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A powerful test of independent assortment that determines
genome-wide significance quickly and accurately

WCL Stewart1,2,3 and VR Hager1

In the analysis of DNA sequences on related individuals, most methods strive to incorporate as much information as possible,
with little or no attention paid to the issue of statistical significance. For example, a modern workstation can easily handle the
computations needed to perform a large-scale genome-wide inheritance-by-descent (IBD) scan, but accurate assessment of the
significance of that scan is often hindered by inaccurate approximations and computationally intensive simulation. To address
these issues, we developed gLOD—a test of co-segregation that, for large samples, models chromosome-specific IBD statistics as
a collection of stationary Gaussian processes. With this simple model, the parametric bootstrap yields an accurate and rapid
assessment of significance—the genome-wide corrected P-value. Furthermore, we show that (i) under the null hypothesis, the
limiting distribution of the gLOD is the standard Gumbel distribution; (ii) our parametric bootstrap simulator is approximately
40 000 times faster than gene-dropping methods, and it is more powerful than methods that approximate the adjusted P-value;
and, (iii) the gLOD has the same statistical power as the widely used maximum Kong and Cox LOD. Thus, our approach gives
researchers the ability to determine quickly and accurately the significance of most large-scale IBD scans, which may contain
multiple traits, thousands of families and tens of thousands of DNA sequences.
Heredity (2016) 117, 109–113; doi:10.1038/hdy.2016.33; published online 1 June 2016

INTRODUCTION

After performing a genome-wide inheritance-by-descent (IBD) scan,
researchers are often faced with the following dilemma: ‘Should I run
a time consuming simulation to get an accurate estimate of the
genome-wide corrected (that is, adjusted) P-value, or should I
approximate the adjusted P-value, which is quick but less powerful
(that is, conservative)?’ To understand why these two choices arise,
recall that under the null hypothesis of independent assortment, the
expected proportion of alleles shared IBD between two individuals
depends only on their biological relationship (Kong and Cox, 1997;
Kruglyak and Lander, 1998; Bacanu, 2005). As this expected propor-
tion increases among affected relative pairs at disease-related loci,
scanning the genomes of affected relatives for evidence of increased
sharing IBD has the potential to identify genetic factors that increase
risk for disease. However, measuring the strength of that evidence is
problematic because accurate adjusted P-values usually require com-
putationally intensive simulation because either the limiting distribu-
tion of the multi-marker IBD test or the multiple tests correction is
unknown, and because estimates based on theoretical approximations
are typically conservative and study-specific. The undesirable char-
acteristics of theoretical approximations are unavoidable because the
suggested thresholds (Lander and Kruglyak, 1995) are based upon
several unmet assumptions: fully informative matings, homogeneous
relationships among affected family members (for example, affected
sibling pairs (ASP)) and an infinite sample size (that is, the theory of
large deviations).

Gene dropping is arguably the most common approach for
estimating accurate P-values, but this approach requires specialized
and computationally intensive software like MERLIN (Abecasis et al.,
2002), Genedrop (Wijsman et al., 2006), Markerdrop (Thompson,
1994; Heath et al., 1997), Haplodrop (Stewart and Subaran, 2012),
Caleb (Greenberg, 2011) or Genehunter (Kruglyak and Lander, 1998).
Typically, the computational demands associated with gene dropping
(GD) include, but are not limited to, enumerating inheritance vectors,
identifying cut sets, computing pedigree likelihoods and finding
efficient peeling sequences. As many of these bottlenecks are intrinsic
to the computation for a single multi-marker IBD scan, analysis of
each simulated replicate (as opposed to replicate generation) often
consumes a larger fraction of the total time needed to compute the
adjusted P-value. In fact, when the analysis programs make use of all
of the available data (for example, EAGLET (Stewart et al., 2010;
Stewart et al., 2011, 2013; Kambhampati et al., 2013) and MORGAN
(Thompson, 1994; Heath et al., 1997)), the total computation time can
increase substantially. Thus, the conceptual simplicity of the GD
approach is often outweighed by its computational complexity—even
for modern IBD scans that typically contain a large number of small
(that is, computationally less complex) families.
Approximating the adjusted P-value is an alternative to GD.

