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Abstract

The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic
lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have
shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor
progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through
common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates
cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing
an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of
a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that
culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and
facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots
showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its
downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is
strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR
clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as
microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening
promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.
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Introduction

Glioblastoma (GBM) is the most commonly diagnosed primary

astrocytoma in the United States and is also the most deadly

primary brain tumor, with a median survival time of only 15

months [1]. Even with extensive resection, chemotherapy, and

radiotherapy, recurrence occurs rapidly and almost universally but

rarely involves extracranial metastasis. This suggests that signals

encoded within the brain microenvironment may interact with

cell-intrinsic factors to promote tumor progression, invasion, and

recurrence, and that these cell-extrinsic signals may be investigated

to achieve a more complete understanding of GBM and

potentially uncover new therapeutic avenues [2,3].

Of all of the microenvironmental parameters that may

modulate GBM progression, mechanical signals remain among

the most poorly understood. While it has long been understood

that many tumors, including GBM, are mechanically stiffer than

the surrounding stroma [4,5], it has only recently become

appreciated that these mechanical aberrations may actively

instruct malignant progression rather than simply being a passive

manifestation of tumor growth [6–8]. For example, we previously

demonstrated that GBM cells show higher proliferation and

migration rates when cultured on stiff two-dimensional substrates

[9,10]. Consistent with this idea, GBM tumors and culture models

often display altered expression of molecules known to play key

roles in sensing and/or responding to mechanical signals encoded

in the tissue microenvironment (i.e., mechanosensing). This list

includes integrins, which physically engage the extracellular matrix

(ECM) and process mechanical inputs [11–13]; specific integrin

subtypes have been implicated in GBM tumor initiation, with

expression directly correlating with tumorigenicity [13–16]. Other

members of the mechanosensing machinery have been similarly

implicated in GBM growth and progression, including focal

adhesion kinase (FAK) [17,18], the Rho family GTPases [19], and
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nonmuscle myosin II [20,21]. These findings are consistent with

the broader recognition that aberrant mechanosensing may drive

the progression of many solid tumors, including breast epithelial

tumors [6].

At the same time, GBM is also closely associated with

dysfunction in canonical mitogenic signaling, which in turn

impacts proliferation, apoptosis resistance, and invasion. Most

notably, amplifications and mutations in epidermal growth factor

receptor (EGFR) represent one of the most common sets of genetic

lesions in GBM, with EGFR amplifications present in up to

perhaps 50% of GBM tumors [22,23]. EGFR, also referred to as

ErbB1 or HER1, is a member of the HER family of receptor

tyrosine kinases [24]. Phosphorylation of downstream signaling

molecules phosphoinositide 3-kinase (PI3K) and protein kinase B

(PKB or Akt) by activated EGFR promotes cell proliferation

[24,25]. Importantly, amplification of the EGFR gene and

expression of the EGFRvIII mutation are associated with

significantly decreased overall survival [26,27]. Due to the

prominent role of EGFR in controlling the cell cycle and its

correlation with poor prognosis, EGFR and EGFRvIII have

recently emerged as promising therapeutic targets for the

treatment of GBM [24,28], as has PI3K [29–31].

Despite the established centrality of EGFR signaling to GBM

progression and the recognition that GBM tumors are accompa-

nied by profound changes in tissue stiffness, it is unknown what, if

any, connections exist between these two classes of lesions.

Specifically, does tissue stiffening modulate, potentiate, or

otherwise interact with EGFR-based signaling to drive tumor cell

proliferation? Evidence for such connections exists in breast

tumors, with ErbB2 inhibition blunting ECM stiffness-induced

promotion of malignancy in a mammary epithelial tumor culture

model [6]. Conversely, integrin clustering induced by enhanced

matrix cross-linking has been observed to amplify ErbB2-mediated

Akt phosphorylation [32]. Together, these findings led us to

hypothesize that microenvironmental stiffness cues can regulate

GBM proliferation by modulating EGFR-based signaling [33],

which we tested using a combination of defined-stiffness culture

substrates, proteomic screens, proliferation and cell cycle analysis,

and pharmacological loss-of-function studies. We find that

microenvironmental stiffness amplifies proliferation, is associated

with enhanced progression through the G1/S cell cycle check-

point, and is accompanied by increased expression and/or activity

of EGFR, Akt, and PI3K. We also find that EGFR and focal

adhesion markers co-localize on stiff but not soft substrates,

implying that stiffness may amplify these signals by physical

clustering of EGFR. Our work offers direct evidence that

mechanical signals are transduced through the EGFR pathway

in GBM and support the emerging concept of synergy between

mitogenic and mechanosensory signaling systems.

