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A B S T R A C T   

Ceftiofur, a third-generation cephalosporin antimicrobial, was used in Japanese hatcheries for many years before 
2012. We continue to study Salmonella in broilers and their antimicrobial resistance. The current study aimed to 
express how the cessation of ceftiofur affects the antimicrobial resistance of Salmonella isolated from broiler 
chickens in Kagoshima Prefecture, Japan in 2017 and 2018. A total of 274 Salmonella isolates were recovered 
from 1535 cecal content samples obtained from 96 broiler flocks over years 2017 and 2018. Among the 
S. enterica isolates, the predominant serovars were S. Manhattan (128/274, 46.7%), S. Schwarzengrund (120/ 
274, 43.8%), and S. Infantis (26/274, 9.5%). The isolates showed a high proportion of antimicrobial resistance 
for oxytetracycline, sulfamethoxazole, and streptomycin. However, the β-lactam resistance rates were signifi-
cantly decreased (p < 0.01) in 2017, while no β-lactam resistant isolates detected in 2018. The highlight of this 
study was the complete disappearance of β-lactam resistance in Salmonella isolates from broiler chicken in 
Kagoshima, Japan.   

1. Introduction 

Salmonellae are facultative intracellular Gram-negative bacteria that 
cause high morbidity and mortality in many hosts including humans, 
birds, mammals, and insects (Bäumler, Tsolis, Ficht & Adams, 1998). 
They are among the most problematic, foodborne, and zoonotic patho-
gens that cause health threats and challenges to general human 
well-being (Balasubramanian et al., 2019). Salmonella spp. are one of the 
main pathogens causing foodborne bacterial infections in humans and 
poultry products are the main sources of bacterial contamination 
(Vieira et al., 2009). 

Poultry is one of the most widely consumed food products world-
wide. Chicken is the most commonly farmed species, with over 90 
billion tons of chicken meat produced per year (Food & Agriculture 
Organization. FAO Publications Catalogue 2017, 2019). A large di-
versity of antimicrobials are used to raise poultry in most countries 

(Boamah, Agyare, Odoi & Dalasgaar, 2016; Landers, Cohen, Wittum & 
Larson, 2012; Sahoo, Tamhankar, Johansson & Lundborg, 2010). The 
main reasons for using antimicrobials in food-producing animals include 
prevention of infections, treatment of infections, promotion of growth, 
and improvement in production of farm animals (Castanon, 2007; 
Mathew, Liamthong & Lin, 2009). However, one of the reasons that 
contribute to emergence of antimicrobial-resistant strains is the frequent 
administration of antimicrobials in the treatment of poultry diseases. 

Antimicrobial resistance is one of the biggest threats to global health, 
food security, and development. A growing number of salmonellosis 
infections are becoming harder to treat as the antimicrobials used to 
treat them become less effective (WHO “Antimicrobial resistance, 
2020). 

Over the last decade, the high incidence of multidrug resistance in 
Enterobacteriaceae has become a serious public health problem world-
wide. Because of their critical importance for human and veterinary 
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medicine (Perez, Endimiani, Hujer & Bonomo, 2007), β-lactams are 
among the most clinically important antimicrobials in both human and 
veterinary medicine. Until now, more than 700 distinct β-lactams have 
been described (Ambler et al., 1991). 

Ceftiofur (CTF), a third-generation cephalosporin antimicrobial, has 
been administered in ovo to reduce early chick mortality in many 
countries (Agunos et al., 2017). In Japan CTF was extensively used 
off-label until March 2012 as a disinfectant for embryonated eggs and 
newborn chicks, but CTF was not except by officially licensed for ther-
apeutic use in Japanese poultry farm (Hiki et al., 2015). After the 
voluntary cessation of CTF in 2012, the decreasing trend of CTF resistant 
E.coli and Salmonella was found in some Japanese poultry retail meat 
(Hiki et al., 2015; Shigemura et al., 2018). 

