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Summary: Clinical covariates such as age, gender, tumor grade, and smoking history have been extensively used in predic-
tion of disease occurrence and progression. On the other hand, genomic biomarkers selected from microarray measurements 
may provide an alter native, satisfactory way of disease prediction. Recent studies show that better prediction can be achieved 
by using both clinical and genomic biomarkers. However, due to different characteristics of clinical and genomic measure-
ments, combining those covariates in disease prediction is very challenging. We propose a new regularization method, 
Covariate-Adjusted Threshold Gradient Directed Regularization (Cov-TGDR), for combining different type of covariates 
in disease prediction. The proposed approach is capable of simultaneous biomarker selection and predictive model building. 
It allows different degrees of regularization for dif ferent type of covariates. We consider biomedical studies with binary 
outcomes and right censored survival outcomes as examples. Logistic model and Cox model are assumed, respec tively. 
Analysis of the Breast Cancer data and the Follicular lymphoma data show that the proposed approach can have better 
prediction performance than using clinical or genomic covariates alone.
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1. Introduction
Tremendous effort has been devoted to discovering biomarkers that can be used in prediction of disease 
occurrence and progression. Clinical covariates—such as age, gender, blood pressure, tumor size and 
grade, and smoking and drinking history—have been extensively used and shown to have satisfactory 
predictive power (Gajdos et al. 1999; Negri et al. 2005). Clinical risk factors have sound biological 
implications and are usually easy to measure and of low dimensionality.

Recent developments in high throughput techniques, such as microarray, make it possible to measure 
human genomic features on a global scale. Biomedical studies with high dimen sional gene expressions 
measured along with disease outcomes are becoming commonplace (Dave et al. 2004; Rosenwald et al. 
2003; Alizadeh et al. 2000). Scientists have shown that using genomic biomarkers selected from micro-
array measurements may provide satis factory prediction of disease status. See for example van’t Veer 
et al. (2002) and Shipp et al. (2002), among others. Using genomic measurements provides an alterna-
tive, satisfactory way of disease prediction beyond clinical covariates.

Clinical and genomic covariates may correspond to different aspects of causation of dis eases. 
Consider the occurrence of lung cancer as an example. Studies have shown that smoking, which is a 
clinical covariate, is the best predictor of lung cancer occurrence. How ever, genetic defection has also 
been shown to contribute to occurrence of lung cancer. By combining smoking history with genomic 
measurements, prediction with better sensitivity and specificity (than using smoking or genetic defec-
tion alone) can be achieved. Such an improvement has been observed with other diseases (Rosenwald 
et al. 2002; Pittman et al. 2004). It is thus of great interest to develop statistical methodologies that 
can effectively combine low dimensional clinical and high dimensional genomic measurements in 
disease prediction.

In Fernandez-Teijeiro et al. (2004), a small number of genes are first selected and then combined 
with clinical covariates in predictive model building. Such an approach, although very easy to imple-
ment, ignores clinical covariates in gene selection and may lead to sub optimal results. In Ghosh and 
Chinnaiyan (2005), adjusting for clinical covariates in de tecting differential genes is investigated in 
the linear regression and FDR framework. In that study, the goal is to detect differentially expressed 
genes, and predictive model build ing is not considered. A suffi cient dimension reduction approach is 
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proposed by Li (2006) in the framework of 
survival analysis, where two lymphoma survival 
datasets are analyzed. The suffi cient dimension 
reduction method uses linear combinations of all 
covariates, which makes it hard to interpret indi-
vidual covariate effects. In a breast cancer study 
with a binary response representing the disease 
status, Sun et al. (2007) proposes the iterative 
1-RELIEF approach. It is not clear how to extend 
that approach to studies with other clinical out-
comes such as survival.

In this article, we propose a new regularized 
method, Cov-TGDR (Covariate-Adjusted Threshold 
Gradient Directed Regularization), for combining 
different type of covariates in disease prediction. 
The proposed approach is capable of simultaneous 
biomarker selection and predictive model building. 
It has great flexibility by allowing different degrees 
of regular ization for different type of covariates. The 
rationale is that clinical and genomic covariates are 
not directly comparable. Different regularization 
should thus be considered. Similar ar guments have 
been made in Li (2006) and Sun et al. (2007). In our 
study, we only consider two type of covariates, 
namely clinical and genomic. In principle, the pro-
posed Cov-TGDR can be used when more than two 
type of covariates are present.