Although this approach typically provides the answer immediately,
methods that approximate the adjusted P-value are often
study-specific (for example, affected sib pairs, affected cousin pairs,
grand-parent grand-child pairs and so on) and conservative owing to
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the fact that the underlying assumptions (for example, an infinite
number of markers with fully informative matings at each marker
(Feingold et al., 1993; Lander and Kruglyak, 1995)) are often
unrealistic. As those assumptions are routinely violated in practice,
the approximate adjusted P-value is upwardly biased and the power is
reduced. Furthermore, any test that uses the approximation approach
is sensitive to the degree to which those assumptions are violated (that
is, the test becomes increasingly conservative as the number of
markers decreases and/or as the informativeness of each mating
decreases).
Bacanu (2005) proposed DAR, an approximation method that

models marker-specific IBD statistics as an AR(1) autoregressive
process. This method uses a moment-based estimator of the correla-
tion between successive linkage statistics (as opposed to the maximum
likelihood estimator), and it also uses a mathematical approximation
to the tail probabilities of a bivariate normal distribution to estimate
the adjusted P-value. As we will show in Results, DAR works well
when the matings at each marker are fully informative (that is, when
the assumed AR(1) model is correct) and when the correlation is not
too close to one, but performance tends to deteriorate in more realistic
settings, especially as the amount of missing data increases.
To avoid the aforementioned drawbacks of GD and approximation

methods while simultaneously capitalizing on the strengths of the AR
(1) model (for example, speed and potentially accuracy), we have
developed gLOD—a new test for co-segregation that implements a
maximum likelihood estimate of correlation to permit rapid compu-
tation of accurate adjusted P-values. In the context of IBD scans
computed from dense single nucleotide polymorphism (SNP) data on
affected families, our test is robust to heterogeneous family structures
and missing genotype data. Furthermore, by exploiting the theory of
stationary Gaussian processes, we show (for the first time) that a
multi-marker IBD statistic (that is, the gLOD) has a limiting
distribution under the null hypothesis; both the gLOD and the
maximum Kong and Cox LOD (Kong and Cox, 1997) have the same
statistical power. Because of its speed and generality, and because
power is maintained, the gLOD should facilitate the analysis of any
large-scale multi-marker IBD scan, especially scans that contain
multiple traits, thousands of families and tens of thousands of DNA
sequences. Our proposed test and our high-speed simulator are freely
available from the web at: http://www.mathmed.org/wclstewart/
HOME/SOFT/soft.html.

METHODS
The maximum Kong and Cox IBD statistic (denoted by Kn,m) is defined as

Kn;m � max sgnðd̂tÞlog Lðd̂t ;Dn;mÞ
Lð0;Dn;mÞ

 !
: t ¼ 1; 2;y;m

( )
;

where m is the total number of markers of interest across the genome,
L(δ;Dn,m) is the Kong and Cox likelihood (Kong and Cox, 1997) and Dn,m are
the multilocus genotype and phenotype data of n affected families. For each
marker, the Kong and Cox likelihood is indexed by a single univariate
parameter, δ, which quantifies the departure from independent assortment.
The maximum likelihood estimate of δ is denoted by d̂. Now, because

log
Lðd̂t ;Dn;mÞ
Lð0;Dn;mÞ

 !
> 0 for all t;

and because mrow > d̂t is asymptotically normal with mean zero (under the
null hypothesis), it follows that Kn,m40 for large n and m (that is,
Pr(Kn,m40)→ 1 as n,m→∞). With this notation, our proposed test

