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Abstract: Following the third booster dose of the mRNA vaccine, Common Variable Immune Defi-
ciencies (CVID) patients may not produce specific antibodies against the virus spike protein. The
T-cell abnormalities associated with the absence of antibodies are still a matter of investigation. Spike-
specific IgG and IgA, peripheral T cell subsets, CD40L and cytokine expression, and Spike-specific
specific T-cells responses were evaluated in 47 CVID and 26 healthy donors after three doses of
BNT162b2 vaccine. Testing was performed two weeks after the third vaccine dose. Thirty-six percent
of the patients did not produce anti-SARS-CoV-2 IgG or IgA antibodies. Non responder patients had
lower peripheral blood lymphocyte counts, circulating naïve and central memory T-cells, low CD40L
expression on the CD4+CD45+RO+ and CD8+CD45+RO+ T-cells, high frequencies of TNFα and
IFNγ expressing CD8+ T-cells, and defective release of IFNγ and TNFα following stimulation with
Spike peptides. Non responders had a more complex disease phenotype, with higher frequencies of
structural lung damage and autoimmunity, especially autoimmune cytopenia. Thirty-five percent of
them developed a SARS-CoV-2 infection after immunization in comparison to twenty percent of CVID
who responded to immunization with antibodies production. CVID-associated T cell abnormalities
contributed to the absence of SARS-CoV-2 specific antibodies after full immunization.

Keywords: Common Variable Immune Deficiencies; T-cells; SARS-CoV-2; COVID-19; BNT162b2;
vaccine; booster dose; memory B cells; spike protein; antibody response

1. Introduction

Antibodies and memory B cells defects account for the inability to mount adequate
antibody responses to infections and vaccinations and for the susceptibility to vaccine pre-
ventable infections in Common Variable Immunodeficiency (CVID) patients. The Commit-
tee of Experts on Primary Immunodeficiency of the International Union of Immunological
Societies included specific antibody responses to vaccinations as a diagnostic tool, and as a
means of prevention [1].

Since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic, CVID patients have been listed as a fragile population [2,3] and have been
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prioritized for SARS-CoV-2 vaccination. Differently from other microorganisms, SARS-CoV-
2, not encountered before by humans, offers the possibility to study immune responses to a
novel antigen, and to generate information useful for defining the mechanisms underlying
most infectious and inflammatory diseases.

We already identified a peculiar and atypical signature of B cell-mediated immune
response to SARS-CoV-2 immunization [4,5]. However, besides the impaired production of
specific antibodies and memory B cells, abnormalities of T cell responses may also play an
important role in vaccine failure. CD4+ T-cell lymphopenia is associated with an increased
risk of complications in CVID [6], as well as cytokine alterations, lack of IL-2, increased
TNFα, IFNγ abnormalities with an IFN mRNA signature [7,8], mainly described in CVID
patients with an inflammatory phenotype.

A detailed analysis of CVID-associated T-cell defects contributing to the impaired anti-
body response to SARS-CoV-2 immunization in CVID is lacking. Recently, a low peripheral
T-cell count before vaccination, and a defect of T-helper follicular T-cells was found to be
associated with lower anti-S1 IgG levels after immunization [9]. Our aim was to identify
possible T-cell biomarkers associated with the failure to produce SARS-CoV-2 specific
antibodies after full immunization plus booster dose of mRNA vaccine. To assess this need,
we studied a group of CVID patients never infected by SARS-CoV-2 who completed the full
immunization with the BNT162b2 vaccine followed by a booster dose six months apart. In
this cohort, we investigated whether vaccine antibody non-responsiveness was associated
with abnormalities of peripheral T-cells lymphocytes distribution and function.

2. Materials and Methods
2.1. Study Design and Patients

An observational study was carried out in 47 CVID patients naïve to SARS-CoV-2
infection who agreed to undergo immunization with the BNT162b2 vaccine. Participants
were diagnosed as having CVID according to the ESID criteria (www.ESID.com accessed
on 1 June 2022) and were regularly followed by the Care Center for adults with PID in
Rome, Italy. Twenty-six age matched healthy subjects were studied as controls. Eligible
patients were informed on the study, including its safety profile and supply procedures. The
BNT162b2 vaccine was administered as prescribed in two doses 21 days apart, followed by
a booster dose after four months. Blood samples were obtained for serological assessment
at baseline (BL), fifteen days after the second dose (2D) and fifteen days after the third dose
(3D). Blood samples for the study of cellular immunity were obtained fifteen days after the
third dose (3D).