Materials and Methods

Cell Culture
U373-MG and U87-MG human glioma cells were cultured as

previously described [9]. To clarify nomenclature, we obtained

U373-MG cells from the University of California, Berkeley Tissue

Culture Facility, which obtained these lines from the American

Type Culture Collection (ATCC). Genomic analysis has revealed

that ATCC U373-MG cells likely share origins with U251-MG

glioma cells, [34] although meta-analyses indicate that these two

lines have evolved into distinct entities with different karyotypes

and drug sensitivities. [35] Briefly, cells were cultured in DMEM

high glucose (1X) with L-glutamine without sodium pyruvate

(Invitrogen) and supplemented with 10% Calf Serum Advantage

(JR Scientific, Inc.), 1% penicillin/streptomycin, 1% MEM

nonessential amino acids (Invitrogen), 1% sodium pyruvate

(Invitrogen). Cells were maintained in a humidified incubator at

37uC and 5% CO2.

Synthesis of ECM substrates
Polyacrylamide substrates ranging from 0.08 kPa–119 kPa were

fabricated as described previously [9]. Briefly, acrylamide solution

(Bio-Rad) ranging from 3%–15% was mixed with N-N’-

methylene-bis-acrylamide solutions (Bio-Rad) ranging from

0.05%–1.2% and then polymerized between a glutaraldehyde-

activated glass surface and hydrophobic coverslip using 10%

ammonium persulfate (Bio-Rad) and 1/2000 TEMED (Sigma-

Aldrich). Polymerized substrates were then activated for protein

conjugation with the water-soluble, heterobifunctional crosslinker

Sulfo-SANPAH at 0.5 mg/mL (Pierce Chemical Co.) under UV

exposure followed by functionalization with human plasma

fibronectin (Millipore Corp.) at a nominal surface density of

2.6 mg/cm2.

Flow cytometric studies
Glioma cells were plated on fibronectin-coated polyacrylamide

substrates at a density of 10000 cells/cm2 (on 119 kPa substrates)

and 20000 cells/cm2 (on 19 kPa, 0.8 kPa, and 0.08 kPa sub-

strates). After ,24 hours of incubation, cell proliferation was then

measured according to the FITC-bromodeoxyuridine (BrdU) flow

kit protocol (BD Biosciences) with a 90-minute exposure to 5-

BrdU. Samples were then analyzed on a flow cytometer FC500

(Beckman-Coulter). An aggregate distribution of cells were gated

on an FL4 (7-AAD) channel vs. FL1 (FitC-BrdU) channel plot and

BrdU intensity was quantified relative to a non-BrdU treated

(negative) control for each condition. The percent of BrdU positive

cells was reported as the percent of proliferating cells in a given

sample.

Cell cycle analysis
Glioma cells were cultured on the surface of fibronectin-coated

polyacrylamide gels for 48 hours prior to trypsinization, fixation,

and staining with propidium iodide to quantify DNA content.

Cells were then analyzed on a flow cytometer FC500 (Beckman-

Coulter). An aggregate distribution of cells was visualized using a

histogram of PI intensities and gated to exclude unviable cells and

doublets. The gated population was visualized as a histogram and

fit to the Watson model to quantify the percent of cells in the G0/

G1, S and G2 phases of the cell cycle.

Western blot
U373-MG and U87-MG cells were cultured on fibronectin-

coated polyacrylamide substrates of defined stiffness for 48 hours.

Cells on each substrate were washed twice in PBS, collected, and

lysed using 50 mL RIPA lysis buffer with protease inhibitor (1:100,

Sigma-Aldrich) and phosphatase inhibitor (1:100, Calbiochem) for

5 minutes. Proteins from cell lysates were separated using standard

sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis

(PAGE) and electrophoretically transferred to polyvinylidene

fluoride (PVDF) membranes. Immunoblots were performed

according to manufacturer specifications (Invitrogen Western Blot

kit) as described in a previously established protocol (34).

