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A B S T R A C T

The in vitro production of red blood cells and platelets is a groundbreaking technology that can—when opti-
mized—surrogate for donated blood cells, in total or in part. Here we discuss questions that may arise when the
technology is available, relative to safety issues (comprising both quantitative and qualitative parameters) and to
ethics, an item often forgotten in the debates so far.

1. Introduction

Hemoglobin (Hb) is a molecule that is extremely complex in terms
of biochemistry; this renders its engineered synthesis nearly impossible.
Animal Hb proved unsuccessful in binding iron to be delivered to
human tissues. Artificial oxygen (O2) carriers have been injected for
decades with— again—little success, and numerous complications
[1,2]. Recent hopes rely on a novel O2 carrier originating from a marine
worm. The process—termed HEMOXYCarrier™ (Hemarina, Morlaix,
France)—is based upon the great capacity of extracellular Hb extracted
from the marine worms Arenicola marina to satisfactorily restore tissue
oxygenation without leading to adverse events. This technology re-
volves around the hemoglobin found in the marine worm Arenicola
marina; its hemoglobin is very similar in structure to that found in
humans, but differs by its extra-cellular nature. As it is not contained
within red-blood cells, it is thus compatible with all blood groups.
Further, it is capable of binding 40 times more oxygen than human
hemoglobin. And last, it is 250 times smaller than human red blood
cells, allowing exquisite diffusion in vessels [3]. This Hb is assumed to
be neither allergenic nor immunogenic, according to the manufacturer.

For the past fifteen years, human red blood cells have been pro-
duced in vitro [4]; programs to produce human erythrocytes use diverse
sources, in particular: pluripotent stem cells (PSCs); embryonic stem
cells (ESCs); induced pluripotent stem cells (iPSCs); umbilical cord
blood (UCB); peripheral blood (PB); and hematopoietic stem/pro-
genitor cells (HSPCs), as reviewed in [5]. In vitro generated red blood
cells are now evaluated in clinical trials. There is the hope, at least

raised by investigators, that production can surrogate donated cells to
transfuse patients in need [6]; this raises a number of technical [7],and
also ethical,—issues that I discuss later on.

The availability of platelet components is even more difficult than of
erythrocytes, because of the short preservation time of around 5 days
(3–7 days, depending on the process and the level of safety wished at
22± 2 °C) [8,9]; 4 °C platelets are now made available for resuscita-
tion, and active bleeding emergency, protocols [10], but this tem-
perature does not suit preventive transfusion in persons at risk of
bleeding because of severe thrombocytopenia and also in patients
presenting with platelet dysfunctions. Several programs to generate in
vitro platelets suitable for transfusion programs have been launched
throughout the planet, with very little success so far, despite hopes; in
vitro generated platelets derive from: HSCs, HPs, iPS, ESCs, and im-
mortalized megakaryocytes (iMK), from cord blood (CB) or PB [11,12].
The in vitro production of platelets remains, however, very dis-
appointing in terms of quantitation; it is too early to evaluate quality at
this stage, despite some authors’ claims [13–15].

Questions relative to the clinical use of in vitro engineered red blood
cells and platelets are nevertheless largely similar, and can be chal-
lenged—in my personal view—in a SWOT analysis.

2. Strengths

The in vitro production of red blood cells and platelets is ground
breaking technology. Combined with another innovative technology,
i.e. the manufacturing of “universal” stem elements, it should allow for
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the production of blood cells lacking the most immunizing moieties and
represent a solution to solve situations of multi-immunization and
transfusion dead-ends [16,17].

While the latter would stand for universal blood, another issue is the
extreme individualization of blood cell manufacturing suited to rare
blood groups (absence of public antigens and/or the presence of private
antigens) [18,19].

On those grounds, in vitro production of blood cells would need to
be an exquisite personalized (transfusion) medicine.

3. Weaknesses

The in vitro production of red blood cells is possible and the pro-
duced cells proved safe in a preclinical trial [NCT0929266].
Recommendations have been made to move forward to an in-
dustrialized scale up 1 [20,21]. However, mass production is not-yet
achievable; this would require considerable investment and efforts.
Regarding platelets, this status is far from being satisfactorily achieved.

When available for clinical use, and contrary—in my opinion—to
what is frequently claimed (in position papers), the transfusion-trans-
mitted infectious risk is not completely overcome ; indeed, HSCs, iPS or
even ESCs may contain endogenous (retro)viruses that can, in theory,
be amplified with no regard to long-term outcome, especially as the
endogenous retroviruses are regarded as potential innate immune ma-
kers and are capable of self-protecting against foreign infections
[20,21] but their effect on a foreign body has never been considered to
the best of my knowledge and might, perhaps, be important, in spite of
the fact that no related pathology has been reported following allo-
genous stem cell transplantation. However, abnormal activation of
human endogenous retroviruses (HERVs) has been associated with
several diseases such as cancer, autoimmunity, and neurological dis-
orders [22]. Of important note, when pathogen reduction/inactivation
technologies are validated for clinical use for red blood cell con-
centrates, this concern may be reducedunless some viruses resist the
process.

