
Local Normal Mode Analysis for Fast Loop Conformational Sampling
José Ramón López-Blanco, Yves Dehouck, Ugo Bastolla, and Pablo Chacón*

Cite This: J. Chem. Inf. Model. 2022, 62, 4561−4568 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We propose and validate a novel method to efficiently
explore local protein loop conformations based on a new formalism for
constrained normal mode analysis (NMA) in internal coordinates. The
manifold of possible loop configurations imposed by the position and
orientation of the fixed loop ends is reduced to an orthogonal set of
motions (or modes) encoding concerted rotations of all the backbone
dihedral angles. We validate the sampling power on a set of protein loops
with highly variable experimental structures and demonstrate that our
approach can efficiently explore the conformational space of closed loops.
We also show an acceptable resemblance of the ensembles around
equilibrium conformations generated by long molecular simulations and
constrained NMA on a set of exposed and diverse loops. In comparison
with other methods, the main advantage is the lack of restrictions on the
number of dihedrals that can be altered simultaneously. Furthermore, the
method is computationally efficient since it only requires the diagonalization of a tiny matrix, and the modes of motions are
energetically contextualized by the elastic network model, which includes both the loop and the neighboring residues.

1. INTRODUCTION
The structures of protein loops are critical for understanding
mechanisms in molecular recognition, signal transduction, or
enzymatic reaction. Loops can access a broad range of
conformations, which makes them relatively hard to character-
ize at an atomic level and particularly challenging for
computational prediction or design. Deep learning (DL)
methods such as AlphaFold21 and RoseTTAFold2 have
dramatically impacted the protein structure prediction field.
AlphaFold2 predicted the structures of many challenging
protein targets near experimental resolution; however, flexible
regions including flexible loops remain problematic. For
example, the predicted local model quality score of AlphaFold2
negatively correlates with main-chain flexibility.3 Nevertheless,
there are promising works for modeling antibody comple-
mentarity determining region loops.4,5 In addition to emerging
DL approaches, template-based, ab initio, or a mix of both
methods can predict stable conformations of relatively short
loops (up to 10−12 residues).6 However, accurately sampling
the great diversity of conformations of larger loops and the
transitions between them is still a computational challenge.
The main ingredient for loop modeling and loop refinement

tools, along with scoring, is the sampling method that must
satisfy the closure of the loop. Among diverse methodologies,7

inverse kinematics formulations are a popular alternative for
loop sampling that is either based on analytical solutions or
numerical optimization techniques. The main analytical
technique8−10 yields directly closed conformations of a given
tripeptide loop (or any six torsion angles) by solving a 16th-

degree polynomial. Larger loops are, in essence, solved by the
iterative application of this polynomial resultant method to
three large subfragments. Numerical methods are conceptually
simpler and can be directly applied to long loops. The cyclic
coordinate descent (CCD) method superimposes mobile and
target loop anchors by finding the optimal dihedral angle for
the current rotation bond.11 Similar to CCD, one of us
developed random coordinate descent (RCD),12 which
includes geometric filters and uses spinor matrices to yield a
more efficient conformational sampling. Random tweak,13,14

systematic conformational search,15,16 bond scaling,17−19

Monte Carlo,19−21 and hashing22 are also relevant approaches.
Despite the success of such sampling algorithms,7 improving
their efficacy and accuracy for long loops remains challenging
since the number of possible conformations increases
exponentially. Alternative or complementary approaches are
therefore needed to enhance the performance and sampling
power.
Normal mode analysis (NMA) has become increasingly

popular to predict macromolecular dynamics, from small
proteins to large assemblies, since it yields a reasonable
description of experimentally observed functional motions at
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low computational cost.23−25 NMA is widely used to efficiently
explore collective motions in many challenging problems such
as docking26−30 or structural fitting to experimental data such
as electron microscopy density maps.31−33 In the context of
loop modeling, successful applications of NMA include, for
example, the generation of alternative loop receptor con-
formations in cAMP-dependent protein kinase.34 However,
although NMA provides an efficient and rather inexpensive
description of the macromolecular conformational space, it is
less directly suitable to generate loop conformations because it
does not guarantee loop closure. To reconcile normal modes
with concerted local motions, it was necessary to bias the
sampling by drastically reducing the number of modes,
including additional constraints, and/or actively repairing the
covalent structure at the end of the loop.
In this paper, we describe a new formalism for constrained