At BL, a set of variables was recorded for each patient including gender, date of birth,
IgA and IgM serum levels at study time, and clinical PID-related disorders, including
autoimmunity, bronchiectasis and chronic lung disease (granulomatous lung interstitial
disease [GLILD], obstructive chronic lung disease [COPD], interstitial lung disease). During
the study, participants were allowed to continue their treatments, including immunoglobu-
lin substitution as the standard therapy for underlying antibody deficiency. The study was
approved by the Ethical Committee of the Sapienza University of Rome (Prot. 0521/2020,
13 July 2020) and performed in accordance with the Good Clinical Practice guidelines, the
International Conference on Harmonization guidelines, and the most recent version of the
Declaration of Helsinki.

2.2. Anti-Spike IgG and IgA antibodies

A semi-quantitative in vitro determination of human IgG antibodies against the SARS-
CoV-2 (IgG S1) and of human IgA antibodies against the SARS-CoV-2 (IgA S1) was per-
formed on serum samples by using the Anti-SARS-CoV-2 Spike ELISA (EUROIMMUN),
according to the manufacturer’s instructions. Values were then normalized for comparison
with a calibrator. Results were evaluated by calculating the ratio between the extinction of
samples and the extinction of the calibrator. Results are reported as the ratio between OD
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sample and OD calibrator. The ratio interpretation was as follows: <0.8 = negative, ≥0.8 to
<1.1 = borderline, ≥1.1 = positive.

2.3. Cell Isolation and Cryopreservation, T and B Cell Phenotypes

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll Paque™ Plus
206 (Amersham Pharmacia Biotech, Amersham, UK) density-gradient centrifugation and
immediately frozen and stored in liquid nitrogen until use. The freezing medium contained
90% Fetal Bovine Serum (FBS) and 10% DMSO. Cells were stained with the appropriate
combination of fluorochrome-conjugated antibodies to identify T-cell and B-cell subsets
according to standard techniques. B-cell populations were identified as CD19+. Memory B
cells (MBC) were gated as CD19+CD24+CD27+, and IgM and switched memory B cells
were discriminated by the expression of IgM. T cell subsets were identified based on the
expression of CD3, CD4, CD8, CD45RO and CCR7 markers by flow cytometry. An analysis
of T cell subsets was performed in all 47 CVID patients and in 9 age-matched HD.

Immune cells were identified as follows: naïve CD4+ T cells (CD4+CD45RO−CCR7+),
central memory CD4+ (CD4+CD45RO+CCR7−) T cells, naïve CD8+ T cells (CD8+CD45RO-)
and central memory CD8+ T cells (CD8+CD45RO+CCR7−). The CD4+ naïve/memory
ratio was calculated as a ratio of CD4+CD45RO−CCR7+ and CD4+CD45RO+CCR7−;
the CD8+ naïve/memory ratio was calculated as a ratio of CD8+CD45RO−CCR7+ and
CD8+CD45RO+CCR7−. Cells were acquired on a BD FACSymphony A5™. Data were
analyzed with FlowJo ver. 10.

