Our study shows that the high-risk group with a higher TML is
considered to help the immune system recognize the tumors and stimulate the proliferation
and anti-tumor response of anti-tumor immune cells. However, when exposed to tumor
antigens for a long time, the expression of tumor suppressors such as PD-1, CTLA4, TIGIT,
TRIM3, and LAG3 in the microenvironment will be significantly upregulated, which will
lead to impaired killing function and exhaustion of CD8+ T cells [37,38]. Thus, although
the high-risk group has a higher immune cell infiltration, the CD8+ T in the TME lost
their original anti-cancer functions. Our later analysis also finds that, firstly, the degree
of tumor-promoting immune cell infiltration in the high-risk group is significantly higher
than that in the low-risk group; secondly, the TIDE algorithm shows the dysfunction and
exhaustion of T cells in the high-risk group; and finally, some suppressors in the TME,
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such as PD-1, CTLA4, TIGIT, TRIM3, LAG3, CAFs marker genes are also significantly
higher in the high-risk group. We also found that the high-risk group was associated
with the immunosuppressive pathways, such as TGF-β and WNT signaling pathways,
which were significantly enriched. Activation of TGF-β and EMT pathways, as well as
CAFs proliferation, can inhibit T cell-mediated tumor killing and reduce the transport
of T cells to the tumor [39,40]. Preclinical evidence demonstrated that TGF-β blockade
combined with PD-L1 antibody can decrease TGF-β signal transduction in stromal cells,
promote T cell infiltration to tumor center, induce the anti-tumor immune effect, and
bring a tumor regression effect [41–43]. As a novel target, TGF-β opens a new chapter in
tumor immunotherapy.

According to our analysis, we found a negative correlation between the risk score
and TML in the TCGA-STAD cohort. Among the four Asian Cancer Research Group
(ACRG) GC subtypes, subtype MSS/EMT got the highest risk scores and lowest TML, and
it also had the highest proportion of patients with high-risk scores. These findings are
consistent with the fact that stromal activation is the vital mechanism of resistance to ICIs
therapy [39,40]. In GC, patients with MSI demonstrate a higher sensitivity to ICIs therapy
and a more favorable prognosis compared with patients with MSS [44]. Our data indicated
that patients with MSI subtype showed a lower risk score and the highest TML among
molecular subtypes, suggesting that the IRS may be useful for predicting clinical benefits
in GC patients treated with immunotherapy.

Nevertheless, there were several limitations in our work. Firstly, because the datasets
of GC patients used in this study were obtained from different public databases, certain
heterogeneity may exist in our work. Secondly, due to a lack of GC immunotherapy cohorts
measured at the transcriptome level, we had to perform a model validated by using urothe-
lial cancer and melanoma datasets. Finally, this study was restricted to in vitro experiments,
lacking the validation of in vivo experiments, which is a limitation of our study. More
in vivo experiments should be done to further confirm our findings in the future.

4. Materials and Methods
4.1. Study Design and Data Collection

A flow chart of the study design is shown in Figure 1A. We systematically searched
for GC gene-expression datasets that were publicly available and reported integral clinical
annotations. RNA-seq data, somatic mutation data (SNPs and small INDELs, MuTect2
Variant Aggregation and Masking) and clinical features of the TCGA-STAD cohort were
downloaded from the Genome Data Commons Data Portal (GDC) (https://portal.gdc.
cancer.gov, accessed date: 20 March 2021). Microarray or RNA-seq data for validation
was downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi, accessed
date: 20 March 2021). We only retained GC patients that met the following criteria: (1) Have
mRNA expression data; (2) Have both recurrent status and OS information; (3) Have
clinical features, such as AJCC stage II/III, age, sex, tumor location, Lauren classification.
Patients without survival information were excluded from further studies. Therefore, three
datasets with a total of 1100 GC patients were enrolled for analysis, including TCGA-STAD
(n = 368), GSE62254 (n = 300), GSE26253 (n = 432) [45]. Due to the clinical information in
TCGA-STAD cohort with complete clinical information, it was employed as a discovery
cohort to construct IRS. The remaining two datasets from GEO were used as validation sets
to test the predictive ability of the signature. The raw gene expression matrix is available as
supplementary file S1.