NMA that allows representing the manifold of closed-loop
configurations as a combination of normal modes. Perturbing
the loop structure with any combination of such modes
directly generates alternative conformations that fulfill loop
closure. Unlike other methods that generate concerted motions
in loops, our approach is not limited to modifying a few
dihedrals, but it considers all dihedrals simultaneously. It is
very efficient; it only requires the diagonalization of a tiny
matrix. Moreover, since the elastic network considers both the
loop and neighboring residues, the loop closure problem
remains grounded in the context of the whole protein. These
unique features, as we describe below, allow us to efficiently
explore the accessible loop conformations in a new and
promising way.

2. METHODS
2.1. NMA in Internal Coordinates. The details of our

NMA framework in internal coordinates were described
previously35−37 and are similar to those implemented in ref
38. Briefly, the internal mobile coordinates are defined by the
canonical backbone dihedral angles, while the remaining
dihedral angles and all covalent bond lengths and angles are
fixed. The potential energy is approximated by an elastic
network of harmonic oscillators connecting the heavy atoms
and vibrating around the equilibrium conformation repre-
sented in the PDB file. The corresponding vibrational
displacements are directly computed from the Lagrangian
equations of motion by solving the generalized eigenvalue
problem in internal coordinates39

=Hv Tv2 (1)

where H is the Hessian matrix or the second derivatives of the
potential energy, T represents the kinetic energy matrix, v =
(v1,v2,...,vn) is the eigenvector matrix in the space of the n
internal coordinates of the system q = (q1,q2,...,qn), and ωis the
diagonal matrix of the eigenvalues (squared oscillation
frequency). For simplicity, we do not implement the Eckart
conditions, which impose that the kinetic energy does not
contain any rigid body motion. This is not necessary here,
since our goal consists of sampling the loop conformations,
which is achieved since the normal modes constitute a
complete system even without the Eckart conditions.

2.2. Constrained NMA. Even though analytical solutions
to the equations of motion extracted from the whole protein
structure can describe loop motions, the application of NMA
to a loop does not guarantee its closure. We aim to determine
the normal modes in such a way that their application from an

initial anchor N-terminal guarantees that the C-terminal end
remains properly connected and oriented. For this purpose, we
implement an NMA variant that enforces C geometrical
constraints g1, g2, ..., gC.
In general, the eigensystem of a matrix can be formulated as

the minimization of the quadratic form of such a matrix in the
vector space (v1, v2, ..., vn) subject to the normalization
constraint ∑a = 1

n va2 = 1 imposed through a Lagrange multiplier
that coincides with the eigenvalue (subsequent eigenvectors
can be regarded as minimization problems in the orthogonal
subspaces). In the same way, constrained normal modes can be
formulated as a constrained minimization problem with
Lagrange multipliers λk associated to each constraint gk. The
resulting equations are
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In these n + C equations, the eigenvector components vb, the
Lagrange multipliers λk, and the eigenvalue ω2 must be
determined self-consistently. Therefore, we define the
extended generalized eigenvector problem HBv = ω2TBv with
eigenvector components (v1, v2, ..., vn, λ1, λ2, ..., λC) and
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Here, Jg denotes the Jacobian matrix of the C constraints
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HB is called the bordered Hessian. It involves the second-
order derivatives of the Lagrange function, defined as the sum
of the potential energy and the Lagrange multipliers for the n +
C extended coordinates. It is easy to see that the modes of this
extended eigensystem coincide with the solutions of the
constrained eigensystem (eq 2). Note that this formulation is
general: a constrained eigenvector problem can be posed as an
extended generalized eigenvector problem.
The extended kinetic energy TB has C zero components