2.4. Functional Studies

PBMCs isolated from CVID patients and HDs were cultured in 96-well cell plates at
1 × 106 cells/well concentration in RPMI 1640 culture medium containing 5% AB serum.
PBMCs were cultured at 37 ◦C, 5% CO2, with pools of SARS-CoV-2 viral peptides (pepMix
SARS-CoV-2, Spike Glycoprotein, PM-WCPV-S-1, JPT) at the final concentration of 1µg/mL,
or with CytoStim® (SARS-CoV-2 Prot_S PBMC Kit, Miltenyi Biotech, Bergisch Gladbach,
Germany) as a positive control or with PBS (Capricon Scientific, Ebsdorfergrund, Germany)
as a negative control, for a total of 6 h. After 2 h of incubation, Brefeldin A (SARS-CoV-2
Prot_S PBMC Kit, Miltenyi, Biotech) was added to the cells to inhibit transport of proteins
to the cellular membrane. At the end of the stimulation, cells were processed as indicated
by SARS-CoV-2 Prot_S PBMC Kit protocol. Briefly, cells were fixed, permeabilized and
stained with CD3, CD4, CD8, IFN-γ, TNF-α and CD154 (CD40L) (SARS-CoV-2 Prot_S
PBMC Kit protocol, Miltenyi Biotech, Bergisch Gladbach, Germany), with the addition of
CD45RO and CD197 (CCR7) antibodies (BD Biosciences, San Diego, CA, USA).

2.5. Statistical Analysis

Data were summarized with descriptive statistics (median and IQR for continuous
values, and number (n) and frequency for discontinuous variables). Data obtained were
compared in CVID and HD. Anti S1 IgG and IgA were also compared between the different
study times. Comparison of clinical, immunological and demographic characteristics of
CVID participants grouped on the basis of anti S1 IgG- and IgA-antibody production
following the third vaccination dose were also made. Univariate analysis assessed the
impact of variables of interest. Values were compared by the non-parametric Kruskal–Wallis
test and, if not significant, the Wilcoxon matched pair signed-rank test or the two-tailed
Mann–Whitney U-test were used. Comparison of clinical characteristics among groups
was determined using a two-tailed Chi-square test. Comparison for timing to COVID-
19 infection after the third dose of vaccine administration in the different groups was
assessed by using Kaplan–Meier product-limit estimates and based on a log-rank and
Gehan–Breslow–Wilcoxon test.

Differences were deemed significant when p < 0.05. Statistical Package for Social
Sciences version 15 (SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL, USA) was
used for the analysis.
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3. Results

Patients. Forty-seven adult CVID patients diagnosed according to ESID definitions
(https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria accessed
on 1 June 2022) were enrolled in the study (median age in years (IQR): 52.3 (47.7–57.17); 57%
females). All were naive for SARS-CoV-2 infection, and all were under subcutaneous, intra-
venous or facilitated subcutaneous Ig substitution therapy. A control group of 26 healthy
donors (HD) (median age in years (IQR): 45 (34–52); 65% females) were also included.
Pathogenic monogenetic variants known to be associated with CVID were analyzed by
targeted gene sequence analysis (Illumina technology performed on a MiSeq NGS). We
identified a heterozygous pathogenic variant of PI3Ks gene in a male patient with recurrent
infections, COPD, lymphomas and GLILD (c.1573G > A; p.Glu525Lys) and a heterozygous
pathogenic variant of the TNFRSF13B gene in one patient with non-malignant lymph
node enlargement and recurrent infections. Moreover, five patients were found to carry
variations of unknown significance (VUS): one patient carried a heterozygous VUS in the
TNFRSF13C (c.62C > G; p.Pro21Arg) and TNFRSF13B genes (c.515G > A; p.Cus172Tyr) plus
a heterozygous pathogenic variant of the LRBA gene (c.6433C > T; p.Arg2145Cys); one
carried a heterozygous VUS in the PLCG2 gene (c.3368A > C; p.Glu1123Ala); one carried
a heterozygous VUS in the DCLRE1C (c.1561C > A; p.Leu521Ile) and the IGLL1 genes
(c.301G > A; p.Gly110Arg); one patient carried a heterozygous VUS in the STX11 gene
(c.616G > A; p.Glu206Lys) and a compound heterozygous mutation in the TNFRSF13C gene
(c.62C > G; p.Pro21Arg/c.475C > T; p.His159Tyr); and one patient carried a heterozygous
VUS in the FAS gene (c.580G > A; p.Glu194Lys).

