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Abstract

Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long
term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has
only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and
reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts
reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of
agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable
states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in
payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm.
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Introduction

Uncertainty in negotiation can be caused by a number of

factors, such as fuzzy opponent type, unknown strategies, and

deadlines [1]. Hence, one of the central topics in negotiation is

how to design agents with higher adaptability for changing

circumstances [2,3]. In the environment of incomplete informa-

tion, the primary concern is how to acquire more information and

use it appropriately to reach consensus through concession in

negotiation [4–6]. Through feedback, the agents learn how to

make future decisions. Because the learning effect in the short term

depends strongly on the details of the negotiation process and the

characteristics of the opponent, it is difficult to evaluate a learning

model through sparse interactions. In addition, because heteroge-

neous agents behave differently, it is reasonable to assess the

performance from a macroscopic view [7,8].

To address the uncertainty, learning in the long term

emphasizes strategy selection and adjustment through repeated

negotiations using qualitative or quantitative methods. For

instance, Eduard Gim’enez-Funes et al. have applied a qualitative

approach, case-based reasoning, to find the appropriate strategy

by comparing the similarity of current situations to history [9].

Matos et al. have applied a widely used quantitative model, an

evolutionary algorithm, to investigate long-term behavior [10].

This approach is derived from biology, with simple rules to

evaluate payoff [11]. A number of researchers have investigated

strategy evolution in the long term in recent years [12–17]. In the

genetic algorithm, agents with higher fitness are passively selected

and put into the mating pool to replicate the next generation,

without considering the learning behavior of the agents. This

approach myopically assesses the performance of agents with

payoff only in the current period, while humans learn by weighing

both the historical information and the current performance. If the

agent represents a person in reality, it is reasonable to incorporate

individual learning because humans adjust strategy through

experience with initiative.

Fudenberg and Levine have investigated long-term strategy

dynamics, including replicator dynamics and reinforcement

learning [18]. Because reinforcement learning is a type of

individual learning while the evolutionary approach concerns

population dynamics, prior literature has generally examined them

separately. However, Börgers, T. and R. Sarin [19] find that a

type of continuous time reinforcement learning can converge to an

equilibrium of replicator dynamics, which indicates some interac-

tion between population dynamics and individual reinforcement

learning. Reinforcement learning, with its basis in psychology

[20,21], evaluates the reward by weighting historical and current

payoffs and has been applied to human strategy adjustment as well

as to artificial intelligence [22–24]. Recently, researchers have

begun to integrate different learning approaches to determine an

agent’s optimal strategy in the case of incomplete information.

Reinforcement learning is a good fit when information on the

opponent and environment is limited. To this end, agents in our

model adopt reinforcement learning to calculate the reward of

each strategy and then use replicator dynamics to adjust the

probability of strategies. We integrate replicator dynamics and

reinforcement learning to explore the efficiency, fairness, and

strategy convergence in negotiation. In addition to the efficiency

and strategy evolution, fairness has also been a concern of many

researchers [25,26]. The simulation results indicate that our

approach achieves higher reward, shorter negotiation time, and a

lower degree of greediness of strategies than the classic evolution

model. It is also shown that the weight tradeoff between current
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and historical experience impacts the negotiation performance and

learning effect to a large extent.

Methods

This model is based on the alternate offering mechanism of

Rubinstein, in which agents adopt the time-dependent concession

function [10]. The agents use reinforcement learning to accumu-

late experience and update the probability of each strategy using

replicator dynamics. The negotiation process is illustrated in

Figure 1.

Negotiation rules
The reservation prices Rs and Rb of the sellers and buyers are

uniformly distributed between Pmin and Pmax. In each period,

seller-buyer pairs are randomly selected and begin to negotiate if

RsƒRb. The offering intervals for a buyer and a seller are

(Pmin,Rb) and (Rs,Pmax), respectively. They alternate in making

offers, and the discount rates of sellers and buyers are Cs and Cb,

respectively (the first offer is proposed by the buyer by default). If

an agent rejects the offer of the opponent, he then proposes his

own offer (Ps for the seller and Pb for the buyer), and the accepted

price is P. The payoff of the seller is Us~(P{Rs) � Ct
s, and the

payoff of the buyer isUb~(Rb{P) � Ct
b, where t is the negotiation

time.