(that is, the gLOD) is
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where the coefficients cm= (2 lnm)1/2 and bm= cm− ln(4π⋅lnm)/(2cm) ensure
convergence in distribution of Tn,m for large n and m. Furthermore, because the
Kong and Cox LOD rejects the null hypothesis when Kn,m4a∈ R+ the
rejection region for Tn,m is (cm[(2 ln(10)⋅a)1/2− bm],∞), and because cm[(2 ln
(10)⋅a)1/2− bm] is one-to-one and surjective (that is, ‘onto’) with respect to
these two rejection regions, Tn,m and Kn,m have the same statistical power.
To the best of our knowledge, our test Tn,m is the first multi-marker IBD

statistic with a known limiting distribution under the null hypothesis. In
particular, if z≡(z1,...,zm) is a stationary Gaussian process with zt~N(0,1), then
as m→∞, Berman (1964) showed that

Tm ¼ cm max ztf g � bm½ � ð2Þ
converges in distribution to F(w)= exp(− e−w), which, in accordance with the
Fisher-Tippett extreme value theorem, is also the limiting distribution if the zt
are independent.
As sgnðd̂tÞ 2 ln Lðd̂t ;Dn;mÞ � ln Lð0;Dn;mÞ

h i� �1=2
is asymptotically normal

with mean zero and unit variance under the null hypothesis, it follows that Tn,m
converges to Fas n,m→∞. However, the rate of convergence can be slow (that
is, the rate is no faster than 1/logm (Hall, 1979)), especially for modern
genome-wide linkage studies where the correlation between zt and zt+1 is
typically close to one. In practice, Fn,m (that is, the finite sampling distribution
of Tn,m) is quite far from F, and to accurately determine the significance of Tn,m,

one must again resort to simulation. However, because Fn,m is converging to
Fm, we can accurately estimate the adjusted P-value for large samples by
simulating from a distribution that is close (if not equal) to Fm. Moreover,
because Tn,m is just a simple function of normally distributed (but correlated)
random variables (as opposed to a computationally intensive function of
multilocus genotypes), our proposed approach for estimating the adjusted
P-value is roughly 40 000 times faster than GD.
To obtain realizations from a distribution that is close (if not equal) to Fm,

we use the parametric bootstrap (PB) (Efron and Tibshirani, 1993). For ease of
exposition, we restrict attention to a single chromosome with the under-
standing that the extension to k independent chromosomes (for example, the
entire genome) is straightforward. Under the null hypothesis, we assume that
the vector: fð2½ln Lðd̂t ;Dn;mÞ � ln Lð0;Dn;mÞ�Þ1=2g follows an AR(1) autore-
gressive model for t= 1,…,m. Thus, the log-likelihood function is:

logLðrÞ � �m

2
logð2pÞ � 1

2
logjSj � 1

2
z0S�1z;

where zt � sgnðd̂tÞ 2 ln Lðd̂t ;Dn;mÞ � ln Lð0;Dn;mÞ
h i� �1=2

and Σρ is the usual
variance-covariance matrix for an AR(1) process that depends only on the
correlation ρ. We maximize this log-likelihood to obtain the maximum
likelihood estimator–MLE(ρ), and for each realization z*, we use Equation
(2) to compute Tm*. Here, the asterisk superscript implies that the correspond-
ing random variable is realized from the PB procedure. Hence, the proportion
of replicates that exceed the observed value of Tn,m accurately estimates the
adjusted P-value.

DATA DESCRIPTION

To compare the type 1 error rates of our proposed test (gLOD) with
three competing methods, we simulated genome-wide equi-frequent
marker data for nuclear families under the null hypothesis of
independent assortment. We considered three scenarios: (i) each
family has four members, and each member provides complete
microsatellite data (CMD); (ii) only the ASP provides SNP data; and
(iii) a scenario (denoted MIX) that contains a mixture of nuclear
families of varying informativeness, with some families providing SNP
genotypes for every member, while other families have missing
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genotype data on one or both parents (see Figure 1 for a detailed
description of the pedigree structures that were used). Across all
scenarios, only offspring provided phenotypic data, and every family
contained at least one ASP.
Conceptually, the CMD scenario represents the ideal situation