Following blocking, sections of the membrane containing the

protein of interest were blotted with the appropriate primary

antibody (overnight, 4uC) followed by a horseradish peroxidase-

conjugated secondary antibody (1 hour at room temperature)

prior to detection by chemiluminescence (West Dura). After
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development and scanning, band intensities were quantified by

ImageJ (NIH). Primary antibodies included: EGFR (1:500, Santa

Cruz Biotechnology Inc.), P-EGFR (1:1000, Cell Signaling) Akt

(1:40,000, Cell Signaling), P-Akt (1:20,000, Cell Signaling) PI3K

(1:40,000, Cell Signaling), GAPDH (1:5,000,000, Sigma-Aldrich).

Immunostaining
U373-MG human GBM cells were seeded on polyacrylamide

substrates of varying stiffnesses and allowed to equilibrate

overnight before fixation. Cells were fixed with 4% paraformal-

dehyde in PBS, permeabilized using 0.1% Triton-X100 in PBS,

and blocked using 5% goat serum in PBS prior to staining with the

appropriate antibodies: P-EGFR (1:250, Cell Signaling), Vinculin

(1:250, Sigma), DAPI (1:200, Invitrogen). All fluorescence imaging

were performed on a Prairie SFC confocal microscope

Pharmacologic inhibitor studies
U373-MG cells were cultured on fibronectin-coated polyacryl-

amide substrates of varying stiffness for at least 24 hours prior to

treatment with a single pharmacologic inhibitor. Cell proliferation

was measured 24 hours post treatment with the drug of interest

according to the FitC-BrdU flow kit protocol as described above.

Pharmacologic inhibitors included: Tyrphostin AG1478 (20 uM,

Calbiochem), Triciribine (20 uM, Enzo Diagnostics), Wortmannin

(20 uM, Sigma-Aldrich).

Reverse phase proteomic analysis (RPPA)
U373-MG and U87-MG cells were seeded on fibronectin-

coated polyacrylamide substrates of varying stiffnesses. Total

cellular protein was isolated using lysis buffer provided by the MD

Anderson RPPA Core Facility and then sent to that facility for

completion of RPPA following standard protocols (http://www.

mdanderson.org/education-and-research/resources-for-professionals/

scientific-resources/core-facilities-and-services/functional-proteomics-

rppa-core/education-and-references/index.html).

Results

Microenvironmental stiffness influences proliferative
signaling in glioma cells

To broadly explore whether stiffness-induced signals may

influence the activity of proteins relevant to mitogenic signaling

and proliferation, we harvested lysates from human GBM cells

cultured on ECM protein-coated substrates of defined stiffness

(from 0.08 kPa to 119 kPa) and used reverse phase protein array

(RPPA) analysis to comparatively measure levels of a variety of

proteins and phosphoproteins. In this technology, cell lysates are

immobilized as spots onto a solid support, and each spot is probed

with a distinct primary antibody directed against a known

molecular target. Each spot is then incubated with a single

biotin-tagged secondary antibody, which is then fluorescently

labeled for quantification of target abundance. This approach

therefore enables the parallel quantification of a large number of

protein and phosphoprotein targets from the same lysate. We

cultured U373-MG and U87-MG human glioma cells on

substrates ranging from brain-like (0.08 kPa) to supraphysiological

stiffness values (119 kPa) for 2 days in growth medium, harvested

lysates, subjected the lysates to RPPA measurement, and analyzed

the resulting data to identify proteins and phosphoproteins whose

levels correlated significantly with stiffness (Spearman correlation

coefficient R.0.5). Out of the 200 antibody targets that were

probed by RPPA, the abundance of 48 correlated positively with

stiffness for both U373-MG and U87-MG cells (Figure S1).

Interestingly, more than one-quarter (,27%) of these positive

targets fell within pathways canonically associated with prolifer-

ation, including MAPK, RAF1, and Src (Figure S1; highlighted).

Notably, EGFR levels were found to be significantly correlated

with stiffness in U373-MG cells (r = 0.8205), as were the levels of

two EGFR phosphoisoforms associated with EGFR auto-phos-

phorylation (Figure S1; r = 0.5830 and r = 0.5614 for pY106 and

pY117, respectively). Finally, phosphorylation levels of the

downstream EGFR signaling targets Akt and PI3K were strongly

correlated with stiffness in both U373-MG (r = 0.8421 and 0.8205)

and U87-MG cells (r = 0.5398 and 0.8205).