Further, storage lesions—which appear to be responsible for a non-
negligible percentage of adverse transfusion reactions in recipients
[23–27]—would not be prevented; plastics, pipes, unnatural gas ex-
change, anticoagulants, buffers, temperatures, all differ from physio-
logical conditions stricto sensu and may each (or in combination) create
effects on the recipients’ vascular endothelial cells, on the recipients’
own circulating cells, and perhaps on tissues such as in the lung in case
of extravasation. This will have to be scrutinized further when pathogen
reduction/inactivation technologies are applied to red blood cells, as
this process may add its own storage lesions [28].

Next, an issue which is also barely addressed is the age of red blood
cells (this will be also the case for platelets when available); indeed, a
transfused blood component comprises virtually equal fractions of red
cells of each age from 1 day to 120 days, as present up in the donor’s
circulating volume. Each day, the expiring fraction, estimated to be 1/
120, is naturally eliminated; actually, a much larger fraction is de-
stroyed daily because transfused red cells do not survive as long as their
native counterpart [29,30]. By all means, however, it is expected that
the transfused component survives in a Gaussian pattern and does not
collapse abruptly because it is synchronized at the beginning (to avoid
an abrupt lack of oxygenation and also the release of toxins, such as free
Hb and iron). This would mean that, optimally, in vitro generated blood
components would be composed of a mixture of fractions of different
age; this is expected to complexify the production and quality control
processes.

Last, adverse reactions specific to those components are yet un-
known; a balance between a reduction of certain adverse reactions, e.g.
linked to immunological incompatibility, and the appearance of novel

ones is to be anticipated. As there is no specific new item to monitor,
this will then complexify hemovigilance and the surveillance of trans-
fusions [31].

4. Opportunities

When technically feasible the in vitro production of red blood cells
and platelets on a relatively large scale would be an option to maintain
a suitable inventory of blood components to face crises—such as an
epidemic outbreak as seen on different occasions (WNV, Chikungunya,
Zika, Dengue…) or a pandemic event such as recently seen with the
SARS-Cov-2 infection (COVID-19)—. This would also allow the main-
tenance of e.g. a safety inventory of group O, RhD negative (RH:-1),
RhC and RhE negative (RH:-2,-3,4,5) red blood cells. Contrary to the
situation exposed in a preceding section and referred to as a “Strength”,
that was relative to qualitative properties, this one would refer to
quantitative safety.

5. Threats

Disruptive technologies are mainly developed by and for in-
dustrialized countries, especially when they represent an immense fi-
nancial effort. Despite that, in theory, industries can prepare transfu-
sion grade blood components with in vitro generated cells and ship
them to clients i.e. blood transfusion services in remote countries. It is
obvious that the number of barriers is also immense to afford this
globalized activity at an affordable cost and within the accepted quality
range. Access to such engineered activity would likely increase the gap
between Northern and Southern countries, and oppose the ethical
principal of justice.

In Northern countries, this will further question the now accepted
model of Voluntary Non-Remunerated Blood Donation [32]. Will this
donation mode coexist with the industrial process? Will conventional
blood donation persist and under which governance? Would the de-
velopment of engineered blood components ease, or, on the contrary,
brake the development of the VNRD model in the South as wished for
by the WHO and the majority of NGOs, official bodies and blood
transfusion systems nowadays?

Further, what will be the economic model for accessing source cells,
i.e. progenitor cells (of any type)? Will “original” blood cells be pa-
tented, with benefits to the industry and likely not for the genetic owner
of the cell? In other words, who will own the in vitro generated cells?
Indeed, given that blood for transfusion purpose is now largely, though
with some debate, considered a public resource [33–36], plasma is
often considered a private one, that can be obtained from individuals
for a financial reward [37,38].

The disruptive technology of in vitro generated blood cells will also
certainly represent a paradigm change in transfusion medicine, through
the ownership or the public characteristic of blood.

6. Concluding remarks

Each of the alternatives thought of to replace human blood in
transfusion programs has merits and caveats, to solve either quantita-
tive or qualitative (phenotype) problems. Once problems are identified,
solutions might be found to render those processes applicable in the
routine. It is my personal opinion that solutions may be universal as
universality is the motto of each of the disruptive technologies con-
sidered; they must be universal to serve all interests, in economically
wealthy systems as well as in intermediate or underdeveloped econo-
mies, as it would be unacceptable to leave e.g. African countries
struggling with making a blood component inventory when the ethical
model of volunteer donation is destroyed. I am eager to see what so-
lutions are found by promotors of tomorrows’ transfusions, to make it
safe to beneficiaries and affordable to healthcare providers and tax
payers.1 20-21
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