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Abstract

Signal transduction through the Mitogen Activated Protein Kinase (MAPK) pathways is evo-
lutionarily highly conserved. Many cells use these pathways to interpret changes to their
environment and respond accordingly. The pathways are central to triggering diverse cellu-
lar responses such as survival, apoptosis, differentiation and proliferation. Though the inter-
actions between the different MAPK pathways are complex, nevertheless, they maintain a
high level of fidelity and specificity to the original signal. There are numerous theories
explaining how fidelity and specificity arise within this complex context; spatio-temporal reg-
ulation of the pathways and feedback loops are thought to be very important. This paper
presents an agent based computational model addressing multi-compartmentalisation and
how this influences the dynamics of MAPK cascade activation. The model suggests that
multi-compartmentalisation coupled with periodic MAPK kinase (MAPKK) activation may be
critical factors for the emergence of oscillation and ultrasensitivity in the system. Finally, the
model also establishes a link between the spatial arrangements of the cascade components
and temporal activation mechanisms, and how both contribute to fidelity and specificity of
MAPK mediated signalling.

Introduction

Cells constantly receive external signals reflecting changes in their environment, which they
should respond to accordingly. An array of signal transduction pathways and signalling mech-
anisms have evolved that translate these external cues into specific cellular responses. One of
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these central intracellular signalling pathways is known as the mitogen activated protein kinase
(MAPK) pathway [1].

The pathway is a three-tiered cascade involving three enzymes, the MAPK kinase kinase
(MAPKKK), the MAPK kinase (MAPKK) and the MAPK. Mechanistically, pathway activation
relies on the propagation of phosphorylation events downstream of the cascade [2, 3] as shown
in Fig 1. The MAPK pathway plays a critical role in cells as it regulates numerous and diverse
cellular responses [4-6], including regulation of the cell cycle, influencing differentiation, sur-
vival and apoptosis. Historically, these responses were attributed to distinct MAPK pathways,
mediating a specific response [7-10]. Three groups of MAPKs have been characterised and
were initially thought to respond to distinct signals. These include the ERK, JNK and p38
kinases; each of these is a “common name” for groups of highly similar proteins, encoded by
small gene families. However, as the interest and knowledge in the molecular mechanisms that
control these pathways grew, two issues have emerged: (i) a single pathway is capable of medi-
ating opposing effects as seen with extracellular signal-regulated kinase (ERK) mediating either
the differentiation or the division of PC12 cells [11, 12] (ii) Some of the responses the pathways
triggered can overlap, with different MAPKSs converging to mediate the same cellular responses
in the same cell [13-15]. Furthermore, accumulating evidence showed that the MAPK path-
ways function as a network connected at different levels of the kinase cascade. Nonetheless,
given this complexity, cells maintain high fidelity to the initial signal and respond efficiently. It
is believed that properties arise from the activation behaviour of the pathway such as the signal
magnitude, ultrasensitivity and oscillation. These thought to be influenced by the spatial and
temporal aspects of MAPK pathway activation.

Temporal regulation of the MAPK pathway affects the cascade’s dynamics. It is also thought
that the signal dynamics such as the magnitude of the response, duration and oscillation play a
role in specifying the cellular outcome. For instance, it was long reported that sustained and
transient activation of ERK caused quiescence and proliferation, respectively in Swiss 3T3 cells
[16], PC12 and yeast cells [17]. In addition, high response magnitude enabled cell arrest while
moderate magnitude had facilitated proliferation as seen in mouse embryonic fibroblasts
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Fig 1. A schematic representation of the MAPK cascade and its activation mechanisms. The MAPK
pathway is composed of three levels. The signal is transduced through phosphorylation events where
mitogen activated protein kinase kinase kinase (MAP3K, also known as MAPKKK) phosphorylates mitogen
activated protein kinase kinase (MAP2K, also known as MAPKK) leading to its activation and thus the
phosphorylation and activation of the mitogen activated protein kinase (MAPK). Active MAPK phosphorylates
protein targets in the cytoplasm and the nucleus. For mediating nuclear events MAPK translocates to the
nucleus where it phosphorylates many proteins, which control gene expression.

doi:10.1371/journal.pone.0156139.g001
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(MEFs) [18, 19]. Oscillation in particular is thought to play a significant role in facilitating the
specificity of the signal as the frequency and amplitude of the waves could encode for specific
aspects of both gene transcription and translational changes. Oscillation is thought to emerge
from regulatory mechanisms, which modulate the cascade input and output. Oscillations were
observed previously in calcium signalling and in the NF-kB pathway; however, this was only
recently reported in the MAPK pathway [20, 21]. Nevertheless, oscillation in the MAPK path-
way was predicted and demonstrated before using in silico models [22]. These models had pro-
posed that regulatory machineries may involve feedback loops. The majority of the models had
shown that negative feedback loops are chiefly responsible for the emergence of the oscillatory
behaviour. Some models also propose that the interplay between positive and negative feedback
is fundamental to generate signals that code for specific responses [23-26]. These oscillatory
behaviours are suggested to be responsible for allowing the cell to choose to proliferate, go into
senescence or differentiate. Some suggest that they may play a role in synchronising the
responses of multiple cells to a signal mirroring the circadian rhythm [27].

The spatial distribution of the MAPK pathway is critical to generating specific responses.
The first indications for this were coming from contrasting responses observed between
nuclear and cytoplasmic ERKs triggered by the same stimulus. In fibroblasts and embryonic
carcinoma cells, ERK activation and nuclear translocation caused proliferation. However, by
preventing ERK translocation these cells became senescent and differentiated, respectively [28,
29]. An impact of spatial distribution was also seen during the activation of the beta-adrenergic
receptors, which transiently activated ERK upon stimulation, which then translocated to the
nucleus to regulate gene-expression. However, with the internalisation of receptors to the
endosomal compartment, ERK activation becomes sustained and its action is confined to the
cytosol. Also, Teis et al. have shown that there are separate pools of ERK in the plasma mem-
brane and the endoplasmic reticulum and both of them mediate distinct actions. Depleting the
endoplasmic reticulum (ER)-ERK pool led to an altered activation/inactivation dynamics of
the pathway. Once the endoplasmic reticulum (ER)-ERK pool was demolished/decreased the
effect disappeared and only returned with the re-introduction of the ER-ERK pool [30, 31].
Furthermore, in neuronal cells, the discrimination between the epidermal growth factor (EGF)
and nerve growth factor (NGF) signalling is also thought to be due to the different compart-
ments ERK resides in. Distinctive cellular responses were also observed when MAPKKs were
localised in different cellular compartments [32]. All of the above examples point to the critical
role of compartments and spatial separation in mediating specific responses of the MAPK
pathway.

In the work reported here, we were interested in characterising the interaction between spa-
tial and temporal parameters in the MAPK cascade and how these influence pathway activity.
We approached this by using an agent-based computer modelling approach, whereby every
key molecule and compartment were explicitly modelled. This high level of detailed modelling
provided an innovative basis for examining the role that compartmentalisation plays in MAPK
activation. The main purpose of the model was to explain why compartmentalisation is neces-
sary in order to achieve the various behaviours seen in biology. Less detailed modelling
approaches are unlikely to be as informative.