where IBD information is completely known. In CMD, adjacent
microsatellites are separated by 5 centiMorgans (cMs), and each
microsatellite has 20 alleles. By contrast, the ASP scenario is intended
to represent the worst case. The MIX scenario falls somewhere in
between CMD and ASP. In the ASP, and MIX scenarios, SNPs are
separated by 1 cM for a total of 3484 SNPs across the genome. For
each scenario, we simulated 5000 replicates (via GD) with 400 families
per replicate, and for each replicate, we estimated the actual type 1
error using: (i) 10 000 PB realizations, (ii) a tail probability approx-
imation (denoted DAR) and (iii) the limiting Gumbel distribution
(GUMBEL). Finally, to demonstrate the utility of our proposed test
when applied to real data, we computed the gLOD from the genome-
wide dense SNP data of 422 type 1 diabetic families.

RESULTS

For each replicate and for each competing method: PB, DAR and
GUMBEL, we used GD to estimate the actual type 1 error, the absolute
bias from the nominal type 1 error, the standard deviation and the
root mean squared error. Results are shown for a nominal genome-
wide corrected type 1 error of 5%, but qualitatively, the relative
behavior of all three methods for 10% and 1% type 1 error rates is
unchanged (data not shown).
With the CMD scenario, where the autoregressive model is correct

because IBD information is known, we see that there is good
agreement (Table 1) between our proposed PB approach and DAR
(the tail probability approximation). This is expected because both
methods assume an underlying AR(1) model, and because both
methods yield virtually identical estimates of the autocorrelation
r̂ ¼ 0:83ð Þ, which is not too close to one. Note that type 1 error
estimates derived from the limiting Gumbel distribution (denoted
GUMBEL) do not depend on an estimate of the autocorrelation, nor
do they depend on an estimate of the finite sampling distribution.

Therefore, standard deviations and root mean squared errors are not
applicable for GUMBEL estimates of the type 1 error.
Although the AR(1) assumption is no longer correct in the ASP

scenario, it still provides a reasonable first-order approximation to the
distribution of normally distributed (but correlated) IBD statistics
across the genome. This is shown by the fact that, for a nominal
family-wise type 1 error of 5%, the PB estimate of the genome-wide
type 1 error is 4.31% (Table 2). Moreover, the approximation
provided by our PB approach is roughly 40 000 times faster than
DAR. Specifically, the simulation and analysis of a single GD replicate
in the ASP setting takes ~38 s on a 3.4 GHz processor. On the same
machine and in the same amount of time, one can simulate and
analyze more than 40 000 PB replicates.
As the DAR method also assumes an underlying AR(1) model, one

might expect to find similar performance between DAR and the
gLOD. However, the DAR-based estimate of the genome-wide type 1
error (3.69%) is less accurate than the estimate obtained by the gLOD.
This happens because the tail probability approximation and the
autocorrelation estimator in DAR are both sensitive to autocorrela-
tions near 1.0. As our PB approach uses maximum likelihood to
estimate the autocorrelation, it is less sensitive to autocorrelations near
1.0. For the ASP scenario, the autocorrelation as estimated by DAR is
0.991 and as estimated by the gLOD is 0.985. Furthermore, because
the genome length is fixed, the GUMBEL estimator of type 1 error is
also sensitive to autocorrelations close to 1.0, because high auto-
correlation is equivalent to a reduction in ‘effective’ sample size (that
is, the finite sampling distribution is far from the limiting Gumbel
distribution). For example, it is considerably more conservative in the
ASP scenario (genome-wide type 1 error= 0.12%) than it is in the
CMD scenario (genome-wide type 1 error= 3%).
In the more realistic scenario (denoted MIX), the data contain a

mixture of nuclear families with differing amounts of missing SNP
data and different sibship sizes. However, PB still outperforms both
DAR and GUMBEL (Table 3). In fact, because the theoretical basis for
the GUMBEL estimator is quite similar to the conservative approx-
imation first advanced by Kruglyak and Lander (1998), it is not

Ped-A Ped-B

Ped-C Ped-D

Figure 1 Pedigree structures (A–D) are shown, where individuals shaded in
black are both affected and genotyped, gray are genotyped only and
unshaded individuals are neither phenotyped nor genotyped. Each replicate
contained 400 families of type (A and D), or a mixture of types (A–D) in the
following proportions: 52, 23, 15 and 10 percent, respectively.