In Section 2, we first present the data and mod-
els that we consider. We use logistic regression for 
binary classification and Cox model for right cen-
sored survival analysis as examples. The proposed 
Cov-TGDR is described in Section 3. Tuning 
parameter selection and prediction evaluation are 
also discussed. We present analysis of the Breast 
Cancer data (which has a binary outcome) in Sec-
tion 4 and analysis of the Follicular lymphoma data 
(which has a right censored survival outcome) in 
Section 5, respectively. The article concludes with 
discussions in Section 6.

2. Data and Model
Let Y be the clinical outcome of interest. Let 
Z = (W, X) be the length d vector of covariates. 
Specifically, let W be the length d1 vector consist-
ing of clinical covariates; and let X be the length 
d2 vector of gene expressions, where d1 + d2 = d. 
In a typical biomedical study, d1 ∼ 10 while 
d2 ∼ 103−4. For simplicity of notations, we assume 
there are only two different sets of covariates. The 
proposed approach can be easily extended to mul-
tiple sets of covariates.

Suppose that Y is associated with Z through the 
model Y ∼ φ(β′ Z) with known re gression function 
φ and unknown regression coeffcient β. We are 
particularly interested in classification and survival 
analysis problems where both clinical and genomic 
covariates are measured along with disease out-
comes due to their extensive applications.

2.1 Binary classification
For classification problems, Y is the categorical 
variable denoting the disease status. For simplicity 
of notations, we focus on binary classification only. 
Suppose that Y = 1 representsthe presence and Y = 0 
indicates the absence of disease. We assume the 
commonly used logistic regression model, where 
the logit of the conditional probability is

 logit(P (Y = 1|Z)) = α + β ′Z 

Here β is the length d vector of regression coeffcient 
and α is the intercept. Based on a random sample 
of n iid observations (Yi , Zi), i = 1, ..., n, the maxi-
mum likelihood estimator is defined as (α̂ , β̂  ) = 
argmaxα ,β Rn(α , β ), where

  

Since α is usually of secondary interest, we simply 
write Rn(α , β ) as Rn(β ).

2.2 Cox survival analysis
For right censored survival data, Y = (T , Δ), where 
T = min(U,V ) and Δ = I (U � V). Here U and V 
denote the event and censoring times, respectively. 
The most widely used model for censored survival 
data is the Cox model (Cox, 1972) which assumes 
that the conditional hazard function

λ(u⏐Z ) = λ0(u) exp(β ′Z)

where λ0 is the unknown baseline hazard function 
and β is the unknown regression coeffcient. Based 
on a random sample of n iid observations (Yi , Zi ), 
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i = 1, ..., n, the partial likelihood estimator is 
defined as the value β̂  that maximizes

where ri = { j: Tj � Ti} is the risk set at time Ti.
For both logistic classification and Cox survival 

analysis, β can be estimated by maximiz ing the con-
tinuously differentiable likelihood or partial likelihood 
functions, which depend on β only. The proposed 
Cov-TGDR is generally applicable if other parametric 
or semipara metric models are assumed, provided that 
smooth objective functions are available.

3. Cov-TGDR

3.1 Algorithm
The proposed Cov-TGDR is a gradient searching 
approach. We refer to Friedman and Popescu 
(2004) for background and general discussions on 
such an approach. Let Δν be a small positive incre-
ment. In the implementation of our approach, we 
choose Δν = 1 × 10−3. Denote νk = k × Δν as the 
index for the point along the parameter path after 
k steps. Let β (νk) denote the parameter estimate 
corresponding to νk. Denote 0 � τ1,τ2 � 1 as the 
threshold values for clinical and genomic covari-
ates, respectively. The proposed Cov-TGDR con-
sists of the following iterative steps:
1.  Initialize β (0) = 0 and ν0 = 0.
2.  With current estimate β, compute the negative 

gradient g(ν) = −∂Rn(β)/∂β. Denote the jth 
component of g(ν) as gj (ν). If maxj {| gj (ν)|} = 0, 
stop the iteration.

3.  Compute the length-d threshold vector f (ν), 
where

4.  Update β (νk + Δν) = β (νk) − Δν × g(νk) × 
f (νk) and update νk by νk + Δν, where the prod-
uct of f and g is component-wise.