The IRGs lists were downloaded from Immunome Database (https://www.innatedb.
com/browse.jsp, accessed date: 20 March 2021), InnateDB database (https://www.innatedb.
com/browse.jsp, accessed date: 20 March 2021), and ImmPort database (https://www.
immport.org/shared/genelists, accessed date: 20 March 2021). After removing duplicate
genes, a combined gene set that included 2979 unique genes was used for further analysis.

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.innatedb.com/browse.jsp
https://www.innatedb.com/browse.jsp
https://www.innatedb.com/browse.jsp
https://www.innatedb.com/browse.jsp
https://www.immport.org/shared/genelists
https://www.immport.org/shared/genelists
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4.2. Establishment and Validation of IRS

To establish the IRS, we conducted a comprehensive analysis. First, gene expression
level inferred by FPKM (Fragment Per Kilobase Millon) in the TCGA-STAD cohort was
transformed into TPM (Transcripts Per Kilobase Millon). The differences in mRNAs
expression between GC tissues and normal tissues were screened by R package “limma”
(version 3.48.0). Genes with adjusted p-value < 0.05 and |log2 fold change| > 1 were
classified as DEGs. The intersection of the combined IRGs and DEGs was selected as the
set of the differentially expressed IRGs for a subsequent regression analysis.

Next, univariate Cox regression was performed to identify genes significantly cor-
related with OS (p < 0.05). LASSO-Cox with 10-fold cross validation (R package “glm-
net”, version 4.1-1) was used to identify novel IRGs and construct the signature. Af-
terwards, the risk score based on the model was calculated by the following formula:
risk score = ∑n

i=1 coefi∗Expi, where n is the total number of genes included in the final
signature, i indicates the ith gene in the signature, and coefi and Expi represent the coef-
ficient and the expression level of the ith gene, respectively. High- and low-risk groups
were determined based on the best cut-off point obtained from the R package “survminer”
(version 0.4.9). Eventually, the survival analysis for different groups was performed us-
ing the K–M method and log-rank test with R package “survival” (version 3.2-11) and
“survminer” (version 0.4.9).

4.3. Estimation of TME Immune Infiltration and Functional Annotation

To quantify the immune infiltration for each sample, ssGSEA was applied based on
28 immune cell gene sets and 10 immune-related pathways collected from the previous
study [12,39]. The enrichment scores calculated by the ssGSEA algorithm indicated the
relative abundance of each type of immune cell or pathway. The ssGSEA score was
normalized to unify distribution from 0 to 1. Furthermore, the Wilcoxon test was carried
out to quantify the difference in the enrichment level of immune cells and pathways
between the high- and low-risk groups. The ssGSEA analysis was performed using R
package GSVA (version 1.40.1), and the boxplots were conducted using R package “ggpubr”
(version 0.4.0).

The ESTIMATE algorithm was carried out to quantify the immune and stromal com-
ponents in TME by utilizing the ‘estimate’ R package, which was employed to calculate the
immune, stromal, tumor purity, and estimate scores [46].

4.4. Quantification of the Immunotherapy Response

The potential response of patients to immunotherapy was inferred by IPS as well as
TIDE score. Generally, a higher IPS and lower TIDE score may indicate a better response to
immunotherapy [12]. The TIDE score can be obtained by the TIDE algorithm and calculated
online (https://tide.dfci.harvard.edu/, accessed date: 17 August 2021) [13]. In addition,
MSI, Dysfunction, Exclusion and CAFs scores can also be obtained by TIDE algorithm.

IPS of each TCGA-STAD sample can be downloaded from https://tcia.at/patients
(accessed date: 17 August 2021). The IPS was constructed as proposed by Charoen-
tong et al. [12], and a respective R code used to calculate the IPS of GEO validation sets
was downloaded from https://github.com/MayerC-imed/Immunophenogram (accessed
date: 17 August 2021). The cytolytic activity was calculated through a geometric mean
expression of six genes, five granzymes (GZMA, GZMB, GZMH, GZMK, GZMM), and one
perforin (PRF1), to quantify the level of cytotoxic immune cell activity [47].