Microenvironmental stiffness regulates human glioma
cell proliferation

Given the broad correlations between substrate stiffness and the

abundance of proteins and phosphoproteins associated with

proliferation-related signaling, we next decided to directly quantify

the extent to which substrate stiffness regulates proliferation. In a

previous study [9] we showed that human GBM cells cultured on

stiff substrates proliferated much more avidly than cells on highly

compliant substrates of elasticity comparable to normal brain

tissue. Because of the limited throughput and precision of the

immunofluorescence-based bromodeoxyuridine (BrdU) incorpo-

ration method used in this earlier study, we first confirmed this

result using a flow cytometry-based BrdU incorporation assay,

which enables rapid analysis of tens of thousands of cells (Figure 1).

We cultured cells on fibronectin-conjugated polyacrylamide

hydrogels, transiently pulsed them with BrdU, harvested them

from the substrate, and then measured the fraction of BrdU-

positive cells by flow cytometry. Gradually increasing ECM

stiffness from 0.08 kPa to 119 kPa dramatically enhanced

proliferation in both U373-MG (Figure 1A) and U87-MG

(Figure 1B) cells, with the stiffest ECM producing 2-3-fold more

BrdU-positive cells than the softest ECM.

Stiff microenvironments enhance progression through
the G1/S checkpoint of the cell cycle

To gain additional mechanistic insight into the dramatic

increase in cell proliferation induced by microenvironmental

stiffness, we asked whether this effect might be accompanied by

changes in cell cycle distribution. We therefore performed

additional flow cytometric studies in which we cultured GBM

tumor cells on a range of defined-stiffness substrates, treated the

cells with propidium iodide to mark DNA content, and performed

flow cytometry to measure distribution across the G1, S, and G2/

M phases of the cell cycle (Figure 2). For both U373-MG

(Figure 2A) and U-87 MG (Figure 2B) cells, the majority of cells

were in G1 phase across all stiffness values (Figure 2; dark gray).

Interestingly, however, we noted that increasing ECM stiffness

increased the percentage of cells in S phase (Figure 2; light gray),

with concomitant reductions in the number of cells in G1. For

U87-MG cells on the two softest ECMs considered, there was also

a corresponding depletion of cells in G2/M phase. Taken together

with our proliferation data (Figure 1), these results are consistent

with a mechanism in which increasing microenvironmental

stiffness accelerates proliferation by facilitating passage through

the G1/S checkpoint.

Increasing microenvironmental stiffness promotes
expression and phosphorylation of EGFR-induced signals

Our flow cytometry results motivated us to consider potential

molecular mechanisms through which increasing ECM stiffness

might speed passage through the G1/S checkpoint. EGFR

activation is known to promote proliferation in part by acceler-
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ating G1/S passage [36–39] and is among the most commonly

aberrant genes in GBM. Given this and our RPPA finding that

substrate stiffness is correlated with expression and phosphoryla-

tion of EGFR signaling proteins in both U373-MG cells (EGFR,

pEGFR, Akt, pAkt, pPI3K) and U87-MG cells (Akt, pAkt,

pPI3K), it occurred to us that ECM stiffness might act through

EGFR signaling to promote cell cycle progression and prolifera-

tion [22]. However, an important caveat of RPPA is its

comparatively limited dynamic range and sensitivity [40], which

suits RPPA well for detecting broad correlations among experi-

mental parameters but much less so for quantification of protein

levels. To more precisely and quantitatively measure these

potential stiffness-dependent proteomic changes, we used Western

blots to determine if microenvironmental stiffness could alter

expression or phosphorylation of EGFR or its downstream

effectors Akt and PI3K (Figure 3A). Remarkably, increasing

matrix stiffness from 0.08 kPa to 119 kPa produced a five-fold

increase in phosphorylated EGFR (pEGFR) and nearly two-fold

increases in phosphorylated Akt (pAkt) and total PI3K. Increasing

matrix stiffness over this same range also strongly increased overall

levels of EGFR and Akt (Figure 3B), suggesting that the

enhancement of phosphorylation may result in part from greater

overall levels of each protein. Importantly, these studies were

conducted in the absence of exogenous EGF beyond levels already

present in serum or secreted by cells. Thus, increasing microen-

vironmental stiffness broadly activates EGFR signaling in GBM

tumor cells.