We characterised the effect of compartmentalisation on MAPK activation and how it influ-
ences the formation of phosphorylated MAPK, thereby providing a novel insight as the issue of
multi-compartmentalisation has not previously been highly addressed by in silico models of
the cascade. We compared two types of models; a two-compartment model (which commonly
used to study the cascade) and a novel, multi-compartment model. Our model shows that
multi-compartments play an important role in the emergence of oscillatory behaviour in the
MAPK cascade. In addition, we infer from the data that the balance between inhibitory and
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activating inputs at the level of the MAPKK is critical for the appearance of oscillation in the
system. Our ABM model suggests a fruitful strategy of integrating spatial and temporal regula-
tion of the MAPK pathway and their influence on oscillation, and thus on signal specificity and
efficiency.

Results
Agent Based Models of MAPK Activation

We have constructed two models of the MAPK pathway in order to address the effect of com-
partmentalisation of the MAPK components on pathway activation (Fig 1). The first model
mimicked a two-compartment system, including the cytoplasm and the nucleus. The second
model incorporated a multi-compartment system including the nucleus (with identical proper-
ties as compared to the two compartment model), cytoplasm, and ten randomly located cyto-
plasmic compartments. The two models share a number of common features. They both rely
on binding events as the key factor to drive them. Agents move spontaneously and follow
Brownian motions with few restrictions (read the agents descriptions in Methods). Both mod-
els are set and constructed in a three dimensional spherical cell as shown in Fig 2C. All agents
cycle between activated and deactivated states, all the MAPKK are subjected to deactivating
inputs (mainly RADP) and there is no loss of agents or re-creation of agents in the system. The
working mechanisms of both models are equivalent. Briefly, pMAPKK activates MAPK leading
to the formation of pMAPK, which translocates to the nucleus. Once translocated to the
nucleus, MAPK could interact with active exporting receptors (ExR) and removed from the
nucleus (Fig 2A and 2B). Alternatively, pMAPK can interact with an active transcription factor,
which triggers MAPK-dependent gene expression.

Simple rules were assigned to the agents in both models (S1 File). These rules specified the
agents’ movement and the manner in which they interacted amongst themselves and with their
environment. The execution of the rules depends on the functions assigned to the agents and
the agents’ memory. Agents’ memories are stored and regularly updated with every state transi-
tion of the agents and with every model iteration. A list of the memory components, messages
and functions of each agent are listed in S1 File.

Communication between the agents was achieved by the use of messages. The messages
were inputted and outputted using the agents’ functions. The messages were stored in the mes-
sage board (Libmboard) and each agent accessed and read messages needed for the interaction
with its interacting partner. Agents went through state transitions and the memory parameters
were updated once the messages were read and the functions were performed. The physical
interaction between the agents and the different agent states (DAS) were determined by assign-
ing an interaction value. Once the interacting agents and the DAS were within the specified
proximity, interaction between the agents and/or DAS occurred.

We also examined the effect of pMAPKK availability for the interaction with MAPK and
how these also influence the dynamics of pathway activation. Two scenarios were modelled by
introducing the parameter re-activation delay period (RADP, Fig 2D): an activation by strong
stimulus vs weak inhibition of the signal at the level of MAPKK (when RADP < 15 min) and
activation by a weak stimulus vs a strong signal inhibition at the level of MAPKK (when
RADP > 15 min). Further details on RADP will be discussed below.

Calibration of the ABM

A critical parameter of pathway activation dynamics is the time to elicit E,,, of MAPK activa-
tion. In order to calibrate our ABM model, 63 experimental data points from 34 publications
reported on MAPK activation time (E,,,,) were extracted from the published literature (S1 File)
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Fig 2. Graphical representation of cytoplasmic and nuclear events in the two-compartment and multi-
compartment agent-based models (ABMs). The basic two dimensional design of the two and multi-
compartment models of the two tier MAPK pathway represented using Systems Biology Graphical Notation
(SBGN) standard annotations. (A) lllustrates the design of the two-compartment ABM whilst (B) describes the
design of the multi-compartment ABM. Details of the two model design, structure and functionality are
provided in the Materials and Methods section. (C) A three-dimensional (3D) visualisation of both the two-
compartment vs. the multi-compartment model. The right hand side of both 3D representations is a 3D cross
section of the “cell”. The cytoplasm is represented by the grey space around the nucleus. Inside the
cytoplasm green spheres are MAPK, red spheres are pMAPKK, violet spheres are MAPKK, within the
nuclear space, black spheres are pMAPK agents, dark blue are ExRs and light blue are dExRs. (D) Modelling
the Re-Activation Delay Period (RADP) in the ABM: once pMAPKK agents change state into MAPKKSs, they
become dormant for period of time, and once this dormancy period is passed MAPKKSs are re-activated.
RADP was modelled either stochastically (1) or deterministically/periodically (Il). In the stochastic model (1),
RADP (X) was generated randomly for every individual pPMAPKK agent, where X was a value between 0 and
the chosen maximum value n (X ~ N ([0, n])). Periodic RADP was always identical for every MAPKK formed
(RADP =n).

doi:10.1371/journal.pone.0156139.g002

and analysed as shown in Fig 3A. The statistical analysis of this data revealed that the values
were not normally distributed Fig 3A. In contrast, 21 E ., values from in silico models within
these studies were normally distributed (Fig 3B). Therefore, the median time for maximal acti-
vation (7.63 min) was calculated from the experimental dataset and used to calibrate our model
and to convert the time-step in the ABM into time values.

Sensitivity Analysis of the ABM

We tested the robustness of our models similar to approaches reported in previous studies of
modelling MAPK signalling [33]. First, the two-compartment and multi-compartment models
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Fig 3. Analysis of MAPK activation dynamics observed in vitro in the published literature. 84 MAPK
activation dynamics values were collected from published literature and the time to achieve E,,x were
plotted. A whisker plot with the median values are presented. (A) 63 in vitro data points from the analysed
data were selected, plotted and analysis for normality was conducted. D'Agostino & Pearson omnibus
normality test showed that the in vitro data for MAPK activation dynamics were not normally distributed

(**: p<0.01). (B) 21 In silico data-points were extracted from the above literature and normality analysis was
performed as for (A), demonstrating that the in silico data was normally distributed.

doi:10.1371/journal.pone.0156139.g003

were run multiple times (n = 3) and the number of each species of agents were plotted at set
time points for the individual runs (Fig 4A and 4B). Analysis of the standard deviation of the
active MAPK species (pMAPK and pMAPKK) demonstrated that the models were robust.
Whilst SD in the two-compartment model was low for both pMAPKK and pMAPK (SD
PMAPK <3.3%, SD MAPKK <2%), SD for pMAPKK in the multi-compartment model were
greater (1.5-37%). However, SD for pMAPK was <2.5% at every time point, suggesting that
such variation in pMAPKK levels is “tolerated” by the system, leading to a highly robust path-
way activation. Next, the number of initial MAPKK and MAPK agents have been altered by
20% in the multi-compartment model, and MAPK and pMAPK agent numbers were plotted at
set time points in three consecutive runs (Fig 4C and 4D). Variation between runs at each time
point was < 5%, further suggesting that our models were robust. Finally, the impact of altered
MAPK or MAPKK levels on the dynamics of MAPK activation was analysed. Time to achieve
PMAPK E, .. and ECs, were determined in each of the models and conditions in Fig 4A-4D
and one-way ANOV A was used to establish the impact of altered initial MAPK and MAPKK
levels on the generation of pMAPK and pMAPKK (Fig 4E-4H). In short, alteration of MAPKK
and MAPK levels did not affect MAPK and MAPKK activation dynamics, further supporting
that our model was robust and insensitive to up-to 40% in initial agent numbers.