Thus, the primary objective of this study was to express how the 
cessation of ceftiofur affects the antimicrobial resistance of Salmonella 
isolated from broiler chickens in Kagoshima Prefecture, Japan in 2017 
and 2018. 

2. Materials and methods 

2.1. Sample collection 

A total of 1535 cecal specimens derived from 96 broiler flocks 
(approximately 10,000 birds per flock) collected by prefectural officials 
at an accredited poultry processing plant in Kagoshima Prefecture, 
Japan, were analyzed over years 2017 and 2018. The poultry processing 
plant released these samples (which would otherwise have been 
disposed of as waste material) with the approval of prefectural officials 
and sent them to our laboratory. Typically, 16 randomly selected sam-
ples per flock were collected every two weeks. Samples were collected in 
sterile bags, and transported in isothermal boxes to maintain the 
refrigeration temperature until arrival at the laboratory, and same day 
processing (Chuma et al., 2013; Duc et al., 2019). 

2.2. Salmonella isolation and identification 

Approximately 1 g of cecal contents was aseptically mixed with 5 mL 
of sterilized distilled water and homogenized by vortexing. Then, 1 mL 
of the suspension was pre-enriched in 5 mL of Hajna tetrathionate broth 
(Eiken Chemical Co., Ltd., Tokyo, Japan) and incubated in a water bath 
at 42 ◦C. After 24 h of incubation, a loopful of the culture was streaked 
onto a selective Rambach agar plate, which was incubated at 37 ◦C for 
24 h. Characteristic colonies were confirmed by biochemical tests 
(Shahada et al., 2006). After this, they were submitted to serology 
performed with reliable commercial antisera (Denta Seiken, Niigata, 
Japan), and the results were interpreted according to the 
Kaufmann-White scheme (Popoff & Le Minor, 1992). 

2.3. Determination of MICs 

The antimicrobial susceptibility of Salmonella isolates was ascer-
tained by the agar dilution method using Mueller-Hinton agar (Oxoid 
Ltd., Basingstoke, UK) (Shahada, Amamoto, Chuma, Shirai & Okamoto, 
2007, 2010). Strains were tested for sensitivity to ampicillin, cefotax-
ime, cefoxitin, chloramphenicol, streptomycin, sulfamethoxazole, 
oxytetracycline, kanamycin, ofloxacin, and ceftiofur. The MIC range was 
set at 0.25–512 µg/mL for all tested antimicrobial agents. MIC break-
points were interpreted according to the criteria established by the 
Clinical and Laboratory Standards Institute (CLSI, 2012), streptomycin, 
and oxytetracycline were adopted resistance MIC breakpoint as previ-
ously recommended (Duc et al., 2019). The MIC breakpoint of ceftiofur 
was established by NARMS (resistance breakpoint ≥ 8) (Antimicrobials 
tested by NARMS (National Antimicrobial Resistance Monitoring Sys-
tem for Enteric Bacteria 2020). Escherichia coli (America Type Culture 
Collection (ATCC 25,922), and Staphylococcus aureus (ATCC 29,213) 
were used as reference and quality control strains. 

2.4. Statistical analysis 

The changes in the percentage of resistant isolates in each antimi-
crobial agent and the decrease in the percentage of resistant isolates in 
each Salmonella serovars were compared by multiple comparisons. A 
chi-square test was first performed to detect significant differences for 
each antimicrobial agent, and each serovar. When the result was sig-
nificant, a test for multiple proportion comparisons was performed 
(Ryan, 1960). 

3. Results 

3.1. Prevalence and serovar switching 

The prevalence and distribution of Salmonella in broiler chickens in 
2017 and 2018 in Kagoshima Prefecture, Japan is shown in Table 1. 
Overall, the prevalence of positive flocks, and positive samples exhibited 
a significant decrease over the two years. The incidence of Salmonella in 
the flocks was 81.3% (78/96; 48 flocks per year for two years), and the 
rate of positive sample was 17.9% (274/1535). The proportion of pos-
itive flocks was 89.6% in 2017 and significantly decreased to 72.9% in 
2018, while the rate of positive samples was 23.2% in 2017 and 
significantly decreased to 12.5% in 2018. 