EGFR pathway inhibition renders proliferation
significantly less sensitive to substrate stiffness

The above results indicate that increasing matrix stiffness

enhances cell proliferation (Figure 1), facilitates passage through

the G1/S checkpoint (Figure 2), and potentiates EGFR pathway

activation (Figure 3A). To determine whether EGFR pathway

activation is necessary for stiffness-induced proliferation, we

performed studies in which we cultured cells on defined-stiffness

substrates, treated them with pharmacologic inhibitors of EGFR

kinase (Tyrphostin), Akt kinase (Triciribine), PI3K (Wortmannin),

or, due to the known effects of DMSO on proliferation [41,42], a

DMSO-only control. The specificity and efficacy of these drugs

Figure 1. Microenvironmental stiffness regulates glioma cell
proliferation. Effect of ECM rigidity on proliferation of U373-MG (A)
and U87-MG (B) cells. Results represent quantification of n.10,000 cells
for at least three substrates per condition by flow cytometry, where the
percentage of dividing cells was determined as the average percentage
of cells staining positive for BrdU incorporation. *, P,0.05 with respect
to 119 kPa.
doi:10.1371/journal.pone.0101771.g001

Figure 2. ECM rigidity regulates glioma cell cycle distribution.
Effect of ECM rigidity on cell cycle distribution of U373-MG (A) and U87-
MG (B) cells. Results represent quantification of n.10,000 cells for at
least three substrates per condition by flow cytometry, where the
percentage of cells in each phase of the cell cycle was determined as
the average percentage of cells staining positive for propidium iodide
incorporation. *, P,0.05 with respect to 119 kPa.
doi:10.1371/journal.pone.0101771.g002
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have been extensively characterized in previous studies [43–45].

We then repeated BrdU flow cytometric analysis to determine

EGFR pathway-dependent effects on cell proliferation. As

expected, DMSO-treated U373-MG controls strongly exhibited

stiffness-dependent proliferation as observed earlier (Fig. 1).

However, treatment with any of the three inhibitors both reduced

overall levels of proliferation and desensitized proliferation to

stiffness, with the strongest effect observed for EGFR and PI3K

inhibition (Figure 4). Thus, GBM tumor cell proliferation is

substantially less sensitive to ECM stiffness when EGFR signaling

is reduced, implying that matrix stiffness acts in part through

EGFR-mediated signaling pathways to promote proliferation.

Changes in microenvironmental stiffness alter EGFR
organization and co-localization with focal adhesions

Modulation of tissue stiffness is widely understood to control cell

physiology through a number of proximal signals, perhaps the

most well-studied of which is assembly of integrin-based adhesion

complexes. These adhesions can influence growth factor signaling

in a number of important ways, including locally concentrating

growth factor receptors and recruiting key mitogenic signaling

intermediates such as focal adhesion kinase (FAK) and PI3K. This

is important in that EGFR activation is strongly amplified by

spatial clustering of the receptor and its downstream effectors [46].

To determine whether matrix stiffness might influence the

assembly of EGFR, we cultured U373-MG cells on defined-

stiffness matrices and used immunofluorescence to examine

colocalization of EGFR and focal adhesion proteins (Figure 5).

As expected from our and others’ previous studies [9,47], soft

Figure 3. Microenvironmental stiffness regulates expression and phosphorylation of EGFR pathway components. The expression of
activated EGFR, activated Akt and PI3K in U373-MG cells rises with increasing substrate stiffness (A). Similarly, the expression levels of EGFR and Akt in
U373-MG cells rise with increasing substrate stiffness (B). Results represent quantification of at least three biological replicates on three separate
Western blots, where the relative protein expression levels have been first normalized to the expression of GAPDH and then normalized to the
expression level on the stiffest substrate of 119 kPa. Representative blots for each protein are on the right. *, P,0.05 with respect to 119 kPa.
doi:10.1371/journal.pone.0101771.g003

Figure 4. Stifffness-dependent glioma cell proliferation is
dampened upon treatment with 20 uM EGFR inhibitor -
Tyrphostin, 20 uM Akt inhibitor - Triciribine, and 20 uM PI3
Kinase inhibitor - Wortmannin for 24 hours as compared with
the DMSO negative control. Results represent quantification of
n.10,000 cells for at least three substrates per condition by flow
cytometry, where the percentage of dividing cells was determined as
the average percentage of cells staining positive for BrdU incorporation
*, P,0.05 with respect to 119 kPa for DMSO control, 20 uM Tyrphostin
and 20 uM Triciribine.
doi:10.1371/journal.pone.0101771.g004
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ECMs gave rise to immature, punctate vinculin-positive focal

complexes, with stiffer ECMs yielding larger and more elongated

focal adhesions. Strikingly, these changes in substrate stiffness also

concomitantly enhanced pEGFR clustering, with pEGFR strongly

co-localizing with vinculin-positive focal adhesions and forming

large structures on stiff matrices. Thus, increasing microenviron-

mental stiffness promotes the clustering and colocalization of both

integrin-based focal adhesion complexes and pEGFR.