Compartmentalisation Is Responsible for the Rapid Responsiveness of
the MAPK System

We implemented two models to investigate the effect of compartmentalisation on MAPK path-
way activation. In the initial, two-compartment model (as described in the Methods), the
MAPK and MAPKK agents were moving freely in the cytoplasm. We investigated the
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Fig 4. Robustness and sensitivity analysis of the ABM models. The basic two compartment (A) and multi-compartment models (B) were run multiple
times (n = 3). (A) The graph shows a run of the complete two compartment model in the presence of constitutively active MAPKK agents and the
emergent kinetic behaviour of pMAPK and MAPK agents. The graph shows the interaction between pMAPKKs and MAPKSs until the level of pMAPKs
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data points for each run and the mean of the values are plotted. (C-H) Sensitivity analysis of the multi-compartment ABM to examine model sensitivity to
manipulation of initial agent numbers. The number of each agent was altered by +20%, compared to the control model. The number of pMAPK (E, F) and
pMAPKK (G, H) agents were plotted. Time to achieve both E,,x and EC5, were determined under each condition and the analysis of variance (ANOVA)
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doi:10.1371/journal.pone.0156139.g004
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dynamics of the formation of the pMAPK in this model with the ratio between MAPKK and
MAPK set at 1:1 and MAPKK being in a constitutively active state; this was to reflect a strong
and sustained activation signal, similar to the oocyte system Ferrel investigated as a model of
irreversible pathway activation [34]. As shown in Fig 4A, the levels of activated MAPKK in the
system hardly changed over time in this configuration, resulting in a sharp formation of
PMAPK and a rapid achievement of equilibrium. However, an initial lag-period of pMAPK
accumulation (/94 seconds (s)) was observed. Interestingly, an equilibrium of 1:2 MAPK to
PMAPK ratio was established in the two-compartment model, different from ordinary differ-
ential equation (ODE) models that are based on Ferrel’s original MAPK pathway model.

Next, a multi-compartment model was constructed to elucidate the impact of spatially
restricted MAPKK/MAPK complexes on the dynamics of pMAPK formation. To simulate
physiological conditions of resting cells in this model, the majority (95%) of the MAPKK
agents were not active and the majority of the MAPK agents were not phosphorylated/acti-
vated initially. A model included an activation signal at 0 time point with MAPKK remaining
active; this resulted in a system which was highly sensitive to activation with a rapid rate of
PMAPK formation (= 11.5 + 0.4% of MAPK was converted to pMAPK per min), and thus a
rapidly reaching equilibrium. In addition, in the multi-compartment model 98 + 0.2% of
MAPK was converted into pMAPK and translocated to the nucleus (Fig 4B). In contrast, the
two-compartment model had generated a less sensitive system, where only ~ 82.4% * 0.2% of
MAPK molecules were converted to pMAPK per min. Furthermore, levels of pMAPK gener-
ated were lower in the two compartment model and only a 70.3 + 2.2% reduction in cyto-
plasmic MAPK levels once the system had fully triggered (Fig 4A).

However, due to the constitutive activity of MAPKK, particularly in the multi-compartment
model, the levels of MAPK did not return to the initial values. Thus we modified our model to
address this and describe its results below.

MAPKK Re-Activation Delay Influence Dynamics of pMAPK Formation
in a Multi-Compartment Model

In cells, activated MAPKK is deactivated by phosphatases [35, 36]. Thus the balance between
activation and inactivation relies on the number of active p MAPKK molecules versus inactive
MAPKKSs, which is influenced by the rate of phosphatase activity. To address this issue in the
ABM model, a re-activation delay for MAPKK was introduced. Once pMAPKK interacts
with MAPK it enters a dormant state where it is not capable of activating MAPK and this
period of inactivity is defined as the re-activation delay period (RADP). The effect of re-acti-
vation delay was modelled deterministically and stochastically. Initially, different RADPs
were investigated and systems behaviour in stochastic vs. deterministic models were com-
pared. Stochasticity of RADP values were analysed, employing one-sample runs test. First,
RADP values were collected for five independent MAPKK agents during a model run. Sec-
ondly, RADP values were collected for the same MAPKK agent during four independent
runs of the model (individual RADP values are presented in S3 File). In both scenarios, the
one-sample runs test yielded p>0.05 for every agent/run, demonstrating that RADP values
were stochastic.

Atlower RADPs (0 < RADP < 90 (s)) the MAPK system retained its rapid activation rate
and high level of pMAPK formed in both deterministic and stochastic models (Fig 5A vs. 5B).
In contrast, at slightly longer RADPs, the deterministic model showed graded responses during
the initial activation phase (Fig 5B vs. 5D). These graded responses were also observed in the
stochastic models with minimum stochasticity (for instance, 4.38 < RADP < 4.53 min, S1
Fig); hence the models closely resembled the deterministic models.
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Fig 5. The effect of delaying MAPKK re-activation on the dynamics of MAPK activation and MAPKK
levels. Once pMAPKK agents bind and activate MAPKs to pMAPKs, pMAPKKSs convert to a dormant state
(MAPKK). The length of this dormancy period was set and its effects on the levels of pMAPK, MAPK,
pMAPKK and MAPKK were monitored. In (A) and (B) the re-activation delay period (RADP) was set at a short
period (0 < RADP < 90 s), while in (C) and (D) RADP was set to an intermediate period (0 < RADP < 4.53
min); in (E) and (F) RADP was set to a the highest range of the intermediate period (0 < RADP < 7.55 min);
while in (G) and (H) RADP was set to long periods (0 < RADP < 22.6 min). The figures on the left hand side
were stochastic (where the RADP was set stochastically within the specified delay period every time
pMAPKK switched state to MAPKK); while models on the right hand side were deterministic (where MAPKK
returns to the active pMAPKK state after a fixed period.

doi:10.1371/journal.pone.0156139.g005

Models with longer RADPs and at maximum stochasticity (0 < RADP < 7.55 min) gener-
ally retained their ability to generate high levels of pMAPK (93.9 + 1.7% reduction of MAPK
levels at E,,,x compared to to, S2A Fig), though the rate of activation decreased and the time to
achieve E,,x increased from 6.24 + 1.3 min to 26.7 + 6.9 min (Fig 5E and S2B Fig). However, if
the RADP was fixed to create a deterministic model (RADP = 7.55 min) or one with minimal
stochasticity (7.53 < RADP < 7.55 min), the graded responses observed earlier evolved into an
oscillatory behaviour (Fig 5F).