Table 1 Type 1 error for complete microsatellite data (CMD)

Competing

methods

Actual type 1

error

Absolute

bias

Standard

deviation

Root

MSE

PB 4.2 0.8 0.2 0.8

DAR 4.0 1.0 0.1 1.0

GUMBEL 3.0 2.0 NA NA

Abbreviations: MSE, mean squared error; NA, not applicable; PB, parametric bootstrap. The
nominal (that is, target) type 1 error is 5%. The PB approximation (bold) is closest to the
nominal error rate.

Table 2 Type 1 error for affected sibling pairs (ASP) Scenario

Competing

methods

Actual type 1

error

Absolute

bias

Standard

deviation

Root

MSE

PB 4.3 0.7 0.3 0.8

DAR 3.7 1.3 0.1 1.3

GUMBEL 0.8 4.2 NA NA

Abbreviations: MSE, mean squared error; NA, not applicable; PB, parametric bootstrap. The
nominal (that is, target) type 1 error is 5%. The PB approximation (bold) is closest to the
nominal error rate.
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surprising that the two methods yield similar type 1 error approxima-
tions. Recall that the Krugyak and Lander approach recommends
rejecting the null hypothesis when the uncorrected P-value is less than
2.2× 10− 5. For the MIX scenario, this recommendation equates to an
actual genome-wide type 1 error of 0.7%, which is quite close to the
GUMBEL estimates of 0.8% and 0.9% (Tables 2 and 3). For the MIX
scenario, the autocorrelation as estimated by DAR is 0.989, and as
estimated by the gLOD is 0.981.
It is not surprising (given the mathematical relationship between

type 1 error and power) that GD has slightly higher power than PB,
and that PB has slightly higher power than DAR and that all three are
considerably more powerful than GUMBEL. In terms of power, the
relative performance of all four methods remained unchanged for the
three instructive scenarios shown here, and for a wider range of trait
models and pedigree structures (data not shown). Because the null and
alternative distributions are fixed, any testing procedure that over-
estimates the critical value (for example, PB, DAR and GUMBEL)
must have lower power than the one that does not (for example, GD).
We also tested the method using real data by analyzing 422 type 1

diabetic families with our PB approach. Using this approach, we
estimated the adjusted P-value at less than 1e-05, which occurred
directly over the HLA (Human Leukocyte Antigen) region (a small
stretch of chromosome 6 that explains most of the heritability of type
1 diabetes). Interestingly, the second highest peak (Kong and Cox
LOD= 2.67) occurs on chromosome 2 at SNP rs1533661. This SNP is
7 megabases from CTLA4 (cytotoxic T-lymphocyte-associated protein
4), a gene known to influence type 1 diabetes (Nistico ̀ et al., 1996) and
other autoimmune disorders (Ban et al., 2003) as well. Arguably, the
unadjusted P-value (0.0002) for rs1533661 is suggestive, but it is the
gLOD that correctly quantifies the evidence for this SNP’s influence by
providing an adjusted P-value of 0.18. Thus, in addition to detecting
suggestive loci, the gLOD makes it easier to interpret their overall
statistical importance as well.