5.  Steps 2–4 are repeated k times. The number 
of iterations k is determined by cross 
validation.

The Cov-TGDR uses a thresholding and vari-
able selection scheme quite different from the 
TGDR in Friedman and Popescu (2004). Par-
ticularly in Step 3, thresholding is carried out 
for different sets of covariates separately. The 
rationale is that different type of covariates are 
not directly comparable—one unit increase in 
gene expressions may have quite different impli-
cations from one unit increase in clinical covari-
ates. In addition, genomic covariates usually 
have a much higher dimensionality than clinical 
covariates. Variable selection is much more 
important for genomic covariates than for clini-
cal covariates, which demands a higher degree 
of regularization for genomic covariates. A fair 
approach should consider thresholding com-
parisons within each type of covariates sepa-
rately, as in Step 3.

Loosely speaking, the Cov-TGDR carries out 
TGDR for each type of covariates sepa rately. The 
properties of β are determined jointly by k and 
(τ1,τ2). When (τ1,τ2) = (0, 0), the Cov-TGDR does 
not carry out biomarker selection and generates 
estimates similar to the ridge regression. When 
(τ1 = 0,τ2 � 0), the Cov-TGDR carries out variable 
selection with gene expressions, while adjusting 
for clinical covariates without any variable selec-
tion. When (τ1 � 0,τ2 � 0), variable selections are 
carried out for both clinical and genomic covari-
ates. By allowing τ1 ≠ τ2, the proposed Cov-TGDR 
is more flexible than the TGDR.

In addition, it takes into account clinical covari-
ates when estimating and selecting variables with 
gene expressions. It is thus more reasonable than 
the naive approach, where TGDR estimations are 
carried out separately for clinical and genomic 
covariates.

3.2 Tuning parameter selection
We select the tuning parameters k and (τ1,τ2), which 
jointly determine the character istics of the estima-
tor, using the following two-step approach. First, 
we choose the tuning parameter k for any fixed 
(τ1,τ2) using the V-fold cross validation (Wahba, 
1990) as follows. Partition the data randomly into 
V non-overlapping subsets of equal sizes. Choose 
k to maximize the cross-validated objective func-
tion
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(1)

where β (−υ) is the Cov-TGDR estimate of β  based 
on data without the υth subset for a fixed k and 
Rn

(−υ) is the objective function Rn evaluated with-
out the υth subset. Considering the relatively small 
sample sizes, we set V = 5 in our study.

After cross validation over k, model features for 
different (τ1,τ2) can be obtained. We choose parsi-
monious models with relatively large CV scores. 
A similar approach has been adopted in Ma and 
Huang (2005) and references therein.

3.3 Evaluation
Prediction evaluation can be based on the following 
Leave-One-Out (LOO) approach. For i = 1, ..., n,
1. Remove the ith subject.
2.  For the reduced dateset with size n − 1, carry 

out the V-fold cross validation and Cov-TGDR 
estimation. Denote this estimate as β̂  (−i ).

3.  Compute the prediction score β̂  (−i ) ′ Zi for the 
removed subject.

A prediction index can then be computed. For 
binary classification, class probabilities can be 
computed from the prediction scores and the logis-
tic model. We use probability 0.5 as the cutoff and 
predict disease status for each subject. The predic-
tion index can be chosen as the prediction error. 
For censored survival data, we dichotomize the 
prediction scores at their median and create two 
hypothetical risk groups. We then compare the 
survival functions of the two risk groups. The 
logrank statistic, which has a Chi-squared distribu-
tion with degree of freedom one, is taken as the 
prediction index.

4. Breast Cancer Study
Breast cancer is the second leading cause of deaths 
from cancer among women in the United States. 
Despite major progresses in breast cancer treat-
ment, the ability to predict the metastatic behavior 
of tumor remains limited. The Breast Cancer study 
was first reported in van’t Veer et al. (2002). 97 
lymph node-negative breast cancer patients 55 
years old or younger participated in this study. 
Among them, 46 developed distant metastases 
within 5 years (metastatic outcome coded as 1) 

and 51 remained metastases free for at least 5 years 
(metastatic outcome coded as 0).

Clinical covariates collected include age, tumor 
size, histological grade, angioinvasion, lympho-
cytic infiltration, estrogen receptor (ER), and 
progesterone receptor (PR) status. Expression 
levels for 24481 gene probes were collected. We 
refer to van’t Veer et al. (2002) for more details on 
experimental setup. The goal of this study is to build 
a statistical model that can accurately predict the 
risk of distant recurrence of breast cancer in a five-
year post-surgery period. The dataset is publicly 
available at http://www.rii.com/publications/2002/
vantveer.html.