In a stochastic model of RADP, when the RADP was >15 min and when E, ., was reached,
the levels of inactivated MAPK had fallen by 47.4 £ 3.9% (from 100% at t, and compared to
~95% reduction in MAPK levels observed in the other models we presented here, S2A Fig).
Although this is a significant reduction, the levels of MAPK were still higher than the ECso,
and did not reach 5% of MAPK levels at t, (Fig 5G). Nonetheless, this model still demonstrated
a level of responsiveness, which had arisen from the ability of extremely low levels of MAPKK
agents to maintain a high level of pMAPK in the model. In contrast, the deterministic models
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with RADPs higher than 15 min, the graded dynamics of pMAPK formation evolve into sus-
tained oscillatory behaviour (Fig 5H).

In these multi-compartment models of re-activation delay, although increasing the RADP
led to lower steady state pMAPK levels (Fig 5F-5H) and reduced MAPK: pMAPK ratio, neither
of them were capable of re-establishing the levels of MAPK and pMAPK at t,. Nonetheless, in
deterministic models, ty MAPKK levels were re-established once RADP was set at > 7.55 min.
On the other hand, this behaviour was only seen at long RADP in the highly stochastic models
(data not shown).

Alterations in RADP Fail to Display an Oscillatory Behaviour and to
Regulate pMAPK Formation Dynamics in a Two-Compartment Model of
the MAPK Cascade

Next, the re-activation delay characteristics of MAPKK were tested in the two-compartmental
model. In these, neither stochastic nor deterministic models of MAPKK RADP (Fig 6A, 6C
and 6B, 6D respectively) produced an oscillatory behaviour for pMAPK formation dynamics
and there was no significant difference between the two models with regards to pMAPK forma-
tion, MAPKK activation and re-established MAPK levels. This was seen both at RADPs < 5
min (Fig 6A and 6B) and RADPs > 15 min (Fig 6C and 6D). Furthermore, whilst introducing
the RADP into the two compartment model did not induce oscillation, the model still main-
tained the characteristic graded MAPK activation dynamics for both MAPK and pMAPKK
(~60 min to reach E,,5).

Signalosome clusters have been reported previously, including lipid rafts and Ras nanoclus-
ters [37]. In these signalling apparatus at the plasma membrane (such as rapidly accelerated
fibrosarcomal [RAF1] and rat sarcoma [Ras]) are brought together into a very close proximity
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Fig 6. The effect of MAPKK re-activation delays on the dynamics of pMAPK formation and pMAPKK
levels in two-compartment system. The re-activation delay characteristics of P MAPKK (red) were applied
to the two-compartment ABM and the effects were monitored. Initially the effect of a deterministic versus a
stochastic model were looked at. In (A) and (B) short RADPs (0 < RADP < 90 s) were tested, (A) was the
model with stochastic RADP while (B) was the model with deterministic/periodic RADP. There was no
significant difference between the graphs generated by either ABMs when the analysis of variance (ANOVA)
was used. However, both of the models had generated lower activation rate and formation of pMAPK (brown)
and pMAPKK (violet) in comparison to the multi-compartment system. The graphs in (C) and (D) were
generated with long RADPs (0 < RADP < 22.6 min), pMAPK formation, pMAPKK and MAPK (green)
activations patterns were similar to those with short RADP seen in (A) and (B). Unlike multi-compartment
models, deterministic models with intermediate or long RADPs did not generate any oscillatory pattern.

doi:10.1371/journal.pone.0156139.g006
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and randomly assemble and disassemble [38, 39]. This concept was applied by changing the
multi-compartment model to a model with assembled signalosome clusters at the arrival of the
activating signal; these clusters then disassembled and the signalosome components diffused
into the cytoplasm by Brownian motion. The impact of signalosome cluster model was tested
with both the deterministic and stochastic models and with long and short RADPs. This led to
a two-phase response, an activation “turn on” phase and a tailing-oft “shut-down” phase.

Looking at pMAPK formation dynamics as a surrogate of pathway activation, there was lit-
tle difference between the stochastic (Fig 7A and 7C) and deterministic models (Fig 7B and
7D) as well as between the models using short or long RADPs (Fig 7A and 7B vs. Fig 7C and
7D, respectively). MAPKK-MAPK cluster formation led to a rapid accumulation of pMAPK,
however, this was short lasting as MAPK levels were gradually reduced with cluster disassem-
bly. The four models demonstrated a strong ultrasensitive response in the initial phase of acti-
vation of MAPK. However, ultrasensitive response for MAPKK was only seen in the short
RADP models, while appearing to be graded in the long RADP models.

The primary differences observed between the different MAPKK-MAPK cluster models
included the magnitude of pMAPK generated within the initial phase of MAPK activation. At
Emax Of the stochastic RADP model (RADP < 90 s) 60% of MAPK were activated in the initial
phase. Long RADPs did not show high responsiveness and thus resulted into lower pMAPK
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Fig 7. pMAPKK and pMAPK levels and rate of activation are significantly enhanced in the two
compartmental model in the presence of signalosome clusters though with no significant difference
between deterministic and stochastic re-activation delay (RADP) models. Deterministic and stochastic
models of MAPKK RADPs were tested again in the two-compartment ABM, in the context of assembly and
disassembly of pMAPKK-MAPK signalsome clusters. In both models the presence of the clusters caused a
rapid rate for pPMAPKK (red) activation and pMAPK formation (green). This observation shares similarity with
the multi-compartment system; however, only at the initial MAPK activation stage. Yet, these cluster models
differ with the multi-compartment model in three aspects; (1) the cluster model exhibits a two phase response
(activation [turn on] and deactivation [turn off/recovery] phases); (2) the recovery of MAPK (seen in the post-
activation phase of the signalosome cluster model) and (3) that high levels of active pMAPKK are incapable
of re-establishing high levels of pMAPK. In (A) and (B) short RADPs (0 < RADP < 90 s) were tested, (A) was
the model with stochastic RADP while (B) was the model with deterministic RADP (RADP =90 s). The graphs
in (C) and (D) were generated with long RADPs (0 < RADP < 22.6 min), where (C) stochastic RADP was
employed while (D) deterministic RADP was utilised (RADP = 22.6 min). The dynamics of pMAPK formation,
MAPKK and MAPK activations in the long RADP models were similar to those noted in the short RADP
models. Student t-test no significant difference in the responses generated by stochastic and deterministic
models of RADPs at long periods, except for the slightly higher pMAPKK levels in the deterministic model
once the steady state was reached. This also applies to the models with short RADPs, though the stochastic
models generate higher levels of pMAPK in the initial phase.

doi:10.1371/journal.pone.0156139.g007
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levels and low rate for MAPK activation/pMAPK formation (33% reduction for the stochastic
model and 40% for the deterministic model), though the stochastic model had shown a faster
rate of p MAPK accumulation.

When assessing MAPKK activation, all models applied to this compartmental setup estab-
lished maximum or near maximum pMAPKK levels at steady state, with short RADP models
generating slightly higher MAPKK levels. Deterministic models of RADP, however, showed
some graded responses in the initial phase of MAPKK activation (Fig 7(B) and 7(D)). Nonethe-
less, unlike the multi-compartment model, high levels of active MAPKK were not able to sus-
tain high levels of pMAPK.