Discussion

Our study shows that microenvironmental stiffness increases the

expression and/or phosphorylation of EGFR and its downstream

effectors, and that stiffness-dependent signals stimulate prolifera-

tion by acting in part through EGFR-based mitogenic signaling.

While the precise mechanism of this interaction remains to be fully

elucidated, the strong, stiffness-dependent colocalization of

pEGFR with focal adhesion components is consistent with a

model in which tissue stiffening promotes GBM proliferation by

spatially and biochemically amplifying EGFR signaling. If this is

the case, then mechanotransductive and EGFR-based signals may

act synergistically to regulate cell proliferation in GBM.

Previous research has suggested the possibility of cooperativity

between mechanical inputs and growth factor signaling. Many

growth factor receptors including EGFR can interact both directly

and indirectly with a variety of integrin subtypes and colocalize

within integrin-based adhesions [48–51]. Moreover, studies using

both in vitro and mouse models of various tumors have suggested

that integrin clustering and matrix stiffness may be at least partially

responsible for enhanced PI3K signaling. For example, inhibition

of PI3K signaling was found to neutralize the tumor-promoting

effects of matrix stiffness in a mouse model of breast cancer [32].

Furthermore, reducing substrate stiffness normalized invasive,

disorganized colonies formed by EGFR-transformed mammary

epithelial cells cultured in reconstituted basement membrane

matrices [6]. Moreover, changes in matrix stiffness have previously

been shown to alter cell cycle progression in mammary epithelial

cells, smooth muscle cells, fibroblasts, and other non-neuroglial cell

types [33,52]. While this body of work implies fundamental

connections between growth factor receptors, their canonical

downstream targets, and mechanotransductive signaling systems in

regulating tumor propagation and invasion, relatively little is

known regarding the underlying phenotypic mechanisms or if

these findings extend to other tumors. Our results begin to fill this

gap by supporting the notion that EGFR- and mechanotransduc-

tive signaling act in tandem to promote proliferation in GBM cells,

although further investigations are necessary to determine if this is

a general phenomenon of mechanosensing or is specific to GBM

and perhaps other tumor types. A key limitation of our studies is

the use of highly reductionist culture models, which was necessary

to cleanly isolate stiffness as an experimental variable. However,

future studies in which EGFR and mechanotransductive signals

are simultaneously manipulated in vivo (e.g. in orthotopic

xenograft paradigms) should help clarify the physiological role of

this phenomenon and the relative influence of other inputs that

may modulate PI3K/Akt signaling in vivo. These studies would

also serve as an important check against our pharmacological

inhibition studies, where legitimate concerns may exist about

target specificity.

We show that focal adhesions and EGFR co-localize on stiff but

not soft substrates, suggesting that enhanced EGFR clustering on

stiff substrates may be driven in part by interactions between focal

adhesion proteins and EGFR. Importantly, forced clustering of

EGFR mutants enhanced tumorgenicity and decreased survival

time in a mouse xenograft model of GBM [53]. Much previous

work supports the existence of interactions between focal adhesion

proteins and EGFR, with many of these efforts focusing

specifically on the interaction between focal adhesion kinase

(FAK) and EGFR. FAK is a ubiquitously expressed tyrosine kinase

that contains an N-terminal FERM domain and a C-terminal

focal-adhesion targeting domain (FAT) [54]. The FERM domain

has been shown to bind to certain growth factor receptors,

including EGFR, while the FAT domain causes FAK to localize to

focal adhesions. Focal adhesion-localized EGFR then signals

directly through the Band-4.1 domain on FAK, thereby providing

a direct link between known mechanosensory machinery and the

EGFR pathway [49]. The importance of this connection is

highlighted by experiments in mouse models of breast cancer,

where FAK is required for ErbB2/3 mediated oncogenic

transformation and lung metastases of MDA-231-M2 cell injected

into the mammary fat pad [55]. This FAK-based connection may

have clinical significance given that FAK inhibition was recently

shown to sensitize GBM cells to PD153035-induced EGFR

inhibition [56]. Thus, in the future it should be valuable to more

precisely dissect the role of FAK in coupling mechanotransductive

and EGFR-dependent control of GBM proliferation.