corresponding to the λak, and the system has C additional null
modes corresponding to the constraints. Therefore, the
extended eigensystem has n + C − 2C = n − C useful
eigenvectors corresponding to the constrained normal modes
of the loop. Note that the normal modes produced by this
method (vB) are orthogonal in the n + C dimensional space of
internal degrees of freedom plus constraints, but not
necessarily in the n-dimensional space of internal degrees of
freedom.
The normal modes generated by this formalism encode

motions that exactly respect the selected constraints but only
near the initial conformation. This is an inherent limitation of
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the linear approximation between internal and Cartesian
coordinates. Therefore, to avoid potential geometrical
distortions at larger excursions from the initial structure (e.g.,
shifts at the C-terminal end), the angular motions are limited
to 1° at most and NMA calculations are updated iteratively
upon every move. The new modes are matched to the previous
ones using their dot product. This remains computationally
efficient since each step only requires the computation and
diagonalization of a very small matrix.

2.3. Loop Closure Constraints. We consider a loop
consisting of N flexible residues and terminating with a rigid
carboxy-terminal (Ct) anchor residue. We take as degrees of
freedom the φ and ψ angles of the N flexible residues plus the
φ angle of Ct, that is, n = 2N +1. To maintain the loop closed
with the proper orientation, it is sufficient to fix the Cartesian
coordinates of three atoms, for example, the N, Cα, and C
atoms of Ct, with respect to the combined effect of motions
along the n internal coordinates qa. In practice, only C = 6
constraints are necessary, since the N−Cα and Cα−C bond
lengths and the N−Cα−C angle are fixed. For a loop of N
flexible residues, the number of effective modes of motion is
thus equal to n − C = 2N − 5. We choose the first three
constraints as the Cartesian coordinates of the Cα atom in Ct

= = =g r g r g rx y z1 C , 2 C , 3 C , (5)

The other three constraints fix the coordinates of the N and
C atoms of Ct, using a reference frame built around the Cα

atom: =u NC / NC , = × ×
÷÷÷÷÷÷÷÷÷ ÷÷÷÷÷÷÷÷÷

v NC C C/ NC C C
, and w⃗ = u⃗ × v⃗.

= = =g r g r g rv w v4 N, 5 N, 6 C, (6)

The fixed N−Cα and Cα−C bond lengths and the N−Cα−C
angle preclude explicitly adding more constraints (e.g., rN,u, rC,u,
and rC,w).

2.4. Benchmark Loop Data Sets. Our approach is
validated on a set of highly variable loops observed in multiple
stable conformations and compiled by others.40 This set
includes 30 loops that are 10−15 residues long. Each loop case
is associated with an ensemble of 2−11 different conforma-
tions. The complete data set A includes 392 possible
transitions considering each pair of structures of the same loop,
both in the forward and backward direction. After super-
position of the full initial and final structures using KPAX,41

the backbone RMSD between initial and target conformations
of the loop ranges from 0.1 to 11.3 Å, with an average of 2.5 Å.
We also consider the subset C of the 184 most challenging
cases, where the initial and final loop conformations differ by
more than 2 Å. This set is further divided into CS and CL,
which contain 80 challenging conformational transitions for
shorter loops (10−12 residues) and 104 for longer loops (13−
15 residues).
A second benchmark set consists of 15 exposed and diverse

loops employed to test loop predictions using replica exchange
molecular simulations (REMD) with RSFF2C force field.42

These loops had a resolution of <2.0 Å, Rfactor < 0.3,
sequence identity <20%, and an average B-factor < 35. We
extend the length of the loops by one residue at both ends to
minimize the deviations of the anchors found in the REMD
simulations. The length of the loops ranges from 12 to 18
residues. The initial MD structures were prepared via implicit
MD simulations at high temperatures to guarantee that they
are far away from the crystallographic ones (>10 Å).