The pMAPK Dynamics Obtained from the ABM Are Comparable to
MAPK Dynamics Observed In Vitro

We looked at formation of pMAPK in the ABM model and compared it to recently published
results by Shankaran et al. where they demonstrated the oscillation of pMAPK levels
experimentally [21]. Our ABM models show a good level of correlation with their in vitro
data, as demonstrated by statistical analysis of the dynamics of MAPK activation in the
experimental vs. ABM data. Their stimulation of cells with EGF showed a temporal dynam-
ics of pMAPK formation similar to that of the periodic RADP ABM model (RADP =22.6
min). Furthermore, when comparing the oscillatory behaviour shown by Shankaran and col-
leagues, the ABM model matches several features in the pMAPK response. Both Shankaran’s
data and the ABM model show similar “turn off” dynamics for all the oscillatory waves and
the maintenance of the oscillatory behaviour past the first response trigger. The ABM

(with 4.5 < RADP < 7.5 min) and some of the oscillatory behaviour in Shankaran’s paper
demonstrated graded responses while continuing to oscillate until the levels of pMAPK

were close to E,,x. We also noted similarities at the phase between the turn-on and turn-off
phase in the oscillatory waves. Both the ABM (when 6 < RADP < 23 min) and some of the
in vitro data at the initial response show some fluctuations in pMAPK levels before the

“turn off” phase. In our model, we observed that this was due to a second wave of MAPKK
activation which were either dormant or not in close proximity to bind to MAPK during

the initial wave of activation (Fig 5F and 5H). However, the small number of available
PMAPKK agents and their lengthy RADP hindered further activation of the recently avail-
able MAPKs.

The pMAPK dynamics seen in models including cluster assembly and disassembly were
also similar to the results obtained with compartmentalised MAPK signalling at the endosome
(S3 Fig). Lefkowitz had shown that a typical response of MAPK involving the endosome and G
protein-coupled receptors (GPCRs) are divided into two phases; a GPCR- and B-arrestin-
dependent phases. The GPCR-dependent phase was characterised by a rapid initial MAPK
activation followed by a rapid “turn-off” phase. In contrast, the second phase is endosomal and
B-arrestin-dependent and is characterised by slow activation and deactivation phases [40].
Activation dynamics of ERK (a target of the GPCR induced signalling) incorporated both the
GPCR- and B-arrestin-dependent responses. In Fig 7 and S3 Fig, the ABM produced two phase
MAPK activation response (a rapid activation at the initial phase followed by a slow deactiva-
tion phase). The deactivation phase was capable of lowering the levels of activated MAPK.
These characteristics produced by the ABM are similar to the endosomal MAPK activation
dynamics demonstrated in vitro by Lekowitz. This might suggest that the formation of signalo-
some clusters at subcellular compartments could generate signals comparable to those trig-
gered at membrane clusters.
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A Multi-Compartment Model Combined with Multiple MAPKK Re-
Activation Delay Periods (RADPs) Reveals that the Rate and Level of
pMAPK Formation is Influenced by MAPKK RADPs

Cells reside in a dynamically changing environment. A highly studied example of such
dynamic environments is development and/or differentiation. During somatogenesis, cells are
exposed to strong signals and potent feedback control mechanisms; both of which are periodic
and oscillatory in nature [41, 42].

The MAPK pathway is thought to be triggered during somatogenesis by fibroblast growth
factor (FGF) with ERK and dual specificity phosphatase gene Dusp4 both playing a role in this
process [43]. ABM was used to test system recovery and the reversibility of pMAPK levels once
Eax had been reached by replicating the dynamic changes in external signals that have previ-
ously been reported experimentally. This was implemented by employing a combined multi-
compartment model. In this model, a strong initial signal was applied which was then suc-
ceeded with a strong inhibitory response, followed by a model with a periodic activation of
MAPKK. This was achieved by combining three RADP configurations and merging them into
the multi-compartment ABM. Activation of the multi-compartment model was initiated with
a highly stochastic-short RADP model (0 < RADP < 90 s); this led to an accelerated rate of
PMAPK formation and a rapid reduction in MAPK levels (Fig 8, solid green line). Once the
steady state levels of pMAPK were reached, deterministic-intermediate RADP (RADP = 7.55
min) was switched on (Fig 8, solid blue line). This was to mimic a strong inhibitory signal capa-
ble of dephosphorylating and thus deactivating MAPKK. Once the lowest steady state levels of
both MAPKK and pMAPK were established, the model was switched to a stochastic-intermedi-
ate RADP model (0 < RADP < 7.55 min; Fig 8 with the solid dark lines). Switching to a deter-
ministic model with an intermediate RADP (strong and sustained inhibitory feedback) led to
reduced levels of P MAPK (ca. 50% of the maximum), while showing a very rapid inhibition of
MAPKK (ca. 95.9%). Behaviour of the stochastic model with an intermediate RADP demon-
strates that low levels of pMAPKK and a slow rate of conversion of MAPKK to pMAPKK were
capable of rapidly establishing high pMAPK levels and producing an ultrasensitive activation
behaviour.

Discussion

The dynamics of the MAPK pathway has been investigated widely using in silico models [33].
Since the publication of Ferrell’s first model of the pathway, many more models have been
reported. The majority of these papers predicted patterns and mechanisms in the pathway
which explained experimental observation(s) [44]. Some of the most influential studies include
the works of Levchenko who explained the contradictory experimental observations scaffold
proteins have on the activation of signalling systems and the work of Ferrell et al and Kholo-
denko which explored the effect of negative and positive feedback loops on system behaviour
[22, 45]. Levchenko’s model showed that scaffold concentrations in the cell are responsible for
these contradictions and that scaffolds have to be within a critical concentration in order to
enhance MAPK signalling [46]. Other models revealed that negative and positive feedback
loops are needed for the emergence of bistability and ultrasensitivity [24, 25, 47]. Furthermore,
the works of Sarma et al had predicted that based on the architecture and feedback mechanisms
of the MAPK pathway, the formation of phosphorylated species of ERK should exhibit oscil-
latory behaviour [23]. This was prediction was confirmed experimentally only recently
[21,48].