We first pre-process gene expression data as 
follows:

1.  Remove genes with more than 30% missing 
measurements.

2.  Fill in missing gene expression measurements 
with median values across samples.

3.  Normalize gene expressions to have zero 
means and unit variances.

4.  Compute the simple correlation coeffi cients 
of gene expressions with the binary out-
come.

5.  Select the 500 genes with the largest absolute 
values of correlation coeffi cients.

It is reasonable to expect that the number of 
“interesting” genes is much less than 500 (see Ma 
and Huang, 2005 and references therein); In addi-
tion, including many “noisy” genes in the bio-
marker selection and model building may lead to 
less satisfactory results. We thus conduct gene 
screening prior to the analysis and select only the 
top 500 genes (Sun et al. 2007; Ma, 2006).

The proposed Cov-TGDR is used to analyze the 
Breast Cancer data. The 5-fold cross validation 
selects k = 884 and (τ1,τ2) = (1.0, 0.9) as the optimal 
tunings. We show the parameter paths as a function 
of k for (τ1,τ2) = (1.0, 0.9) in Figure 1. The vertical 
lines correspond to k = 884. Since both threshold 
values are large, the parameter paths look like 
Lasso paths – they start with all estimates equal to 
zero; the estimates remain sparse for moderate to 
large k ; and the estimates eventually become dense 
as k → ∞. Similar phenomenon has been observed 
in Friedman and Popescu (2004) and Ma and 
Huang (2005).

With the optimal tuning, the final predictive 
model includes 3 (out of 7) clinical covari ates and 51 
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(out of 500) genomic biomarkers. We list covariates 
with nonzero estimated coeffcients in Table 1. The 
three important clinical covariates are age, tumor 
diameter, and tumor grade, which have long been 
used as risk factors for predicting breast cancer. 
Espe cially, increase of tumor size or grade indicates 
worsening or proliferation of tumor, which leads to 
higher likelihood of cancer occurrence. Moreover, 
our analysis shows that after ad justing for other risk 
factors, older people are less likely to develop breast 
cancer. We note that this conclusion cannot be 
extended to the general population, since the current 
study only included patients 55 years old or younger. 
We also provide systematic names and corre-
sponding estimates for identified genes. Gene names 
and corresponding annotations can be found from 
the data website and http://www.ncbi.nlm.nih.gov/. 
Many of the identified genes have been shown to 
be associated with breast cancer occurrence in inde-
pendent studies. We refer to van’t Veer et al. (2002) 
for detailed discussions of gene functions.

For comparison, we also consider three closely 
related alternatives: (1) Clinical-simple: only 
clinical covariates are used in the analysis. Since 
the number of clinical covariates is less than the 
sample size, logistic model without any regulariza-
tion can be fitted; (2) Clinical-TGDR: only clinical 

covariates are used in the analysis, and we use 
TGDR for regularization. With the TGDR, tuning 
parameters include the number of iterations k and 
threshold τ; (3) Gene-TGDR: only gene expressions 
are used. TGDR is employed for gene selection and 
regularized estimation. For alternative approaches 
(2) and (3), we also use the 5-fold cross validation 
to select optimal tunings. Prediction evaluation is 
carried out for all four approaches using the LOO 
described in Section 3.3. In our estimation, we 
conduct gene screening prior to the analysis. In the 
evaluation, for each reduced dataset with size n − 1, 
we also carry out gene screening and select (pos-
sibly different sets of) 500 top genes. Since gene 
screening is included in the LOO, the prediction 
evaluation has no selection bias.

Estimation and prediction results are summarized 
in Table 2. We can see that using clinical covariates 
alone without any regularization results in less 
satisfactory prediction. With clinical covariates, 
using TGDR for regularization can reduce model 
size and increase prediction power. Using gene 
expressions alone can lead to improved prediction, 
with the larger model as payoff. Prediction can be 
further improved by using both clinical and 
genomic covariates, although the resulted model 
is larger than all alternatives.
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Figure 1. Breast cancer data. Parameter paths as a function of k for (τ1,τ2) = c(1.0, 0.9). Upper panel: clinical covariates; Lower panel: 
genomic covariates.
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5. Follicular Lymphoma Study
Follicular lymphoma is the second most common 
form of non-Hodgkin’s lymphoma, ac counting for 
about 22 percent of all cases. A study was con-
ducted to determine whether the survival risks of 
patients with follicular lymphoma can be predicted 
by the gene-expression profiles of the tumors and 
standard clinical risk factors at diagnosis (Dave 
et al. 2004). Detailed experiment setup and raw 
data can be accessed at http://llmpp.nih.gov/FL/.