SARS-CoV-2 antibodies. After full immunization with two doses of the mRNA BNT162b2
vaccine, all HD developed anti-S1 IgG and anti-S1 IgA, with levels rising significantly
after the booster dose. In CVID, 20% of the patients had measurable anti-S1 IgG after
immunization with two doses and 64% after the booster dose, with levels rising after the
booster dose (geometric mean [95%CI]: BL: 0 OD ratio (0–0); 2D: 0.38 OD ratio (0.16–0.76);
3D: 2.65 OD ratio (1.42–4.94)) (Figure 1A). The anti-S1 IgA response was less frequently
detectable (Figure 1B): only 30% of patients developed anti-S1 IgA after full vaccination.
After the booster dose, the proportions of anti-S1 IgA responders and anti-S1 IgA serum
levels remained stable (geometric mean [95%CI]: BL: 0.06 OD ratio (0.04–0.15); 2D: 0.22 OD
ratio (0.09–0.56); 3D: 0.37 OD ratio (0.21–0.68)). In contrast, anti-S1 IgA was detectable in all
HD after full vaccination, reaching higher levels after the booster dose (Figure 1B). Based
on antibody responses after the booster dose, we identified three CVID groups: 17 patients
who did not develop either anti-S1 IgG nor anti-S1 IgA were defined as non-responders
(NR); 18 patients responded with anti-S1 IgG only (S1 IgG-R), and 12 patients responded
with anti-S1 IgG and anti-S1 IgA (S1 IgG/IgA-R) (Figure 1C).

As shown in Table 1, in comparison to S1 IgG-R and S1 IgG/IgA-R, CVID NR had a
significantly lower count of peripheral B-cells, memory B cells (MBCs), IgM MBCs, and
switched MBCs. In contrast, there was no difference between CVID NR, CVID S1 IgG-R
and CVID S1 IgG/IgA-R with respect to age at diagnosis, serum IgA and IgM levels, and
distribution between the sexes.

Moreover, patients in the NR group in comparison to IgG/IgA antibody responders
showed higher frequencies of autoimmune manifestations, including cytopenias (p = 0.049)
and bronchiectasis (p = 0.011) (Figure 2A), revealing a more complex clinical phenotype.
During the follow up, 15 patients were infected by SARS-CoV-2 after being immunized
with the three doses of BNT162b2 vaccine. Infected patients had lower S1 IgG serum
levels in comparison to those who remained free from infection during the study time
(0.13 OD ratio (IQR 0.08–0.31) vs. 2.74 OD ratio (IQR 0.5–27.41), p < 0.0001), with 8/15 of
infected participants belonging to the NR group and four and three patients belonging
to the IgG-R and IgG/IgA-R groups, respectively. SARS-CoV-2 infection course was
asymptomatic/mild in all infected patients (Table S1). In total, 14 patients received SARS-
CoV-2 specific treatment: 12 patients were treated by Monoclonal antibodies (MoAbs) and
2 patients received the PF-07321332 (Paxlovid) antiviral drug due to MoAbs unavailability.

https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria
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Only 1 patient refused to be treated for his infection. Timing of SARS-CoV-2 infection
post-immunization is graphically reported in Figure 2B, showing a shorter, although not
significant, time between immunization and post-immunization SARS-CoV-2 infection in
the NR group.
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Figure 1. Anti-Spike S1 IgG (A) and IgA antibodies (B) in HD and CVID patients before and after
full immunization with two doses (2D), and after the booster dose (3D) of mRNA BNT162b2 vaccine.
Based on antibody responses after the booster dose, we identified three CVID groups (C): non
responders (NR); anti-S1 IgG only responders (IgG-R), and anti-S1 IgG and anti-S1 IgA responders
(IgG/IgA-R). Medians are plotted as horizontal bars and statistical significance were determined
using two-tailed Mann–Whitney U-test or Wilcoxon matched-pairs signed-rank test. ** p < 0.01,
*** p < 0.001; **** p < 0.0001. HD n = 26; CVID n = 47.
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and CD4+ naive T cells (Figure 3B and Table 2). However, only four patients displayed a 
severe reduction in CD4+ (<200 cells/mm3) and/or CD4 naive cells (20 cells/mm3), thus 
fulfilling the criteria for the diagnosis of Late-Onset Combined Immunodeficiency (LO-
CID) [10]: 3/17 patients in the NR group, 1/18 in the IgG-R and none in IgG/igA-R group. 