Trajectories and initial REMD structures and the correspond-
ing simulations were kindly provided by the authors, with
structures already superimposed by the anchors.

2.5. Comparison with Molecular Dynamics Simula-
tions. Besides evaluating the ability of our approach to
describe the transitions between pairs of loop conformations,
we used the REMD simulation data to compare the
conformational ensembles generated by our NMA in torsion
angles with MD equilibrium ensembles. In practice, we focus
on the last μs of these 5 μs long REMD trajectories. These
trajectories include rigid loops such as 2ns0, 4dpb, 3bv8, and
5k2l with RMSD < 1 Å over the last μs simulation and more
flexible loops such as 5e9p, 3k3v, and 3dkm with deviations
∼2−4 Å.
For each of the 15 loops, the NMA input structure was

chosen as the backbone structure closest to the MD ensemble
average, which belongs to the most populated conformations
and is typically close to the crystallographic structure. The
NMA ensemble is created by first generating a random
combination of modes that define a target direction. The
conformation of the loop is iteratively flexed in this direction
until reaching a maximum amplitude, chosen to have similar
RMSD deviations to the REMD simulations (1.5 Å for the
rigid loops and 2−4 Å for the flexible ones). This process is
repeated until 10,000 loops are generated, and we save the
loop coordinates when they deviate more than 0.1 Å RMSD.
These NMA “pseudo-trajectories” around equilibrium are

compared with the REMD trajectories through principal
component analysis (PCA), that is, we diagonalize the
Cartesian covariance matrix of the correlated fluctuations of
pairs of backbone atoms about the closest to average loop
structure to obtain a set of eigenvectors and eigenvalues. The
eigenvectors describe collective directions and the eigenvalues
represent the amount of variance explained by each
eigenvector. For each loop, we compute the overlap between
the spaces spanned by the m most relevant eigenvectors Vi

REMD

of the REMD and the m corresponding NMA eigenvectors
Vi

NMA as43,44

= ·
= =m

V V1
( )

i

m

j

m

i j
1 1

REMD NMA 2

(7)

Here, the eigenvectors are ranked according to their
contribution to the structural variance. The overlap is one if
all eigenvectors and all degrees of freedom are used; however,
we limit the sum to the smallest number of eigenvectors
needed to explain 90% of the variance in each respective
ensemble. Similar results hold if we consider a fixed number of
modes (e.g., 10 or 20 first modes; see Table S1). We also
compute Z-scores in order to refer the gamma indexes to a
background model

=Z
std( )score

XY(Observed) XY(Random)

XY(Random) (8)

where the random models were obtained by diagonalizing a
pseudo-covariance matrix obtained by random permutation of
the backbone atoms for each snapshot, and the standard
deviations were obtained by considering 1000 different
random models.
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3. RESULTS
3.1. Illustrative Example. To illustrate our proposed

formalism, we performed constrained NMA on a loop of N =
11 residues, using the φ and ψ dihedral angles as variables. The
motions of the loop, along the directions defined by each of
the 2N − 5 = 17 constrained modes, are visualized in Figure 1

and Movie S1. It is apparent that these modes encode
concerted rotations around the backbone dihedral angles, such
that the stereochemistry at loop ends is preserved. As with
unconstrained NMA, low-frequency modes (e.g., modes 1−3)
tend to correspond to more collective motions, whereas the
high frequency modes (e.g., modes 16−17) are more local.
Although we illustrate here only single modes, perturbing the

loop structure with any combination of modes also generates
valid closed-loop conformations.
It is important to emphasize that the motions sampled by

our method do not have to arbitrarily select driving torsions, in
contrast with some popular approaches,8−10 which are typically
limited to modifying six dihedrals simultaneously.