4.5. Correlation between the IRS and Somatic Variants

A myriad of evidence has demonstrated that TML is also associated with anti-tumor
immunity. TML presence can increase T cell infiltration and trigger the T-cell response
in tumor tissue [47,48]. Therefore, we analyzed the somatic mutation data from TCGA-
STAD cohort to explore the difference in genomic alterations between two groups. We
first compared the TML of the high-risk group with that of the low-risk group. Next,

https://tide.dfci.harvard.edu/
https://tcia.at/patients
https://github.com/MayerC-imed/Immunophenogram
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patients were divided into high- and low-TML groups based on the cut-off point of TML.
Furthermore, a K–M survival analysis was performed to confirm the relationship between
TML and prognosis.

In 2015, The ACRG described four molecular subtypes based on gene the expression
data of GC [20]; we compared the TML of these four subtypes and explored the relationship
between risk scores and TML in the TCGA-STAD cohort.

4.6. IRS Predicting ICIs Therapy Benefits

Two independent immunotherapeutic cohorts, IMvigor210 and GSE91061 of advanced
urothelial cancer and melanoma, were downloaded and analyzed to validate the prediction
value for immunotherapy of the signature. Detailed clinical features and complete gene
expression profiles of the IMvigor210 cohort were integrated into an R package, which
could be extracted freely from http://research-pub.gene.com/IMvigor210CoreBiologies
(accessed date: 3 July 2021) under the Creative Commons 3.0 license. After screening, a
total of 298 urothelial cancer and 49 melanoma patients who received immunotherapy with
complete clinical information were analyzed to calculate the risk scores.

4.7. Construction of Nomogram

Based on a multivariate Cox analysis, the risk score and clinical features including age,
sex, and AJCC stage were together used to construct the nomogram by the “rms” (version
6.2-0) and “survival” packages in R to predict the probability of a 3-year and 5-year OS.
The calibration plots were drawn to assess the consistency between actual and predicted
survival both in discovery and validation cohorts.

Efficiency of the parameters, including risk score, TML, PD-L1 expression level,
TIDE score, IPS, were assessed through the receiver operating characteristic (ROC) curve
and AUC.

4.8. Cell Lines and Cell Culture

The human GC cell lines AGS, MKN-1 were obtained from the Shanghai Institute
of Cell Biology, Chinese Academy of Sciences (Shanghai, China). AGS was grown in
DMEM/F12 (Gibco, Waltham, MA, USA). MKN-1 was maintained in an RPMI-1640
medium (Gibco, Waltham, MA, USA). All culture media were supplemented with 10% fetal
bovine serum (FBS, Gibco, Waltham, MA, USA) and 1% penicillin/streptomycin (Gibco,
Waltham, MA, USA). All cells were cultured in a 37 ◦C humidified incubator with 5% CO2.

4.9. Small Interfering (si)RNA Transfection

All human GC cell lines were seeded in 6 well plates and transfected with 50 nM
siSERPINE1 or siNC using Lipofectamine 3000® (Invitrogen; Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s protocol. The transfected cells were
incubated at 37 ◦C for 48 h to 72 h. The transfection efficiency was determined by Western
blotting and qPCR. siRNAs used in this study are provided in Table S5.

4.10. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

RNA extraction from cells and GC tissue was conducted using TRIzol reagent (Takara,
Kusatsu, Japan) following the manufacturer’s protocol. Subsequently, mRNA was tran-
scribed to cDNA using the 5× Master Mix and qRT-PCR was performed using the 2× SYBR®

Green I (Accurate Biotechnology, Changsha, Hunan, China) with gene-specific primers on
an ABI QuantStudio (Applied Biosystems; Thermo Fisher Scientific, Waltham, MA, USA).
Details of qPCR primers used are listed in Table S6.