Among the 274 Salmonella isolates obtained in 2017 and 2018, the 
most prevalent serovars were S. Manhattan (46.7%: 128/274), S. 
Schwarzengrund (43.8%: 120/274), and S. Infantis (9.5%: 26/274). The 
dominant serovars in both years were S. Manhattan and S. Schwarzen-
grund: 51.1% (91/178) and 42.3% (77/178) in 2017 and 38.5% (37/96) 
and 44.8% (43/96) in 2018, respectively. 

3.2. Antimicrobial resistance and the β-lactam resistance trend 

The distribution of MIC of 264 Salmonella strains isolated in two 
years 2017 and 2018 is showed in Table 2. The difference was 274 
Salmonella isolated; however, 10 strains were lost during the stock. All 
264 strains were susceptible to chloramphenicol. The rates of resistance 
were the highest for streptomycin, sulfamethoxazole, and oxytetracy-
cline, and over 80% of strains were resistant to these antimicrobials; 249 
(94.3%) were resistant to streptomycin (MIC ≥16 µg/mL), 217 (82.2%) 
to oxytetracycline (MIC ≥16 µg/mL), 213 (80.7%) to sulfamethoxazole 
(MIC ≥512 µg/mL), and 77 (29.2%) strains had kanamycin resistance. 
Many isolates have a low resistance to the β-lactam group including 
ampicillin (7.6%), ceftiofur (7.6%), cefotaxime (5.7%), and cefoxitin 
(0.8%). The Salmonella isolated resistance to ofloxacin at 1.9%. 

Table 3 demonstrated the comparison in β-lactam resistance of each 
Salmonella serovars between three periods (2009–2012, 2013–2016, and 
2017–2018), and in 2018. In all three periods, we did not compare the 
β-lactam resistance of S. Schwarengrund because that was susceptible to 
all of β-lactam included ampicillin, cefotaxime, cefoxitin, and ceftiofur. 
A significant decrease trend of β-lactam resistance can be seen in the 
recent periods. The resistant proportion of S. Manhattan to ampicillin, 
cefotaxime, and ceftiofur decreased continuously over three periods. 
From over ninety percent to around forty-five percent and around ten 
percent, respectively. The cefoxitin resistance rate of this serovar 
decreased from more than ten percent in the period (2013–2016) to zero 
percent in the study period. While the resistance proportion of S. Infantis 
to ampicillin, cefotaxime, and ceftiofur showed a slight decrease ac-
cording to three periods. The ampicillin-resistant rate decreased from 
29.3% to 20.9%, and 7.7%, respectively. Cefotaxime resistance rate 
went down from 25.7% to 16.5%, and 7.7%, respectively. Ceftiofur 
resistant rate decreased from 24.3% to 15.8%, and 7.7%, respectively. In 
the year 2018, all S. Manhattan and S. Infantis were susceptible to 
β-lactam. 
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4. Discussion 

As shown in Table 1, the prevalence of Salmonella at the flock broiler 
chicken level in the present study was slightly higher than that in our 
previous study (81.3% and 78.6%). However, in 2018 the positive flock 
rate (72.9%) was much lower than those from 2014 to 2017 (Duc et al., 
2020). The proportion of positive samples decreased two-fold in 2018, 
and was the lowest rate in the last 5 years. These findings may signal the 
beginning of a decreasing trend of Salmonella colonization among 
broiler chicken in Kagoshima Prefecture, Japan. 