The most commonly used approach to model the MAPK pathway is to use ODEs to
describe the pathway and the reactions, which lead to the formation of the phosphorylated
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Fig 8. The effect of changeable input-output dynamics at the level of MAPKK on phosphorylated MAPK
(PMAPK) formation characteristics in a multi-compartment system. Using the multi-compartment model, the
MAPK pathway was run with different re-activation delay period (RADP) configurations to assess how switching
between different MAPKK dormancy periods affect the formation of pMAPK. This was done to resemble a cellular
system where a cell is initially faced with a strong, yet short activating signal, followed by the take-over of the
inhibitory mechanisms, which is subsequently succeeded by a moderate and persistent activating signal. This
simulation is similar to what cells are exposed to during somatogenesis. In the initial phase, a highly stochastic
model of MAPKK RADP (0 < RADP < 90 s) was used (green solid line), once pMAPK level reached its maximum
and was at equilibrium, the simulation was switched to deterministic-intermediate RADP model (RADP =7.55
min, solid blue line). Once the level of pPMAPK reached its lowest and was at equilibrium, the re-activation delay
was switched to a model with stochastic-intermediate RADP (0 < RADP < 7.55 min; solid black line). This
combination of the different modes of the MAPKK re-activation shows that once strong activation inputs of
MAPKK are substantially reduced, inhibitory inputs which cause the deactivation of pMAPKK for long periods are
capable of rapidly reducing the levels of pPMAPK. However, they are still not capable of re-establishing the initial
levels of MAPK seen at t as only 58.7% of t MAPK level was re-established. The final stage of the simulation
(solid blue lines), reflects that in a multi-compartment system, even with a high stochasticity for MAPKK activation,
a low number of active pMAPKK is sufficient to fundamentally increase and maintain high pMAPK levels.

doi:10.1371/journal.pone.0156139.g008

species at the three tiers. In our study, we used an agent based model (ABM) approach as it
enabled us to investigate system behaviour whilst also gaining an insight into the faith of indi-
vidual proteins, the physical interaction between them and their environment in addition to
the spatial parameters of the model. The latter is something unfortunately ODEs cannot
address [49-51]. In this ABM approach, a generalised model of the MAPK pathway had been
used. This was done for a few reasons. First, a generalised model would be able to investigate
effects, which could then be applied to specific MAPK pathways and thus more transferable
and testable in a number of experimental settings. Secondly, there is limited experimental
information regarding to MAPK compartment numbers, the physical interactions occurring in
them or the number of individual MAPKSs in each compartment and their impact on signalling.
Furthermore, a generalised MAPK pathway model integrates, to some extent, the influence of
other pathways into the MAPK signalling network (such as feedback loops).

Our ABM, as shown in Fig 2A is composed of the second and third tiers of the MAPK path-
ways. It allows MAPKK to become activated by an upstream stimulus, which in biological sys-
tems is transmitted via the first tier (MAPKKK) of the cascade. The model primarily relied on
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the physical interactions and binding properties between MAPKK and MAPK and was used to
study the impact of compartmentalisation and the inputs into the cascade (both inhibitory and
activating inputs) at the MAPKK level. The model implemented competitive inhibition and
sequestration interactions between MAPKK and MAPK, as described previously in several
experimental studies [52-54]. This was achieved by the change of state of pPMAPKK to a dor-
mant state once it activated MAPK. It has previously been suggested that competitive inhibi-
tion and sequestration-based-feedback between pMAPKK and MAPK play a role in the
dynamics of MAPK pathway and they are capable of producing ultrasensitivity and bistability
in the system and thus influence the cellular outcome [55].

The initial design of the model employed a system that contained very low competitive
cooperative inhibition and sequestration of the MAPKK. Similar to the majority of previously
published MAPK models, it involved two-compartments with the interacting species moving
around the “cytoplasm” in Brownian motion. However, this implementation of the ABM only
produced a graded activation response for the pathway. Increasing diffusion parameters in
ODE models has previously been shown to be responsible for decreasing reaction orders and
thus MAPK activation following Michaelis—Menten kinetics [56, 57]. Once diffusion parame-
ters are reduced, such as when seen in the presence of scaffold proteins, the reaction order had
increased, increasing the rate of phosphorylation and led to ultrasensitive MAPK response [46,
58]. In cells, if phosphorylated species were to rely only on diffusion to propagate the signal
downstream, an increased probability of phosphatase action would lead to the reduction of the
reaction rate [50, 59, 60]. However, in silico models show that this could be overcome by spa-
tially restricting phosphatases and kinases in the cell and consequently, the formation of local
pools leading to the localisation of the signal [61]. In the ABM, relying solely on Brownian
motion lowers the probability of direct interactions between MAPKK and MAPK species, and
even in the absence of phosphatases or inhibitory enzymes, pathway activation does not lead to
strong ultrasensitivity. This behaviour matches well with findings reported in the ODE-based
and experimental studies discussed above.

The introduction of multi-compartmentalisation in previous studies led to ultrasensitive
response as well as oscillatory behaviour in the system. Legewie et al, Ortega et al and Qiao et al
demonstrate that variations of parameters have an effect on the final response of the system
and their variation might be responsible for distinct outputs [53, 56, 62]. They also show that
only few of these parameters are capable of generating bistability and/or oscillation. However,
they highlight that all of this hinges on phosphorylation cycles, and that the main contributors
to these effects are the small numbers of regulatory molecules in the pathway. Our ABM shows
that varying the input parameters at the level of MAPKK is capable of producing two distinct
responses to a signal; nonetheless, it also demonstrates that compartmentalisation as well as
mode of the output at the level of the MAPKK could play an important role for the generation
of ultrasensitivity and oscillation.

In the ABM that included multi-compartments, a prominent ultrasensitive response
emerged. This occurred in the presence of competitive inhibition and even when sequestration
interaction between the pMAPKK and MAPK species was high (when RADPs > 15 min, Fig
5@G). In a model where the RADP was stochastic, the rate of the phosphorylated MAPK species
formation and thus the magnitude of the MAPK response had only significantly decreased
when RADP > 8 min (S2A Fig). This is interesting as it was shown experimentally that
PMAPK magnitude play a role in the specificity and fidelity of the MAPK pathway [38, 55].
This also implies that compartmentalisation could play a role in allowing for fidelity to a
response regardless of the strength of input at the level of the MAPKK.

Oscillation in the MAPK pathway is strongly linked to negative feedback loops; though
there is also a realisation that balance between positive and negative feedback is fundamental
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as these are being shown both in vitro and in silico [21, 24, 63]. Several modelling approaches
showed that the outcome of feedback loops differ depending on the mode of the feedback
applied. Moreover, the position of these feedback loops within the cascade’s three tier architec-
ture influence the output and hence the behaviour of the cascade [23-25]. In the model pre-
sented here, balance between negative and positive feedback loops were taken into account by
relying on the final output of inhibitory versus activating inputs from feedback loops at the
level of MAPKK. This was implemented by the introduction of the re-activation delay periods
(RADP). The model shows that when RADPs were deterministic (i.e. periodic), oscillatory
behaviour emerged; in-line with previous observations which illustrate that once strong nega-
tive feedback loops were applied, oscillation was generated. In the ABM, the frequency of the
oscillation and the amplitude were both influenced by RADPs. This is interesting as it was
shown experimentally that frequency and amplitude of phosphorylated ERK influence the
expression of specific genes such as c-Fos [20, 64]. It has also been proposed that oscillation
might be a mechanism by which MAPK signalling is restricted to the cytoplasm as the fre-
quency and amplitude would affect the MAPK targets in the cytoplasm [16]. The appearance
of oscillation within the multi-compartment model strengthens this argument. Compartmen-
talisation and the periodicity of input at the MAPKK level could act as a filter and/or modula-
tor for localised responses. Compartmentalised MAPK targets would be directly available to
interact with phosphorylated species of MAPK, however, if there are multiple targets, their
ability to react differentially to the same input signal (i.e. de-coding capabilities) would specify
a hierarchy of interactions within the compartment and therefore control the development of
the specific response.