Fresh-frozen tumor-biopsy specimens and 
clinical data from 191 untreated patients who had 
received a diagnosis of follicular lymphoma 
between 1974 and 2001 were obtained. The median 
age at diagnosis was 51 years (range: 23 to 81), 
and the median follow up time was 6.6 years 
(range: less than 1.0 to 28.2). The median follow 
up time among patients alive at last follow up was 
8.1 years. Eight records with missing survival 
information are excluded from the analysis.

Table 1. Breast Cancer Data: Cov-TGDR estimation. Variable: variable name (clinical) or systematic name 
(genomic).

Variable  Estimate  Variable  Estimate 
Clinical covariates    
age  −0.193   
diameter  0.090   
grade  0.214   
Genomic covariates    
AB033032 0.007 AJ011306 −0.214
Contig5816_RC 0.169 NM_013438 0.045
Contig35148_RC −0.368 NM_004994 0.142
Contig46909_RC −0.230 AL080059 0.660
Contig23356_RC 0.097 Contig42563_RC 0.087
Contig35229_RC −0.134 NM_006544 0.159
Contig28433_RC −0.014 NM_005850 0.005
NM_003366 −0.068 Contig64861_RC 0.194
NM_020120 0.038 AF055033 0.514
NM_020123 0.343 NM_016017 0.037
NM_020132 0.012 Contig47544_RC 0.674
U72507 −0.089 Contig48697_RC 0.029
Contig6238_RC −0.116 NM_016361 −0.174
AF052087 −0.083 NM_016448 0.029
NM_005007 −0.082 Contig412_RC −0.510
AB018337 0.270 NM_016564 0.445
AB040969 0.010 NM_018089 0.178
NM_012341 −0.033 D13540 0.089
Contig47042 0.189 U79298 −0.177
Contig38438_RC −0.096 NM_000127 0.234
X67055 −0.005 NM_019018 −0.074
NM_003862 −0.138 NM_000207 −0.049
NM_003882 −0.083 AL050227 −0.010
AF131819 0.356 Contig22253_RC −0.012 
NM_014003 0.120 NM_000801 0.059 
NM_005393 0.304  

Table 2. Analysis of Breast Cancer Data. # clinical: number of clinical variables. # gene: number of gene 
expressions. Tuning: optimal tuning parameters. Error: prediction error.

Method # clinical # gene Tuning Error
Clinical-simple 7 – – 0.371
Clinical-TGDR 5 – τ = 0.8 0.289
Gene-TGDR – 50 τ = 0.9 0.267
Cov-TGDR 3 51 (τ1, τ2) = (1.0, 0.9) 0.227



377

Combining clinical and genomic covariates via Cov-TGDR

Cancer Informatics 2007:3 

Clinical covariates measured include extra 
nodal site, age, normalized LDH, performance 
status, stage and IPI.1 (IPI value equal to 2 or 3), 
and IPI.2 (IPI value equal to 4 or 5). We remove 
subjects with missing clinical covariate measure-
ments. 156 subjects are included in the Cov-TGDR 
analysis. Affymetrix U133A and U133B microar-
ray genechips were used to measure gene expres-
sion levels. A log2 transformation was first applied 
to the Affymetrix measurements. We filter the 
44928 gene measurements with the following 
criteria: (1) the max expression value of each gene 
across 156 samples must be greater than the 
median max expressions; and (2) the max–min 
expressions should be greater than their median. 
6506 out 44928 genes pass the above unsupervised 
screening. We further compute the correlation 
coeffcients of the uncensored survival times with 
gene expressions. The 500 genes with the largest 
absolute values of the correlation coeffcients are 
selected.