Figure 2. CVID-associated clinical manifestations (A) and proportion of CVID patients free from
SARS-CoV-2 infection after the booster dose of the mRNA BNT162b2 vaccine (B). (A): bars represented
frequencies of CVID-related complications. Statistical significance was determined using a two-tailed
Chi-square test. (B): Time to COVID-infection after the third dose of vaccine administration was
assessed by using Kaplan–Meier product-limit estimates and based on a log-rank and Gehan–Breslow–
Wilcoxon test (difference among groups not significant). * p < 0.05, ** p < 0.01 (NR n = 17; IgG-R
n = 18, IgG/IgA-R n = 12).
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Table 1. Characteristics of CVID patients classified on the basis of anti S1 IgG- and IgA-antibody
production following the third BNT162b2 mRNA COVID-19 vaccination dose.

p Value
NR

n = 17
S1 IgG-R

n = 18
S1 IgG/IgA-R

n = 12
NR vs.

IgG
NR vs.

IgG/IgA-R
IgG vs.

IgG/IgA

Age (year),
median (IQR) 56 (43–82) 46 (34–80) 59 (34–74) 0.166 0.562 0.166

Sex
(female), n (%) 10 (59) 11 (61) 6 (50) 0.485 1.000 0.421

IgG (mg/dL),
median (IQR) 670 (600–800) 600 (510–951) 780 (630–1130) 0.023 0.028 0.023

IgA (mg/dL),
median (IQR) 2 (0–21) 3 (2–44) 29 (0–181) 0.071 0.068 0.071

IgM (mg/dL),
median (IQR) 3 (0–142) 13 (2–75) 66 (1–117) 0.026 0.906 0.026

Lymphocytes
(cells/mm3),
median (IQR)

54.5 (20.5–74.1) 50.9 (27.9–73.8) 49.8 (1.53–70.7) 0.954 0.471 0.47

CD19+ (cells/mm3),
median (IQR)

19.8 (1.63–83.66) 47.1 (11.9–161.5) 86.86 (22.5–208.9) 0.0083 <0.0001 0.134

MBC (cells/mm3),
median (IQR)

1.52 (0–7.5) 6.27 (2.4–52.2) 37.93 (6.45–92.18) 0.0016 <0.0001 0.0245

IgM MBC
(cells/mm3),
median (IQR)

1.49 (0–7.5) 6.08 (2.3–44.7) 26.1 (3.89–73.56) 0.0021 <0.0001 0.0741

Switched MBC
(cells/mm3),
median (IQR)

0.01 (0.00–0.27) 0.15 (0.1–5.8) 5.36 (1.93–16.54) 0.0038 <0.0001 0.0004

T cells subsets. In comparison to HD, CVID patients had lower counts of lymphocytes
(p < 0.0001) and CD4+ T cells (p < 0.0001). Moreover, CVID had lower CD4+ naive cells
and central memory T cells (p < 0.0001). Of note, CVID patients displayed a lower CD4+
naïve/memory ratio in comparison to HD, indicating an imbalance in CD4 T cell subsets in
CVIDs in favor of experienced T-cell subsets (p < 0.0001) (Figure 3A).

Among CVID, the NR group had the lowest counts of lymphocytes, CD4+ T-cells, and
CD4+ naive T cells (Figure 3B and Table 2). However, only four patients displayed a severe
reduction in CD4+ (<200 cells/mm3) and/or CD4 naive cells (20 cells/mm3), thus fulfilling
the criteria for the diagnosis of Late-Onset Combined Immunodeficiency (LOCID) [10]:
3/17 patients in the NR group, 1/18 in the IgG-R and none in IgG/igA-R group.

Patients carrying the pathogenic heterozygous variants of the PI3Ks gene and the
TNFRSF13B gene were non-responders, as well as patients carrying the VUS(s), the het-
erozygous variant in the STX11 gene and the compound heterozygous of TNFRSF13C gene
and the heterozygous VUS in the FAS gene. Patients with the heterozygous variant in
the PLCG2 gene and the patient carrying VUS in the DCLRE1C, plus the IGLL1 genes,
were classified as S1-IgG-R. Patients with the heterozygous VUS in the TNFRSF13C and
TNFRSF13B genes, plus the heterozygous pathogenic variant of the LRBA gene, were
classified as S1 IgG/IgA-R.