3.2. Validation of the Closed-Loop Modal Space. To
verify that the motions encoded in our local NMA modes
provide sufficient coverage of the closed-loop conformational
space, we evaluate the ability of our model to reproduce 392
structural transitions between experimentally observed stable
loop conformations (see Section 2). Starting from the initial
structure, the conformation of the loop is progressively flexed
toward the target structure using only the motions encoded in
the constrained modes. At each step, we compute the modes
and linearly combine them according to their overlap with the
target direction, that is, the vector between initial and target
structures. The process is repeated iteratively until con-
vergence.
Final RMSD obtained between the flexed and the target

loop conformations against the initial RMSD for all 392
transitions are shown in Table 1 and Figure S1. In the full data
set A, the average RMSD drops from 2.5 to 0.55 Å (Table 1).
Note that we cannot reach complete convergence because our
internal normal modes do not modify bond angles, bond
lengths, and ω torsion angles (see ref 45). There is some
correlation between initial and final RMSD (Figure S1), but
our procedure remains successful even for the most challenging
cases. Indeed, in the subset C that only includes large-
amplitude transitions, the average RMSD of 4.2 Å is reduced to
0.76 Å. Interestingly, even though the conformational space
increases exponentially with the length of the loop, the average
final RMSD is slightly smaller (0.69 vs 0.85 Å) for the longer
loops ( CL, size 13−15) than for shorter loops ( CS, size 10−
12). This nicely illustrates one of the main advantages of our
methodology, which lies in its ability to explore the
conformational space by altering all dihedrals simultaneously
in a concerted manner even with long loops.
Two individual examples are given in Figure 2 and Videos

S2 and S3. In the most extreme case, the modal displacements
are sufficient to capture the large 11.3 Å backbone RMSD
conformational change displayed by a loop in PPPK kinase.
Although this is one of the largest amplitude transitions in our
data set, the difference between target and final conformations
is barely 1.2 Å. In the other example, the loop conformations in
two structures of protein MopE originally present an RMSD of
3 Å, and this deviation is reduced to 0.5 Å after the application
of our morphing procedure.

Figure 1. Constrained normal modes of the 66−76 loop in the
structure of the Bordetella bronchiseptica hydrolase (PDB: 3IRS, chain
C). The conformational ensembles (rainbow colored) represent the
motions encoded in each mode. They are generated by perturbing the
loop conformation along a given mode direction until reaching an
RMSD of 3 Å from the initial loop structure (light blue backbone
stick representation). The displayed ensembles include intermediate
conformations, every 0.25 Å along the pathway. The rainbow colors
indicate the amplitude and direction, from positive (yellow) to
negative (red). Only the 3 lowest and the 2 highest frequency modes
are displayed here, but the motions along all 17 modes are visualized
in Movie S1.

Table 1. Mean Values of the Initial and Final Morphing RMSD

data set Npairs RMSDainitial RMSDbfinal RMSDcfinal (flanks aligned) RMSDdfinal (incl. ω)

A 392 2.5 ± 2.5 Å 0.55 ± 0.33 Å 0.51 ± 0.31 Å 0.44 ± 0.31 Å

C 184 4.2 ± 2.2 Å 0.76 ± 0.28 Å 0.69 ± 0.27 Å 0.63 ± 0.27 Å

CS 80 4.3 ± 2.1 Å 0.85 ± 0.29 Å 0.73 ± 0.26 Å 0.71 ± 0.31 Å

CL 104 4.2 ± 2.3 Å 0.69 ± 0.27 Å 0.65 ± 0.26 Å 0.58 ± 0.23 Å
REMD 15 10.4 ± 3.3 Å 0.71 ± 0.18 Å 0.71 ± 0.17 Å 0.64 ± 0.25 Å