We apply the proposed Cov-TGDR. Parameter 
paths similar to those shown in Figure 1 can be 
obtained and are omitted here. With the Cov-
TGDR, 6 (out of 7) clinical covariates and 23 (out 
of 500) genomic covariates are selected in the final 
model. We provide covariates with nonzero esti-
mated coeffcients in Table 3. All measured clinical 
covariates have im portance influences on survival 
risks. For the IPI measurement, only IPI.1 (IPI 
value equal to 2 or 3) is important. Increase of any 
clinical covariates will lead to increased survival 
risk. For gene expressions, with the Affymetrix 
feature IDs provided in Table 3, gene names and 
corresponding biological functions can be found 
from http://llmpp.nih.gov/FL/. Many identified 
genes have been confirmed by independent studies 
to be associated with survival risks in lymphoma 
patients. We omit such discussions here.

For the Cov-TGDR and alternative approaches, 
model estimation and prediction results are sum-
marized in Table 4. As discussed in Section 3.3, 
we use the logrank statistic as the prediction index 
for censored survival data, with larger logrank 
statistic indicating more powerful prediction. We 
can see from Table 4 that using clinical covariates 
alone can lead to quite satisfactory predictions, 
with logrank statistics 17.9 and 18.1 and corre-
sponding p-values �0.001. Using gene expression 
data alone, 31 genes are selected with the TGDR. 
The prediction logrank statistic is 4.0, correspond-
ing to p-value 0.045. Prediction can be improved 

by using both clinical and genomic covariates 
(logrank statistic 23.9, p-value � 0.001).

6. Discussions
Given that clinical and genomic factors may con-
tribute to different aspects of disease occur rence, 
it is important to use both for predicting disease 
status. We propose the Cov-TGDR method, which 
can achieve improved prediction by effectively 
combining those two type of covariates. The pro-
posed Cov-TGDR is more flexible than the TGDR 
by allowing different degrees of regularization for 
different type of covariates. Especially, our numer-
ical studies suggest that Cov-TGDR usually has 
τ1 � τ2, i.e. less regularization is employed for 
clinical covariates. Another valuable feature of the 
Cov-TGDR is that the computational cost is small. 
For the Breast Cancer data, cross validation and 
estimation combined take less than two minutes. 
Compared to existing approaches, the Cov-TGDR 
generates smaller models than the suffi cient dimen-
sion reduction method of Li (2006). The Cov-
TGDR estimation results are thus easier to interpret. 
Compared to the 1-RELIEF approach of Sun et al. 
(2007), the proposed Cov-TGDR depends less on 
the form of the objective function. It can be easily 
adapted to studies with other type of outcomes and 
models.

Table 3. Follicular Lymphoma Data: Cov-TGDR estima-
tion. Variable: variable name (clinical) or Affymetrix 
Feature ID (genomic).

Variable  Estimate  Variable  Estimate 
Clinical
covariates
nodal 0.123 pstat 0.194
age 0.450 stage 0.309
ldh 0.469 IPI.2 0.514
Genomic
covariates
223710_at −0.108 240593_x_a 0.006
225981_at 0.222 201739_at −0.020
226587_at 0.004 202783_at −0.040
230280_at 0.066 203612_at 0.040
232204_at −0.050 212713_at −0.028
232883_at 0.066 215536_at −0.126
234062_at −0.036 208470_s_a 0.214
235058_at −0.004 216950_s_a 0.012
239565_at 0.016 217893_s_a −0.110
224280_s_a −0.202 219360_s_a 0.056
230938_x_a 0.054 220235_s_a −0.090
234792_x_a 0.054  
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Like in Li (2006) and Sun et al. (2007), the 
proposed Cov-TGDR is built on an existing regu-
larization method (i.e. TGDR). However, they 
differ significantly in terms of threshold ing and 
variable selection scheme. The two presented stud-
ies and other examples (not pre sented here) show 
that improved prediction can be achieved with the 
proposed Cov-TGDR. We note that the improve-
ment may not be as dramatic as one may expect. 
However, con sidering the diffi culties with predict-
ing status of complicated diseases such as cancer, 
even very small improvement may have extremely 
important clinical implications, as has been 
observed in previous studies (Li, 2006).

One drawback of our study is that no theoretical 
justification is available for the proposed Cov-
TGDR. The proposed estimate is a non-linear 
function of the observations, which makes it 
diffi cult to establish its theoretical properties, such 
as consistency in terms of variable selection under 
reasonable conditions. Our limited numerical study 
establishes the Cov-TGDR’s satisfactory empirical 
performance. More studies are needed to under-
stand its theoretical properties.
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