Similar alterations were observed in the CD8 T-cells. CD8+ T cells and CD8 naive T
cells were significantly reduced in CVID patients compared to HD (p = 0.023 and p < 0.0001,
respectively) (Figure 4A), with an expansion of the antigen experienced T-cell subset, as
shown by reduced naive/memory ratio (p < 0.0001) (Figure 4A). Among CVID, the NR
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group had the lowest counts of CD8+ naive T cells and the lowest CD8+ naive/memory
ratio value (Figure 4B and Table 2).

Table 2. Count of peripheral lymphocytes, CD3+, CD4+ and CD8+ subsets, CD40L in
CD45+CD4+RO+ (expressed as percentage), and count of CD45+CD4+RO+ and CD45+CD8+RO+
expressing TNFα and IFNγ in CVID study groups. Values are reported as median (IQR).

CVID (All)
n = 47

NR
n = 17

S1 IgG R
n = 19

S1 IgG/IgA R
n = 11

HD
n = 9

Lymphocytes
(cells/mm3)

1400
(1070–1930)

1170
(525–1375)

1870
(970–2470)

1550
(1420–1770)

2530
(2438–2775)

CD3+
(cells/mm3)

1112
(758–1617)

863
(451–1198)

1280
(738–1930)

1112
(966–1314)

1960
(1767–2119)

CD3+CD4+
(cells/mm3)

641
(470–876)

490
(243–636)

641
(470–998)

876
(749–1127)

1518
(1311–1664)

CD4+ naive
(cells/mm3)

107
(33–229)

32
(14–194)

107
(53–201)

241
(87–395)

791
(600–997)

CD4+ central memory
(cells/mm3)

146
(89–201)

109
(55–161)

140
(121–216)

173
(64–291)

376
(238–418)

CD4+ naïve/memory ratio 0.76
(0.41–1.05

0.56
(0.305–1.055)

0.78
(0.62–1.15) 0.83(0.55–1.05) 3.07

(2.855–5.07)

CD40L expression in
CD45RO+CD4+ cells (%)

23.4
(14–36.7)

24.7
(12.8–33.95)

20.1
(9.9–26.9)

42.8
(23.4–51.8)

58.8
(50.9–62.4)

TNFα CD45RO+CD4+
(cells/mm3)

68.5
(37.2–98.4)

66.8
(30.5–98)

55.4
(31.3–77)

75.5
(66.2–117.9)

152.8
(91.7–233.5)

IFNγ CD45RO+CD4+
(cells/mm3)

27
(8.5–51.3)

29
(9.8–59.7)

10.1
(5.6–35.3)

34.3
(15.7–52.3)

48
(23–113.6)

CD3+CD8+
(cells/mm3)

542
(333–804)

482
(210.5–693.5)

736
(333–1106)

461
(382–579)

778
(730–1033)

CD8+ naive
(cells/mm3)

64
(31–117)

28
(12–56.5)

85
(34–117)

106
(68–134)

431
(313.5–496)

CD8+ central memory
(cells/mm3)

19
(10–33)

17
(9.5–30.5)

24
(13–38)

19
(10–36)

19
(11.5–27)

CD8+ naïve/memory ratio 0.76
(0.41–1.05)

0.11
(0.06–0.24)

0.23
(0.11–0.3)

0.47
(0.27–0.63)

1.23
(0.71–2.61)

CD40L expression in
CD45RO+CD8+ cells (%)

2.6
(0.9–6.1)

3.4
(1.35–7.5)

3.0
(1.5–12.9)

13.5
(4.1–18.3)

7.2
(4.8–10.5)

TNFα CD45RO+CD8+
(cells/mm3)

42
(24.7–79.8)

59.7
(22.75–94.25)

48.1
(34.5–82.6)

24.8
(20.7–49.8)

15.1
(11.05–26.25)

IFNγ CD45RO+CD8+
(cells/mm3)

42.7
(22.8–97)

63.4
(23.95–133.0)

42.4
(33.4–91.1)

22.8
(12.2–59.7)

24.4
(8.85–33.7)

CD40 ligand expression. Expression of the costimulatory molecule CD40L in CD4+CD45+RO+
T cells is known to be crucial for B-cell IgG production. Overall, after stimulation with
CytoStim, CD40L expression was significantly reduced in CVID patients compared to HD
(p < 0.0001) (Figure 3A). Similarly, CD40L expression on CD8+CD45+RO+ T cells was
reduced in the CVID group (p = 0.0075) (Figure 3A).