The specific serovars identified in Kagoshima Prefecture, Japan, 
belonged to S. Infantis, S. Manhattan, and S. Schwarzengrund. The 
current study results were similar to those of previous studies where all 
three serovars were investigated. However, the distribution of each 
serovar changed each year (Duc et al., 2019, 2020). S. Schwarzengrund 
and S. Manhattan isolated were the main serovar, while S. Infantis was 
not predominant in recent isolates. We believed that imported original 
breeder chickens were the source of S. Schwarzengrund contamination 
and spreading throughout Japan, but there was no evidence. The top 
three serovars S. Infantis, S. Manhattan, and S. Schwarzengrund were 
also found in other studies in Japan (Sasaki et al., 2012; Shigemura et al., 
2018). 

However, the distribution of Salmonella serovars isolated from 

broiler chicken was not the same in other countries. In Taiwan between 
2000 and 2005 the main serovars were S. Albany, S. Schwarzengrund, S. 
Istanbul, S. Derby, and S. Typhimurium (Chen et al., 2010), and the most 
common serovars in Ecuadorian broilers were S. Infantis, S. Enteritidis, 
and S. Corvallis (Vinueza-Burgos, Cevallos, Ron-Garrido, Bertrand & De 
Zutter, 2016). 

In the study we used the same MIC methodology as previous studies 
(Duc et al., 2019, 2020). In comparison with previous studies from 2009 
to 2012 (Duc et al., 2019), and from 2013 to 2016 (Duc et al., 2020), the 
high proportions (more than 80%) of resistance to OTC, SM, and SUL 
were similar to those reported previously. However, most of the Sal-
monella isolates were susceptible to chloramphenicol and ofloxacin. 

In all three periods (2009–2012, 2013–2016, and 2017–2018), S. 
Schwarengrund strains were susceptible to four antimicrobial agents in 
the β-lactam group. On the other hand, there was were significant dif-
ferences in the proportion of S. Manhattan and S. Infantis resistant to the 
β-lactam group across previous periods and the current study periods. In 
particular, the β-lactam resistance rate of S. Manhattan decreased 
markedly in three stages [Table 3], and that serovars were the most 
prevalent in the 2013–2016, and 2017–2018 periods. 

Several studies worldwide reported the high resistance to antimi-
crobials in the β-lactam group: a study in Ecuadorian broiler in 2016 
showed that 78.8% and 80.8% of Salmonella isolates were resistant to 

Table 1 
The prevalence and distribution of Salmonella serovars isolated from broilers in Japan in 2017 and 2018.  

Year No. of flocks No. of positive flocks (%) No. of samples No. of positive samples (%) Salmonella serovars 
Infantis isolates Manhattan isolates Schwarzengrund isolates 

2017 48 43 (89.6) 767 178 (23.2) 10 91 77 
2018 48 35 (72.9) 768 96 (12.5) # 16 37 43 
Total 96 78 (81.3) 1535 274 (17.9) 26 128 120 

* Significant decreased from previous year: p < 0.05. 
# Significant decreased from previous year: p < 0.001. 

Table 2 
The distribution of MIC on 264 Salmonella isolates in 2017 and 2018.  

Antimi-crobial agent MIC break point (μg/ml) No. of isolates at the MIC (μg/mL) No. of resistance (%) 
0.25 0.5 1 2 4 8 16 32 64 128 256 512 

AMP ≥32 1 1 56 169 14 0 0 0 1 7 0 12 20 (7.6) 
CTX ≥4 247 2 0 0 1 1 0 1 6 0 0 6 15 (5.7) 
CFX ≥32 0 0 9 181 61 11 0 2 0 0 0 0 2 (0.8) 
CTF ≥8 41 100 81 21 1 0 3 2 8 6 1 0 20 (7.6) 
CP ≥32 0 1 1 51 124 81 2 0 0 0 0 0 0 (0.0) 
SM ≥16 0 0 0 0 0 15 5 39 163 37 4 1 249 (94.3) 
SUL ≥512 0 0 0 0 0 0 5 33 9 4 0 213 213 (80.7) 
OTC ≥16 0 0 6 9 28 4 3 2 0 57 152 3 217 (82.2) 
OFLX ≥2 249 5 5 4 0 0 1 0 0 0 0 0 5 (1.9) 
KM ≥64 0 5 24 61 89 8 0 0 0 2 1 74 77 (29.2) 

*From 274 Salmonella isolated, 10 strains were lost during the stock. 