Our results presented above demonstrated that with long periodic RADPs, oscillation
becomes sustained; this is consistent with previous observations that sustained oscillation
appear in models which also exhibit ultrasensitivity and strong negative feedback inhibition.
However, the ABM also shows that periodic MAPKK activation and multi-compartmentalisa-
tion are essential for sustained oscillation to appear. Previously, oscillation was described as a
random process, which could emerge in the absence of regulatory mechanisms, yet the ABM
demonstrated that altering the periodicity of RADP at the level of MAPKK in a multi-compart-
ment model is integral for oscillation to appear. This was confirmed when the ABM was con-
verted to a two-compartment model and the effects of RADPs were re-tested (Fig 6). In
addition, oscillation emerged in a relatively simple model suggesting that for oscillation to
appear specific parameters need to be met [56, 57]. This might be plausible considering that
oscillation does not appear experimentally when a population of cells is monitored, yet, it can
be observed at the level of individual cells. This could suggest that the conditions required for
oscillation are more easily met at the single-cell level, compared to cell populations [21, 48].

Signalosome clustering at the plasma membrane has been reported previously [37, 65] and
was shown to contribute to MAPK cascade’s specificity and efficacy [66]. Chiu et al demon-
strated that Ras-nanoclusters could also be formed in cytoplasmic membranes [67]. However,
Tian et al and others proposed that plasma membrane Ras nanoclusters are essential for
MAPK activation and are major contributors to the rapid activation observed at the initial
phase of global MAPK activation response [39, 68, 69]. In addition, Inder et al suggested that
endoplasmic reticulum and Golgi Ras nanoclusters play a role in the differentiation of the
incoming signal and thus determining the response output [70]. On the other hand, the off
phase of MAPK activation is attributed to the disassembly of signalosome clusters, followed by
diffusion into the cytoplasm [60, 68, 71]. The ABM described here (Fig 7) demonstrates,
indeed, clustering of MAPKK and MAPK is responsible for the initial, robust activation of
MAPK and that the disassembly of these components is responsible for the characteristics of
the off phase.
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Considering that compartmentalisation is a fundamental property of the cell and compo-
nents of the signalosome are found inside of the compartments, the ABM reported here
strengthens the argument that plasma membrane clustering might not be the sole contributor
to signal efficiency and specificity and that compartments within the cytoplasm may be capa-
ble of mediating similar effects. Additionally, if both plasma membrane and cytoplasmic
membrane clusters contribute to MAPK activation, their combined effects should be syner-
gistic. This might be a valid postulation considering that Ras clusters at the ER and Golgi
were experimentally shown to be triggered by Rafl, which could be triggered at the plasma
membrane [70]. Such combination of plasma membrane-originated and cytoplasm-origi-
nated activation of MAPK might also be a source for generating oscillation as cytoplasmic
clusters would re-trigger MAPK activation. Alternatively, if both plasma and cytosolic clus-
ters were simultaneously activated as reported in some MAPK systems [72, 73], in order to
generate the usually observed global MAPK response, strong negative feedback loops, insula-
tion and isolation mechanisms should be present at amplification points within the MAPK
system.

The ABM also showed similarities with other in silico models. As mentioned previously, in
silico models in general and ODEs in particular have been very insightful in explaining and
improving our understanding of signal transduction and signal processing. However, ODEs
are limited in modelling spatial constraints, and with them it is challenging to model individual
protein-protein interactions in multi-protein complexes. For partial differential equations
(PDEs) the limitation lies in the complexity of writing several mathematical expressions and
equations for every compartment and the corresponding equations, which allow those to
change over time. We choose to use the ABM as it overcomes these limitations and we have
validated our approach with previously published data obtained from ODEs and PDEs. Fur-
thermore, the ABM with periodic and long RADP shared similarities with the oscillatory pat-
tern of pMAPK vs. MAPK in a models published by Kholodenko et al, employing negative
feedback and competitive inhibition [22]; the latter is also an important characteristics of the
ABM. The periodicity of oscillations was also very similar between the two models. The graded
response, combined with oscillation seen at the initial activation phase generated by the ABM
with RADP = 4.5 min (Fig 5D); is similar to the dynamics of MAPK activation as demonstrated
by a Zhao et al in a model of the MAPK pathway using PDEs [74]. However, there were also
differences between the ABM and PDE models in the time frame of achieving E .. Addition-
ally, Zhao’s model had achieved a higher frequency and continuous oscillation at E, .., while
we did not see maintenance of high frequency in our ABM implementations.

The presented model contributes to a mechanistic analysis of the dual effects of spatio-tem-
poral regulation of MAPK pathways and suggests that ultrasensitivity and oscillation emerge in
the pathway as a product of coupled spatiotemporal modulation and that multi-compartmen-
talisation might be an important and integral factor for these behaviours to occur.

Concluding Remarks

In this study, we investigated the dynamics of MAPK pathway activation in both a two com-
partment- and a multi compartment-model. We showed that compartmentalisation has an
important effect on three aspects of pathway activation. The first is the magnitude of response
once the pathway is turned on, the rate by which the system reaches equilibrium and recovers
from the initial activation and finally how oscillation at the level of MAPK/pMAPK could arise
by periodic activation of MAPKK coupled with compartmentalisation of pathway components.
Our models also demonstrated that in order to achieve levels of MAPK close to those at ty, the
MAPKK should be under moderate to high inhibitory feedback regulation. Additionally, the

PLOS ONE | DOI:10.1371/journal.pone.0156139 May 31,2016 17/25



@’PLOS ‘ ONE

Multi-Compartmentalisation of MAPK Signalling and the Emergence of Oscillatory Behaviour

dynamics of MAPK activation obtained from the ABM model share many parallels with
observed MAPK dynamics both in vitro and in silico.

Methods

For the construction of the model, the agents were modelled as stream X-machines. There are
four components fundamental to X-machines, these are inputs, outputs, state memory and
functions. Inputs and state memory get processed by the X-machine using finite-functions.
Subsequently, the X-machine transition occurs. Transition functions map to a new X-machine
state and to an output. As a result, a new X-machine state is achieved with new sets of func-
tions. These new functions dictate the input accepted by the X-machine, the states the X-
machine could transform to, the functions and outputs associated with the X-machine.

To implement this, descriptions of the agents were written in Extensible Markup Language
(XML) while for the execution of the model the source code was written with C language. To
create the agents and run the model, Flexible Large-scale Agent Modelling Environment
(FLAME) framework was used with iterated time-steps [75-77].

Iterated time-steps were converted to minutes by first analysing MAPK activation patterns
reported in the literature from in vitro data. The times taken to generate E,,,,, response of acti-
vated MAPK species were calculated and the mean and mode values were determined from all
the graphs (Fig 2). The average time was 8.98 (min) + 5.08 (mean + SD) and the median was
7.73 (min). We opted for the median as statistical analysis shown that the data was not nor-
mally distributed. This time value was used to convert time-steps taken to generate the maxi-
mum response in the ABM model into minutes.