Figures 3B and 4B and Table 2 show the results in the CVID groups. The lowest
values of CD40L expression were recorded in CD4+CD45+RO+ and in the CD8+CD45RO+
memory T cells of the NR group, indicating a severe impairment of T cell activation in the
CVID patients unable to secrete anti-SARS-CoV-2 antibodies (Figures 3B and 4B).
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Cytokine production. After T-cell stimulation with CytoStim, CD4+CD45RO+ T-cells
expressing TNFα were lower in CVID patients compared to HD, whereas the count
of CD4+CD45RO+ T-cells expressing IFNγ was similar (Figure 3A,B). An increase in
CD8+CD45RO+ expressing TNFα and IFNγ was observed in CVID after T-cell stimulation
with CytoStim (IFNγ CD8+RO+: p = 0.0141; TNFα CD8+RO+: p = 0.0141). The highest
number of cells expressing IFNγ and TNFα were observed in the CVID NR and IgG-R
groups (Figure 4B, Table 2), indicating a more pronounced inflammatory signature in CVID
with impaired antibody responses to SARS-CoV-2 vaccination.
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T-cell activation in response to Spike peptide stimulation. Intracellular TNFα and IFNγ

staining demonstrated specific CD4+ T-cell responses in 36% and 28% of immunized
patients (n = 17 and n = 13, respectively) after Spike peptide stimulation (median (IQR);
TNFα: HD: 1.0 cell/mm3 (0.6–1.5), CVID: 0 cell/mm3 (0–0.5), p = 0.0002; IFNγ: HD: 0.75
(0.7–1.3), CVID: 0 cell/mm3 (0–0.3), p < 0.0001). All HD (n = 7) had specific CD4+ T-cell
responses to Spike peptide stimulation (Figure 5A). CVID groups developed similar counts
of TNFα or IFNγ specific CD4+ T cells in response to Spike peptide stimulation (Figure 5B).
Neither CVID patients nor HD showed measurable CD8+ T-cell responses (data not shown).
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4. Discussion

CVID is the most frequent symptomatic primary immunodeficiency. In most CVID
cases, the genetic causes remain undefined and the diagnosis is predominantly based on
hypogammaglobulinemia with reduced MBCs and altered antibody production. CVID
clinical phenotypes are broad, ranging from only bacterial infections to progression, to
severe phenotypes similar to Combined Immunodeficiency [11]. The type and severity of
the immune defects determine the efficacy of vaccines, with varying levels of impairment,
ranging from normal to incomplete or absent responses [12,13]. Although not mandatory
to diagnosis, vaccine challenge responses are an integral part of the diagnostic work-up of
patients with suspected CVID [14] and might be used as a prognostic marker [15]. Antibody
defects may also result primarily from impairment of the T cell compartment with a loss of
T-cell function, low frequency of circulating CD4 T cells, naive CD4 T cells, and impaired
activation and secretion of cytokines [6].

Data on the immunogenicity of the SARS-CoV-2 vaccine in patients with CVID have
been available since the beginning of the pandemic [4,5,16]. Recently, seroconversion
rates in patients with CVID have been shown to be lower than in healthy controls in a
large prospective study on 196 CVID immunized adults, accounting for 50% [17]. The
heterogeneity of the immune defects might account for the variable responses to COVID-19
vaccines [18].

Since vaccination became available, Italian CVID patients have been immunized
mostly with mRNA COVID-19 vaccines [19]. We have previously shown a low rate of
immune response after full immunization, as one third of CVID did not seroconvert and
one third did not generate specific T cells, while the antibody response was boosted in
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convalescent patients by immunization [4,5], a figure similar to that described earlier by
Hagin et al. in SARS-CoV.2 infected patients [20]. Differently, after the booster dose, a
higher number of CVID responded by increasing the antibody levels and the frequency
of specific memory B cells and T cells [21]. This heterogeneity of impaired immune re-
sponses underlines the need to link the different capacity to mount an antibody response
to immunization to the underlying immunological abnormalities described in CVID [11].