Table 3 
Comparison in β-lactam resistance of S. Manhattan, and S. Infatis between three periods (2009–2012, 2013–2016, and 2017–2018), and the year 2018.  

Antimicr- 
obial agent 

No. of resistant isolates (%) 
S. Manhattan S. Infantis 

(2009–2012) 11 n 
= 98 (%) 

(2013–2016) 12 n 
= 263 (%) 

(2017–2018) * n 
= 120 (%) 

2018 * n =
34 (%) 

(2009–2012) 11 n 
= 140 (%) 

(2013–2016) 12 n 
= 139 (%) 

(2017–2018) * n 
= 26 (%) 

2018 * n =
16 (%) 

AMP 93 (94.9) 119 (45.2) ↓ 18 (15.0)#,↓ 0 (0.0)#,↓ 41 (29.3) 29 (20.9) ↓ 2 (7.7)#,↓ 0 (0.0)#,↓ 

CTX 92 (93.9) 109 (41.4) ↓ 13 (10.8)#,↓ 0 (0.0)#,↓ 36 (25.7) 23 (16.5) ↓ 2 (7.7)#,↓ 0 (0.0)#,↓ 

CFX 0 (0.0) 27 (10.3) 0 (0.0) ↓ 0 (0.0) ↓ 15 (10.7) 15 (10.8) 2 (7.7) 0 (0.0)#,↓ 

CTF 90 (91.8) 90 (34.2) ↓ 18 (15.0)#,↓ 0 (0.0)#,↓ 34 (24.3) 22 (15.8) ↓ 2 (7.7)#,↓ 0 (0.0)#,↓  

11 : Cited from Duc et al. 2019. 
12 : Cited from Duc et al. 2020. 
* : This study. 
↓ : Significant decrease from the previous period (p < 0.05). 
# : Significant decrease from the period (2009–2012) (p < 0.01). 
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ampicillin and cefotaxime (Vinueza-Burgos et al., 2016). In a study in 
Taiwan, 228 S. Schwarzengrund strains selected from chicken meat 
were highly resistant to ampicillin but most of them were susceptible to 
cefoxitin (Chen et al., 2010). Our result of 2017 and 2018 research is 
consistent with our previous results for cefoxitin resistance when S. 
Schwarzengrund isolates were the most prevalent recently, but not in 
ampicillin resistance. Some studies in the Japanese poultry industry 
suggested that the decreasing trend of extended-spectrum cepha-
losporin-resistant in Salmonella, and E. coli may be due to not combining 
ceftiofur in vaccination for broiler chickens after 2012 (Hiki et al., 2015; 
Shigemura et al., 2018). This survey was performed in the same meth-
odology and under the same conditions as the previous report, so it can 
be compared with historical data. In the present study, a decreasing 
tendency of resistance to ceftiofur was observed. 

Together, our findings revealed that S. Manhattan, and S. Schwar-
zengrund are the main serovar of Salmonella isolated from broiler 
chickens in Kagoshima Prefecture, Japan. In a previous study S. 
Schwarzengrund was susceptible to β-lactams, but S. Infantis and S. 
Manhattan were not (Duc et al., 2019, 2020). However, in this study, we 
saw the disappearance of β-lactams resistance not only in S. Schwar-
zengrund but also in S. Infantis and S. Manhattan in 2018. These 
changing profiles indicate the need for continual evaluation and 
research regarding the molecular characteristics of Salmonella in broiler 
chickens. 
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