aMean and standard deviation of the initial RMSD between pairs of experimentally observed loop conformations, on the full dataset and three
subsets (see Section 2). bMean and standard deviation of the final RMSD between target and reconstructed loop conformation. cThe procedure is
performed after the superposition of the loop-flanking residues, rather than the complete structures. The flanking residues are the anchors and two
more on either side of the loop. dThe ω backbone dihedrals are considered as degrees of freedom, along φ and ψ.
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Overall, these results demonstrate the ability of the modal
space derived from our formalism to describe transitions
between alternative closed-loop conformations, even in the
case of longer loops and/or large-amplitude conformational
changes. It should be noted that some unavoidable factors
preclude an exact match between the modeled and target
conformations. First, the structural superimposition of the loop
anchors in the two experimental conformations is not perfect.
In fact, the loop-flanking residues (three on each side of the
loop) present an average RMSD of 0.7 Å after the
superposition of the two structures. This imposes a back-
ground bias impossible to recover since only the loop residues
are free to move. We repeated our procedure after the
superposition of only the loop-flanking residues rather than the
complete structures. The average RMSD for the loop-flanking
residues is then reduced to 0.3 Å, but the results for the loops
themselves are only slightly improved (Table 1). Another,
probably more critical, source of discrepancy lies in the fact
that only the φ and ψ dihedral angles are considered as degrees
of freedom. The other internal coordinates (bond lengths,
valence angles, and ω dihedrals) are fully rigid, even though
they often take slightly different values between the pairs of

experimental conformations. As shown previously, such small
differences in internal coordinates create deviations that
quickly propagate and can have a major impact on the
reconstructed Cartesian coordinates, even on the scale of small
peptides or loops.45 Including the ω dihedral angles in the set
of degrees of freedom considered by our procedure does
indeed slightly improve the performances, with a final RMSD
of 0.44 Å, down from 0.55 Å when only φ−ψ are considered
(Table 1).
Furthermore, we examined a set of large conformation

changes of loops whose initial structure was generated by
perturbing the loop in the crystallographic structure through
MD simulations at high temperature.42 We carried out a
similar morphing experiment to test how our NMA approach
covers the closed-loop conformational space in these
transitions of extreme amplitude, and we found that the
backbone RMSD between initial and target structures drops
from 10.42 to 0.64 Å (Table 1).

3.3. Comparison with Molecular Dynamics. The
REMD simulation data were used to evaluate the corre-
spondence between the conformational space generated by our
approach and MD equilibrium ensembles (see Section 2).
Because of its high computational cost, the application of
atomistic MD simulations is often limited to a post-processing
stage to refine loop solutions provided by much faster loop
sampling methods. Our NMA in torsion angle space is much
faster, but is limited with respect to MD simulations: (1) Only
the loop φ−ψ torsion angles are modified, while all other
internal degrees of freedom are fixed. Therefore, it does not
include potential conformational changes of other parts of the
protein. (2) Our approach does not consider side chains,
neither as degrees of freedom nor as interacting atoms. (3)
Our normal modes are based on a structure-based energy
function (elastic network model) that places the initial
structure at the minimum of the energy. In contrast, the
physics-based energy function adopted in MD/REMD can be
used to also score and predict a most stable loop structure. (4)
The harmonic approximation is applied, which is not accurate

Figure 2. Two illustrative morphing cases: (1) on the left: transition
of loops 81−93 of the PPPK kinase, from 3hsz (gray) to 3ht0
(orange); (2) on the right: transition of loops 317−337 of the MopE
protein, from 2vov (gray) to 2vox (orange). The corresponding final
morphed conformations are represented in blue.