4.11. Western Blot Analysis

Total proteins extracted from cells and GC tissue lysates were separated by 10% SDS-
PAGE and transferred onto 0.45 um polyvinylidene difluoride (PVDF) membranes (Merck
Millipore; Darmstadt, Germany). After blocking with 5% non-fat milk, the membranes

http://research-pub.gene.com/IMvigor210CoreBiologies
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were incubated with the primary antibodies (anti-SERPINE1[13801-1-AP], anti-GAPDH
[60004-1-Ig], Proteintech, Wuhan, China) overnight at 4 ◦C, followed by incubation with a
horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature. The
immunoreactive bands were detected by enhanced chemiluminescence reagents (Merck
Millipore; Darmstadt, Germany).

4.12. Cell Proliferation, Migration, Invasion, and Cell Apoptosis Assays

Cells were harvested at 48 h after transfection and were seeded into 96-well plates at
1000 cells/well and grown for 0–4 days at 37 ◦C in a humidified incubator with 5% CO2.
Then, 10% CCK-8 reagents were added to each well, and the cells were further incubated
for two hours. The optical density at 450 nm was measured using a microplate reader.

Assays for cell migration and invasion, 5 × 104 cells/well in 300 µL media without
fetal bovine serum were plated on the top chambers of a transwell insert (Corning Costar,
Cambridge, MA, USA) with or without Matrigel coating (Corning Costar, Cambridge, MA,
USA), and added media supplemented with 10% fetal bovine serum was applied to the
lower chambers. After 18–26 h, the migrated or invaded cells were fixed with 4% poly-
oxymethylene, stained with 0.1% crystal violet and counted under an inverted microscope.

Cell apoptosis assay was performed using Annexin V-APC Apoptosis Detection Kit
(KeyGEN, Nanjing, Jiangsu, China) following the manufacturer’s instruction. The per-
centage of positive cells was detected using CytoFLEX (Beckman Coulter, Brea, CA, USA).
CytExpert (Version 2.4) was used for analysis.

4.13. Statistical Analyses

All statistical analyses were conducted using R version 4.1.0 software (https://cran.
r-project.org/) (accessed date: 17 June 2021) and GraphPad Prism was also applied for
the data analysis. Wilcoxon rank-sum test with false discovery rate (FDR) correction was
used to compare quantitative variables between two groups, and the Kruskal–Wallis test,
followed by the post-hoc Steel–Dwass test, was used for multiple comparisons. Chi-square
test was employed for comparisons of qualitative variables. Survival curves were plotted
using K–M plotter and compared by a log-rank test. Univariate and multivariate Cox
regression analyses were conducted to determine factors with independent prognostic
value. The AUC was quantified using the “timeROC” R package (version 0.4). All statistical
p values were two-sided, with p < 0.05 as statistically significant.

5. Conclusions

Based on the immune-related DEGs between GC and adjacent normal tissues, an
immune risk signature was established for GC patients treated with ICIs therapy. Our
in vivo experiment strengthened our finding that silencing the main gene SERPINE1 could
significantly inhibit the malignant biological behavior of GC cells. After calculating the risk
scores, GC patients assigned to the high-risk group tended to have better a response to ICIs
therapy. In further analysis of TME, the infiltration of immunosuppressive factors and the
loss of T cell effector function were found to be related to poor prognosis of GC patients in
the high-risk group. Taken together, these results put forward a special view on the TME of
GC, and our IRS showed a potential clinical applicability to discriminate those GC patients
who might benefit from ICIs therapy.

https://cran.r-project.org/
https://cran.r-project.org/
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15111401/s1, Figure S1. Construction of the IRS. Figure S2. Tran-
scriptome traits and clinical characteristics of TME phenotypes in the GEO validation cohorts.
Figure S3. Biological function analysis between high- and low-risk groups in the three cohorts.
Figure S4. Relationship between risk score and ACRG molecular subtypes in the GEO validation co-
horts. Figure S5. The predictive value of risk score was validated in the testing datasets. Table S1. Dif-
ferentially expressed genes. Table S2. Immune-related DEGs. Table S3. Results of univariate
regression and multivariate regression analysis of the four included genes. Table S4. Clinical char-
acteristics of patients with gastric cancer in 3 datasets. Table S5. SERPINE1 siRNAs sequences.
Table S6. The primer sequences of 4 included genes.
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