DISCUSSION

Our approach provides fast and accurate P-values for multi-marker
IBD scans, and it maintains the same statistical power as the
commonly used Kong and Cox LOD. Furthermore, our PB approach
yields critical values for testing that are less conservative than
published guidelines, and our approach can be applied to a wider
variety of study designs as well. Its speed, accuracy and generality
should allow independent labs to compare and combine their multi-
marker IBD results quickly, confidently and more easily.
Compared with GD (denoted F̂n;m), our PB approach (denoted ~Fm)

is extremely fast, and this was certainly our primary motivation for
developing the proposed simulator. However, because the misfit
between ~Fm and Fm (when it exists) could in principle be important,
we extended our AR(1) model to a second-order Markov assumption
(that is, we modeled the conditional distribution of zt+2 given zt+1 and zt),

and recomputed the actual type 1 errors for PB and DAR. The results
from this sensitivity analysis were qualitatively the same (data not
shown), suggesting that the AR(1) model is at least adequate for most
modern IBD scans. We are currently working to extend our test
statistic to detect protective loci, and to incorporate the phenotypes of
unaffected individuals into the analysis.
To the best of our knowledge, gLOD is the first genome-wide,

multi-marker IBD statistic that has been shown to have a limiting
distribution under the null hypothesis. Given that so many different
IBD statistics have comparable power, it is likely that many of these
tests also have similar limiting distributions as well. This conjecture is
further supported by the recent report that the asymptotic behavior of
the maximum multipoint LOD for two fully informative and linked
markers (where the maximization is not restricted to the genetic
length of a DNA molecule, but instead occurs over the entire real line
appears to converge to a non-degenerate distribution under the null
hypothesis (Hodge et al., 2008)). If there are other multi-marker IBD
statistics with limiting distributions, then it may be possible to select
statistics so as to maximize power, and/or the rate of convergence,
and/or robustness to the presence of missing data.
For the first time, thanks to our proposed test (that is, the gLOD) and

to our PB approach, standardization of IBD scans across studies is a real
possibility. Ultimately, the gLOD could significantly improve the fine-
mapping of linked regions, which in turn should increase the power of
re-sequencing methods. Overall, our approach gives researchers the
ability to quickly and accurately determine the significance of a modern
IBD scan without having to sacrifice statistical power.
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Nisticò L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E et al. (1996).
The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1
diabetes. Belgian Diabetes Registry. Hum Mol Genet 5: 1075–1080.

Stewart WC, Subaran RL (2012). Obtaining accurate p values from a dense SNP
linkage scan. Hum Hered 74: 12–16.

Stewart WCL, Drill EN, Greenberg DA (2011). Finding disease genes: a fast and flexible
approach for analyzing high-throughput data. Eur J Hum Genet 19: 1090–1094.

Stewart WCL, Huang Y, Greenberg DA, Vieland VJ (2013). Next generation linkage and
association methods applied to hypertension: a multi-faceted approach to the analysis of
sequence data. BMC Proc 8: S1–S111.

Stewart WCL, Peljto AL, Greenberg DA (2010). Multiple subsampling of dense SNP data
localizes disease genes with increased precision. Hum Hered 69: 152–159.

Thompson EA (1994). Monte Carlo likelihood in the genetic mapping of complex traits.
Philos Trans R Soc Lond B Biol Sci 344: 345–350; discussion 350-341.

Wijsman EM, Rothstein JH, Thompson EA (2006). Multipoint linkage analysis with
many multiallelic or dense diallelic markers: Markov chain-Monte Carlo provides
practical approaches for genome scans on general pedigrees. Am J Hum Genet 79:
846–858.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International

License.Theimagesorother thirdpartymaterial in thisarticleare included
in thearticle’sCreativeCommons license,unless indicatedotherwise in the
credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to
reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/4.0/

A test of independent assortment
WCL Stewart and VR Hager

113

Heredity

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	A powerful test of independent assortment that determines genome-wide significance quickly and accurately
	Introduction
	Methods
	Data description
	Results
	Figure 1 Pedigree structures (A&#x02013;D) are shown, where individuals shaded in black are both affected and genotyped, gray are genotyped only and unshaded individuals are neither phenotyped nor genotyped.
	Table 1 Type 1 error for complete microsatellite data (CMD)
	Table 2 Type 1 error for affected sibling pairs (ASP) Scenario
	Discussion
	Data archiving
	A7
	ACKNOWLEDGEMENTS
	Table 3 Type 1 error for a mixture of nuclear families (MIX)