Concession functions
The time-dependent strategies for buyers and sellers are Pb(t)

and Ps(t), respectively, and the concession rate increases with

time. Pb(t) and Ps(t)are represented in equation (1) as follows:

Figure 1. The negotiation model. The circles denote buyers; triangles denote sellers, and ellipses denote environmental factors. The values
x1 ,x2 ,x3 are probabilities of the frugal, cool-headed and anxious strategies of buyers, respectively, and y1 ,y2,y3are the corresponding strategies for
the sellers. The shaded area represents the selected strategy in the current period. At the end of each negotiation period, the buyers (sellers) calculate
the reward through reinforcement learning and update x1 ,x2 ,x3(y1 ,y2 ,y3) accordingly. The process continues until the strategies of all agents in the
market converge to a stable state.
doi:10.1371/journal.pone.0102840.g001
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where g denotes the time pressure of negotiators, and ki
b,kj

s(0,ki
b,

kj
s,1) denote the greediness of buyers and sellers, with smaller ki

b

and kj
s values indicating higher levels of greediness. Three

strategies with different degrees of greediness exist for each

population: 0,k1
b,k2

b,k3
b,1, 0,k1

s ,k2
s ,k3

s ,1. Here, k1
b rep-

resents the frugal strategy; k2
b represents the cool-headed strategy;

and k3
b represents the anxious strategy for the buyers as well as for

the sellers. D refers to the initial offer parameter, which creates an

offer closer to the reservation price, with a larger D; l refers to the

concession type, which is defined as a convex function for buyers

and a concave function for sellers when lw1. The buyer and the

seller propose offers alternately until an offer is accepted, which

occurs when the agent receives a higher payoff than refusing it by

proposing his own offer, which is expected to be accepted by the

opponent in the next round. The buyer accepts an offer Ps
t when

Rb{Ps
twCb(Rb{Pb

tz1), and a seller accepts Pb
t when

Pb
t {Rs

wCs(P
s
tz1{Rs).

Learning rules
The agents update their rewards according to feedback based

on historical information and eventually develop a negotiation

habit [27]. Due to the constantly changing environment, the

reference value of information decreases with time, and thus, the

agents assign different weights to historical and current payoffs.

The reward function is defined as follows:

ui
t~w � ui

t{1z(1{w) � vi
t, ð2Þ

where ui
t is the average reward of strategykiin period t, w is the

weight of the historical payoff, and vi
t is the average current payoff

strategy ki. At first, each agent has a subjective probability for

every strategy and thereby chooses one strategy to negotiate. In

period t, the agent chooses strategy k1 with probability x1
t , k2

withx2
t , k3 with x3

t , and x1
t zx2

t zx3
t ~1. The agent updates the

probabilities according to the rewards of each strategy, where a

higher reward leads to an increased probability in the next period

and vice versa. Until the total negotiation frequency reaches N, the

agents adjust their strategy, which is defined as a learning period.

The adjustment refers to replicator dynamics, but it is slightly

modified to fit the reality:

f i
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where ut~
P3
i~1

xi
t � ui

t is the average payoff, and ui
t is the payoff of

strategy ki in period t. In Eq.(3), f i
tz1 is the temporary probability

of strategy i, and
P3
i~1

f i
tz1does not necessarily equal 1. In Eq.(4),

xi
tz1 is the normalized result, which ensures

P3
i~1

xi
tz1~1. In

period t+1, the probability of strategy ki is proportional to
ui

t

ut

,

which means that the probability increases in the next period

when ui
t is more than ut and decreases in the opposite case. We

define the adjustment precision as s with the default value of 0.01.

When the change in probability is smaller than s
(Dx(tz1){x(t)Dvs), the adjustment size is s. When xi

tv0:01, we

set xi
t~0, which means that this strategy has vanished. When

xi
tw0:99, we set xi

t~1, which means that the agent has converged

to this strategy. In addition, US denotes the payoff of the seller

without learning, and US� denotes the payoff with learning.