We show here that CVID-associated T cell abnormalities may contribute to the inability
to produce specific antibodies after SARS-CoV-2 full immunization. CVID non-responders
showed a more complex disease phenotype characterized by bronchiectasis and autoim-
mune manifestations, including autoimmune cytopenia, and had a high rate of SARS-CoV-2
infection post-vaccination. The non-responder status was characterized by low average
peripheral blood lymphocyte counts, low B cells, reduced MBCs, low naïve CD4+ and
CD8+ T cells, and central memory T cells. In addition, CD4+ and CD8+ T cells were less
able to express the CD40L, as summarized in Table 3.

Table 3. Summary of immune alterations and clinical conditions relevant to the lack of antibody
response to SARS-CoV-2 immunization in CVID.

Peripheral blood Lymphocyte counts Reduced

Circulating B cells Reduced

Switched memory B cells Reduced

Circulating CD4 T cells Reduced

Circulating Naive CD4 and CD8 T cells Reduced

CD40L expression in stimulated CD4+CD45+RO+ Reduced

TNFα and IFNγ expressing CD8+ cells Increased

IFNγ release by SARS-CoV-2-induced CD4+ T-cells Reduced

Chronic Lung disease, Bronchiectasis Increased

Autoimmune cytopenias Increased

While the CD40L is indispensable for the generation of the germinal center response
after immunization, TNFα is required for the formation of primary follicles [22], being
essential for the development and function of follicular dendritic cells [23]. Differently from
HD, where the SARS-CoV-2 mRNA vaccine elicits a potent adaptive immune response
in the absence of IFN-mediated inflammation [24], the CVID non-responders had a high
frequency of CD8+IFNγ+ T-cells, indicating a TH1-driven immune dysregulation [7,16,25]
but also a defective IFNγ release by Spike peptide-stimulated cells. Thus, the functional
dysregulation of T-cells might account for impaired T-B cells interaction and the lack of
specific antibody responses, confirming the role of germinal center reaction on protective
antibody generation [26,27]. On the other hand, patients who produced both anti S1
IgG and IgA antibodies showed a less perturbed clinical and immunological phenotype,
indicating a less impaired germinal reaction and a less pronounced inflammatory signature.

Since the beginning of the pandemic, T-cell responses have been found helpful in
limiting virus replication and removing virus-infected cells [28]. Spike-specific T-cells
responses were induced in CVID patients with a variable frequency [29], differently from
T cells produced after multiple exposures to viral antigens by annual influenza virus
immunization [30]. A possible explanation for this may be that since SARS-CoV-2 is a novel
pathogen, the first antigenic stimulations by immunization might be not sufficient to induce
a robust T-cell response in CVID. On the contrary, the majority of the immunocompetent
subjects vaccinated individuals developed T cell responses, with variable results observed
only in aged individuals [31].

This study has several limitations, mainly due to the low number of age- and sex-
matched HD for the analysis of specific T cell responses. A second limitation is the
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lack of data on SARS-CoV-2 viral load, since we did not regularly measure the viral
load of infected individuals, making the comparison between CVID patients and non-
immunocompromised infected subjects difficult.

Two years later, COVID-19 is still a matter of concern for people with a compromised
immune system. It is possible to hypothesize that when the pandemic turns into an endemic
infection for the general population, in patients with CVID, as in the other fragile patients,
the risk of infection might remain high. A proportion of them do not respond to COVID
vaccines, so the search for a strategy for protection is necessary. Since infection is high
in our subgroup of non-responders, at present, CVID patients might benefit from new
strategies based on prophylaxis with SARS-CoV-2 monoclonal antibodies [32,33], and early
antiviral drugs administration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11121918/s1. Table S1. SARS-CoV-2 infection in CVID patients
immunized with three doses of BNT162b2 vaccine.
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