Table 2. REMD and NMA Sampling Space Comparation

RMSDa modesb 90%varc Bfd RMSDe cryst. NMAf

MD NMA MD NMA γ90% Z90% s avg NMA MD time speed

2eaq 1.5 1.4 2 8 0.64 602 0.85 1.51 1.15 0.99 37.8 1.2
5w0g 1.0 1.3 6 5 0.69 184 0.56 0.75 0.48 0.32 27.2 1.6
2ns0 0.7 1.3 9 6 0.69 196 0.90 0.57 0.44 0.32 28.6 1.2
4dpb 0.8 1.3 7 6 0.73 271 0.75 0.50 0.42 0.27 30.5 2.0
5nod 1.0 1.4 5 4 0.80 183 0.92 1.18 0.47 0.40 26.1 1.5
6elm 1.6 1.3 7 6 0.70 559 0.93 1.49 0.96 0.48 32.2 1.7
3bv8 0.5 1.3 14 5 0.78 111 0.97 0.30 0.26 0.25 31.8 1.5
5e9p 2.8 2.3 3 5 0.71 47 0.98 2.34 1.08 0.31 31.7 1.8
4bpf 1.3 1.3 4 5 0.45 48 0.90 0.57 0.44 0.26 35.2 1.5
6fmb 1.2 1.3 8 6 0.74 116 0.89 0.99 0.55 0.41 41.3 0.9
5k2l 0.8 1.3 10 5 0.74 279 0.93 0.55 0.33 0.21 31.7 1.3
3k3v 3.5 2.4 5 5 0.67 38 0.97 1.74 1.32 0.84 36.7 0.9
3fdr 1.1 1.1 7 9 0.80 231 0.78 0.62 0.48 0.45 55.0 3.1
4qy7 1.3 1.2 5 5 0.65 144 0.60 0.81 0.69 0.46 37.3 5.0
3dkm 3.6 3.4 4 3 0.73 107 0.89 3.63 2.46 2.40 39.8 1.7
Avg 1.5 1.5 6.4 5.5 0.70 207 0.85 1.13 0.78 0.56 34.8 1.8

aBackbone RMSD deviation from the average reference loop sampled by REMD. bNumber of eigenvectors needed to explain 90% of the variance.
cCorresponding similarity indexes and Z-scores obtained with 90% variance. dB-factor Spearman correlations. eMinimum of RMSD deviation with
respect to the crystal conformation. fRequired time for the sampling 10K loops, and speed factor with respect to RCD sampling.
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for large displacements. Since normal modes constitute a
complete system, (3) and (4) do not restrict their ability to
reproduce any possible displacement in the space of torsion
angles. However, if we only consider a limited set of low-
frequency normal modes in order to increase sampling
efficiency, the approximations of the energy function may
limit the results.
Therefore, we compute the overlap γ between the most

relevant PCA eigenvectors from the NMA and MD conforma-
tional ensembles, that is, we consider the smallest number of
eigenvectors that can explain 90% of the variance in each
conformational space. The summary of comparative results is
shown in Table 2 and detailed in Table S1. Around 5−6 modes
are needed to explain 90% of the variance of the NMA
ensemble, whereas for the MD ensemble, this number varies
from 2 to 14. Even though the NMA only considers φ and ψ
torsion angles while the MD moves all Cartesian coordinates,
the overlap is equal to 0.7 on average, indicating an imperfect
but good similarity between the two ensembles. The large Z-
score values (>100 in most cases) confirm that such overlaps
are extremely unlikely to occur randomly.
In addition, the B-factor profiles derived from NMA and

REMD eigenvectors correlate well, indicating a similarly good
correspondence at the residue level (Tables 2 and S1 and
Figure S2). The Spearman’s correlation coefficients are
between 0.76 and 0.98, except in two cases: the highly
localized flexibility at the C-terminal loop of 4qy7 and the
larger flexibility at the N-terminal (Nt) end of 5w0g observed
in the atomistic simulations are not captured by our NMA. A
possible explanation for the former case is related to the fact
that the high flexibility is localized at the end of a region with
high helix propensity (fraction 0.37, sequence DDLLKR). The
explanation for the latter case is that the Nt anchor is quite
mobile, as shown in Figure 4 of the report by Feng et al.42

In Table 2, we also show the RMSD from the original crystal
structure. The NMA approach reaches configurations almost as
close to the crystal as the best match obtained during the
REMD, although bond angles and lengths are fixed and a
detailed energy model is not considered. Admittedly, the
starting structures are already close to the targets (0.99 Å on
average), so the improvements are necessarily small. We
observed an improvement over 1 Å in two cases: 5e9p and
3dkm, where the initial average loop is more than 2 Å away. In
the first case, the REMD simulation reaches the crystal
conformation (0.31 Å) and NMA is close (1.08 Å). For 3dkm,
the loop with the largest initial average RMSD (3.63 Å), both
REMD and NMA are still 2.40 and 2.46 Å away.