Similarly, UB and UB� denote the corresponding meanings for

the buyer. Fairness without learning is evaluated by
UB

US
, and

fairness with learning is evaluated by
UB�

US�
.

Experiments
The first experiment investigates the general performance of the

agents when g = 6, k1 = 0.3,k2 = 0.5,k3 = 0.7, and w = 0.9. The

buyer proposes the initial offer, and the seller continues to

negotiate, with the discount rate Cs and Cb changing within the

range of 0.5–1 and a minimum adjustment size of 0.025. The

parameters in the control group without learning are the same as

in the above-mentioned group except that agents in the control

group do not adjust the probabilities of strategies.

The second experiment explores the impact of the weights of

historical information on the negotiation result and strategy

convergence. The adjustment range of w is 0.2–0.9, and the size is

0.1. Other parameters are the same as in the first experiment. We

observe the negotiation result and calculate the related variables

using the formulas in Table S1.

Results

Performance of the negotiation agents
The positive growth rate of the payoff in most cases means that

the learning approach is beneficial to both buyers and sellers. As

the discount rate decreases (see Figure 2A), the growth rate

gradually increases. The reason may be that a lower discount rate

encourages the intention of accepting an offer. The negotiation

time is stable and only varies slightly with the change in discount

rate, so it is not illustrated in Figure 2. Figure 2B illustrates the

fairness with and without learning, where the noticeable difference

between the two indicates that learning has changed the division of

payoff between buyers and sellers. The distinction of the growth

rate of payoffs in Figure 2A between the two populations is also the

major reason for the variation of fairness with learning. Initialized

with random subjective strategy probabilities, most agents finally
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converge to a cool-headed strategy. Only a small portion of agents

converge to an anxious strategy or frugal strategy after periods of

evolution. While the convergence results of the two populations

are somewhat different, the patterns of strategy distribution are

similar. The result shows that learning has changed the habit of

strategy adoption, and most agents become sensible by using a

cool-headed strategy despite lacking emotion.

Impact of weight of historical information
In Figure 3A, the joint payoff of buyers and sellers changes only

slightly when the weight increases from 0.5 to 0.9. As the weight

drops below 0.5, the payoff declines sharply with the decreasing

discount rate and reaches a minimum at approximately 0.8. It is

obvious that the agents who emphasize historical experience

perform better than the agents who ignore it. In Figure 3B, the

negotiation time remains stable when the weight is above 0.5 and

rises obviously until the weight drops below 0.5. The discount rate

in our model indicates that more rounds of negotiation lead to

lower payoff and inefficiency of the market. In Figure 3C, there is

only a minor fluctuation of fairness when the weight rises above

0.5, and fluctuation becomes noticeable when the weight drops

below 0.5. It can be concluded that the profit division of the

market becomes unfair if the agents rarely consider prior

information.

To summarize, agents who value long-term experience achieve

more stable and efficient performance such as joint payoff,

negotiation time, and fairness.

Figures 4A, 4B and 4C illustrate the impacts of the weight of

historical information on buyers. The figures demonstrate that the

convergence strategies remain stable when the weight is above 0.4

but vary significantly when the weight drops below 0.4. As the

weight is high, the majority of the market adopts the cool-headed

strategy, with the anxious and the frugal strategies as minorities.

When the weight decreases, the advantage of the cool-headed

strategy declines, while the frugal strategy increases and the

anxious one remains stable. The results only change slightly with

decreasing discount rate when the weight is high. In contrast, the

results fluctuate substantially as the weight reaches a low level.