Initial Conditions and Basic Model Structure

Agent numbers. The number of the different components of the MAPK cascade
(MAPKK and MAPK) in the model at t = 0 was determined from protein concentrations
described by Huang et al and Chickarmane V et al [45, 78]. These concentrations were con-
verted to moles by adapting the average number of mean corpuselar volume of red blood cells
(=90 femtoliter) as the volume these proteins were present in (as they are mainly cytoplasmic).
Moles were then converted into number of protein molecules using Avogadro's number. See
Table 1 below.

This is where MAPKK activates MAPK leading to the formation of pMAPK, which translo-
cates to the nucleus. Once translocated to the nucleus MAPK could interact with active export-
ing receptors (ExR) in order to translocate out of the nucleus. This scheme is represented in
Fig 2A.

Table 1.

Agent name Number of protein agent molecules in the two Number of protein agent molecules in the multi-
compartment model compartment model

MAPKK (MAPKK) 0 100

phosph-MAPKK 500 20

(PMAPKK)

MAPK (MAPK) 500 0

phosph-MAPK (pMAPK) 250 500

ExR (active) 180 180

ExR (dormant) 180 180

doi:10.1371/journal.pone.0156139.1001
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Rules Governing Agents’ Behaviour

Simple rules were assigned to the agents in both models. These rules specified the agents’
movement and the manner with which they interacted with their interaction partners.

Agents’ Description

Both models contained the same agents were. The agents were separated into cytoplasmic and
nuclear species:

Cytoplasmic agents

MAPKK (MKK). MAPKK agent is found in two states, pMAPKK and MAPKK.
PMAPKK only interacts with MAPK agent. It reads locations messages of the different MAPK
agents, this allows it to determine the closest MAPK available for binding. pMAPKK sends
location messages and binding status messages to close by MAPK agents. Once confirmation
of binding availability is established between MAPK and MAPKK, binding occurs. This leads
to the change in pMAPKK state to the dormant MAPKK (MAPKK). MAPKK reverts back into
PMAPKK after a lag phase (the re-activation delay period, RADP). A RADP value assigned to
individual MAPKKSs and it becomes updated once MAPKK returns back to pMAPKK. RADP
value was updated either deterministically or stochastically (Fig 2E). For the deterministic
update, the value (for every MAPKK agent) was identical and it was the upper limit chosen for
any particular simulation. For the stochastic updating, RADP was set (for individual MAPKK
agent) randomly at a value between 0 and the chosen RADP upper limit. MAPKK moves by
Brownian motion. In the two compartments model, this movement is restricted to the cyto-
plasm, where MAPKK deflects off the plasma membrane and the nuclear membrane. While in
the multi-compartment model this movement is restricted to the individual compartment
boundaries.

MAPK (MAPK). MAPK interacts with a number of agents in the model. It sends messages
of its location and binding availability which are read by these agents. Once the binding avail-
ability become confirmed MAPK interact with the given agent. MAPK interacts with MAPKK
in the cytoplasm, and with ExR at the internal surface of the nuclear membrane. MAPK inter-
acts with pMAPKK leads to MAPK activation, change of status to pMAPK and the transloca-
tion to the nucleus. Once in the nucleus, pMAPK also interacts with ExR, this interaction leads
to the translocation of pMAPK back to the cytoplasm and/or its specific compartment in them
multi-compartment system; and the reformation of MAPK.

MAPK move by Brownian motion. However, the movements of the different states are dis-
similar. MAPK is restricted to move in the cytoplasm or within the boundary of its specific
compartment only. On the other hand, pMAPK are restricted to move within the cytoplasm.

Nuclear agents

Exporting Receptor (ExR). There are two states for ExR, an active (ExR) and inactive
(dExR). These two states are interchangeable. Exporting receptors are shifting between active
and inactive states and vice versa. Both receptors move around by Brownian motion, however
within the nuclear membrane. dExRs shift back to ExR after a lag phase (dormancy period).
ExR interacts with pMAPK. The ExR receives location messages from pMAPK, close ExR
respond by sending messages to closest pMAPK confirming the availability to bind. Once ExR
binds to pMAPK it changes state to dExR and triggers pMAPK translocation out of the nucleus
and status change to MAPK.
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ABM codes. The complete code of the ABMs presented in this study has been uploaded
on GitHub: https://github.com/MadinaJNR/Multi-Compartment-ABM-source-code-in-C-
programming-language-

Supporting Information

S1 Fig. RADP stochasticity modulation and its effects on MAPK activation dynamics. Sto-
chastic RADP configurations were tested by varying the RADP ranges in the multi-compart-
ment ABM. (A) RADP value was set to be generated within the following range 3.77 < RADP
< 4.55 min. At the initial activation phase minor oscillatory responses emerge. (B) Illustrates
the RADP configuration when the range was set at 4.15 < RADP < 4.55 min, whereby at the
initial MAPK activation phase sharper miniature oscillatory activity appears. (C) Demonstrates
a RADP configuration when the range was set at 4.38 < RADP < 4.55 min, there the miniature
oscillatory activity become more visible. This last RADP configuration is the least stochastic
due to its limited range for RADP re-setting value, thus the MAPK activation behaviour is anal-
ogous to the deterministic configuration where RADP = 4.55 min.

(TIF)

S2 Fig. Effects of stochastic RADP on pMAPK and MAPKK activation dynamics. (A) The
PMAPK levels with each RADP configuration were examined, when RADP was less than 7.55
min, there was no significant difference between pMAPK levels compared to the control run.
However, when RADP value was < 7.55 min, the level of pMAPK started to become signifi-
cantly lower compared to the control run, with 0 < RADP < 22.65 min, demonstrating a sub-
stantial significance. (B) Conversely, the time to achieve Emax appeared to be significantly
different when RADP was less than 22.63 min. (C) When the time to achieve EC50 was con-
sidered, only 0 < RADP < 22.63 min configuration illustrated a significant difference com-
pared to control run. (D) When the effect of the RADP configuration was examined in
relation to MAPKK, increasing RADP caused a significant reduction in the level of active
MAPKK. (E) The increasing RADP value prompted an increase in the time to achieve Emax
when RADP configuration was RADP < 22.65 min. (F) This was also reflected with significant
increase in the time to achieve EC50, yet, when RADP range was within 22.63 min the time to
achieve EC50 was significantly. This is due to the significantly small magnitude of MAPKK
generated in comparison to the contro. N = 3, one way ANOVA test was conducted to demon-
strate significance with *, ** and *** corresponding to p < 0.05, p < 0.001 and p < 0.0001
respectively.

(TIF)

S3 Fig. MAPK activation dynamics; AMB vs. experimental data. Relative pMAPK levels
were compared between experimental data, reported by Lefkowitz R] et al. [40] vs. our ABM.
Multiple t-tests were performed with Holm-Sidak corrections for multiple comparisons. No
significant differences were observed.

(TIFF)

S1 File. Detailed description of agent memory, messages and functions.
(DOCX)

S2 File. List of references used for calibration of MAPK activation in the ABM.
(DOCX)

S3 File. Examples of RADP values generated in the stochastic ABMs.
(XLSX)
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