3.4. Computational Efficiency. Besides the potential
limitation with large and flexible loops, the major drawback of
MD-based loop sampling is the computational cost. Interest-
ingly, the combination of NMA in internal coordinates with
REMD and other MD sampling strategies has been successfully
employed to drastically reduce this computational cost.46,47

Our NMA approach is fast. It only takes on average 35 s to
generate and save 10k closed conformations for the loops
included in the REMD benchmark, that is, less than 4 ms per
loop on a Linux box with an I7-6770HQ processor. In Table 2,
we compare the run time of our algorithm with RCD,12 one of
the fastest methods to generate an ensemble of backbone
closed loops, also developed by us. The NMA is on the overage
1.8 times faster than RCD in generating the same number of
closed loops. Note that these sampling algorithms are quite
distinct in nature: RCD samples the geometrically feasible

space of closed loops in a stochastic manner rather than
exploring the space around a closed loop exhaustively. The
faster NMA approach also yields an improved agreement with
MD ensembles, with an average overlap γ = 0.70 vs 0.66 for
RCD and average B-factor correlation of 0.76 vs 0.71 for RCD
(Tables S1 and S2). Note that the overlap calculated between
the last and the previous last μs of the simulation had much
higher values of 0.9 (Table S3), as they correspond to an
almost “perfect” match.

4. DISCUSSION
We introduced here a novel and simple formalism to generate
alternative closed-loop conformations by perturbing an initial
structure with constrained modes. These modes naturally
encode concerted motions of all the dihedral angles that keep
the loop properly closed. Moreover, it does remain computa-
tionally efficient, since the major burden is the solution of an
eigenvalue problem of size 2N − 5, where N is the number of
flexible residues.
We showed an acceptable resemblance of the ensembles

around equilibrium conformations generated by long REMD
simulations and constrained NMA on a set of exposed and
diverse loops. Despite all the approximations of our NMA
approach with respect to more accurate MD simulations
(Section 3.3), this successful correspondence suggests that the
constraints at the ends and the neighboring residues largely
limit the conformational space, and also that loops behave
more harmonically than expected. Using the REMD data set
and other experimentally observed highly variable loop
conformations, we ensured that our method is able to
reproduce closed-loop structural transitions with high precision
and to comprehensively explore the accessible conformational
space of any loop. It is worth noting that such interpolations
between structures, with a simple RMSD-based step descent
procedure, do not constitute the ultimate objective of the
proposed methodology. The most interesting and useful
feature of our new formalism is the potential to efficiently
explore the possible motions of a flexible loop around a given
equilibrium structure, which can be ranked using more
elaborate and detailed energy functions. Although our
approach does not provide an energetic evaluation or scoring,
it is conceptually simple and relatively easy to implement, and
it can readily be incorporated into current loop refinement/
modeling scoring protocols, or even merged with REMD and
other MD sampling strategies.46,47 To this end, source code,
Linux binaries, all the test sets, and the corresponding results
are fully available. Another advantage of our approach is that
the elastic network model includes both the loop and the
neighboring residues. Fully contextualized, albeit coarse-
grained, energetic and clash-avoidance considerations are
therefore implicitly embedded within the computed modes.
In order to further progress from this innovative formalism

toward a fully fledged loop modeling package, we plan to
include it in our loop modeling RCD+ server as an alternative
sampling strategy.48 The combination of both approaches
could yield a more effective search strategy by exploiting the
stochasticity of RCD and the local exhaustiveness of the NMA
approach. In principle, this method is not limited to short
loops and could be applied to sample flexible protein regions of
any size. However, more research is needed to apply it to larger
protein segments motions. We also aim to combine it with
regularized linear fitting approaches45,49 for fine-tuned
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sampling and to alleviate the impact of small variations in C-
terminal bond length and valence angles.
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