Figure 5. Colocalization of focal adhesion of phospho-EGFR.
U373-MG cells were cultured on soft (A, C, E) or stiff (B, D, F)
polyacrylamide hydrogels and immunofluorescently stained for vinculin
(A, B) and phospo-EGFR (C, D). There are no punctate vinculin-positive
focal adhesions on soft substrates (A), while there are large focal
adhesions on stiff substrates (C). On stiff substrates, there are distinct,
punctate pEGFR structures (D; arrows) that colocalize with vinculin
positive adhesions (F; arrows). The colocalization is more clearly evident
in the high-magnification insets (B, D). Scale bar is 50 microns.
doi:10.1371/journal.pone.0101771.g005
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One somewhat unexpected finding from our study is that

increases in microenvironmental stiffness increase total levels of

EGFR and its downstream effectors, in addition to levels of the

corresponding phosphoproteins. This implies that substrate

stiffness may influence the transcription, translation, and/or

degradation of these proteins. While surprising, similar effects

have been observed in breast tumor cells grown in three-

dimensional reconstituted basement membrane, where EGFR

overexpression has been found to trigger compensatory a1 integrin

upregulation [48]. Similarly, total and phospho-EGFR levels are

reduced when cytoskeletal tension is relaxed in mammary

epithelial cells [6]. Numerous other studies have established a link

between mechanotransductive signaling and transcriptional regu-

lation [57–59], in which activation of mechanotransductive signals

at the plasma membrane may influence transcription through

traditional signal transduction events or more hypothetically

through direct mechanical deformation of the nucleus [60,61].

In conclusion, we have investigated interactions between

microenvironemental stiffness and EGFR-dependent signaling in

controlling cell cycle and proliferation. Our data are broadly

consistent with a model in which stiffness enhances EGFR-

dependent signaling to regulate proliferation. As GBM tumors are

known to be stiffer than normal brain tissue, these stiffness changes

may modulate cell proliferation in vivo. An important limitation in

making this connection in a more literal way is the relative absence

of quantitative measurements of tumor stiffness, which remains

technically challenging. As these values become available, it will be

informative to revisit these studies with materials designed to

tightly bracket that range. Finally, while it may be premature to

speculate on the clinical implications of this finding, our results

raise the interesting possibility that modulation of microenviron-

mental mechanics and/or mechanotransductive signaling systems

may be used to potentiate the effects of EGFR and PI3K

inhibitors. While these small-molecule inhibitors have shown great

promise in preclinical studies and early clinical trials, much room

certainly remains for improvement [62–64]. Analogously, integrins

are under evaluation as therapeutic targets in GBM, with an RGD

peptide inhibitor showing modest increases in progression-free

survival in phase II clinical trials and failed to do so in phase III

trials [65,66]. Co-administration of EGFR pathway inhibitors and

agents that modulate the mechanotransduction machinery may

thus enhance the activity of both agents. There is ample precedent

for such co-administration strategies; for example, in vivo mouse

studies have suggested that using Y15, a FAK autophosphory-

lation inhibitor, synergistically with temozolomide is a more

effective at preventing tumor growth than either drug alone [17].

It will be important to carefully and systematically evaluate these

concepts in both primary human GBM xenografts and other

preclinical models.

Supporting Information

Figure S1 Microenvironmental stiffness-dependent reg-
ulation of proteins in U373-MG and U87-MG cells. U373-

MG and U87-MG human glioma cells were cultured on one of

four defined-stiffness substrates and then subjected to reverse

phase protein array (RPPA) analysis. Correlations between

substrate stiffness and protein expression were quantified by

Spearman correlation analysis for each cell type. A significant

correlation is defined as a correlation coefficient (R) of absolute

value greater than 0.5. The table includes only proteins whose

levels correlate significantly with stiffness in both U373-MG and

U87-87 cells, U373-MG only, or U87-MG only. For proteins that

correlate significantly with both cell lines, R values are the

reported as the average of the absolute values of the R values for

the individual cell lines. All other R values are reported as the

absolute vale of the R score. Proteins known to be related to

proliferation are highlighted in yellow.
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