Figures 4D, 4E and 4F illustrate the impacts of the weight of

historical information on the convergence of the frugal, cool-

headed, and anxious strategies of the sellers, respectively. The

general trend shows that the greediness of the agents rises notably

when the weight decreases. Specifically, we find that the frugal

strategy increases, while the cool-headed strategy simultaneously

decreases. The frugal strategy is the minority when the weight is

high and rises gradually when the weight drops, and it proves to be

dominant at a high discount rate when the weight drops to

approximately 0.2(see Figure 4D). The cool-headed strategy shows

Figure 2. Negotiation performance of the agents. Figure 2A illustrates the growth rate of the average payoff with learning for buyers, sellers,
and joint payoff compared to the growth rate without learning. Figure 2B illustrates the fairness comparison between the group with learning and
the group without learning. Figure 2C shows the number of agents of each strategy in the convergence results, as every agent converges ultimately
to a pure strategy.
doi:10.1371/journal.pone.0102840.g002

Figure 3. Impact of historical weight on payoff, time and fairness. Figures 3A, 3B and 3C illustrate the change in joint payoff, negotiation
time, and fairness with different weights, compared with a weight of 0.8 as the baseline. Because the performance of agents with weights of 0.8 and
0.9 are very similar, the results for a weight of 0.9 are not displayed in Figure 3. To concisely demonstrate the result, we select the representative data
with weights between 0.2 to 0.7 based on the benchmark of 0.8.
doi:10.1371/journal.pone.0102840.g003

Evolution with Reinforcement Learning in Negotiation

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e102840



the opposite trend to the frugal one and declines as the weight

decreases (see Figure 4E). As the discount rate decreases, the frugal

strategy decreases, and the cool-headed strategy increases. The

cool-headed strategy becomes dominant when the discount rate is

very low, while the frugal strategy is a tiny minority. This result

indicates that the low discount rate’s leading to less greediness in

agents may be caused by the time pressure to accept offers more

actively. The anxious strategy remains at a low level when the

weight is high and fluctuates substantially when the weight is

below 0.5 (see Figure 4F). In conclusion, the strategy convergence

remains stable and the cool-headed strategy has a noticeable

advantage when the weight of historical information is high. The

greediness of the whole market rises as the weight drops.

To summarize, the impacts of weight on convergence strategies

are different between buyers and sellers. The strategies of sellers

vary gradually with the weight, while the strategies of the buyers

remain relatively stable when the weight is above 0.5 and change

rapidly when the weight falls below 0.5. Because the only

distinction between the two populations is the order of proposing

the first offer, the asymmetry may arise from this factor. Therefore,

the offering order not only affects the division of the payoff

between buyers and sellers but also gives rise to the difference in

the strategy distribution between them. The agents update their

strategy probability after a period of negotiation during which the

costs of agents remain stable, and therefore the frugal strategy

achieves a higher payoff. The agents use a more greedy strategy

when the weight is lower. Our results show the following: (1)

myopic adjustment leads to a more frugal strategy with less

concession, and (2) the algorithm with reinforcement learning

results in a more cool-headed strategy with more efficient

performance in the overall population, such as less negotiation

time and less fluctuation in fairness.

Discussion

The evolutionary approach is effective in investigating the

collective behavior of the population in the long term. However,

human learning involves more initiative than biological evolution,

and therefore, we have integrated reinforcement learning with

replicator dynamics to investigate negotiation behavior. Negotia-

tion strategies are generally complex, and a new strategy type is

created by design instead of mutation. In the genetic algorithm,

the population of each generation is created by passive selection

and reproduction [28–30], but agents representing humans usually

will not depart the market even if they suffer from occasional loss

in negotiation. Rather, they make decisions using initiative and

accumulate experience through multiple periods of negotiation.

To this end, this model evaluates the rewards of strategies by

assigning weights to historical payoffs as well as to current ones. As

a result, our learning pattern incorporating replicator dynamics

differs from classic reinforcement learning, which determines the

probability of strategies in proportion to the rewards [31].

Reinforcement learning has many models that differ from each

other in details such as the probability determination rules. Rajiv

Sarin and Farshid Vahid design a simple reinforcement learning

model without probability, in which the agents choose the strategy

Figure 4. Impact of historical weight on the strategy convergence. Figures 4A, 4B and 4C illustrate the evolution results of the frugal, cool-
headed, and anxious strategies of buyers using different weights. The Y axis represents the number of agents using each strategy in the population.
Similarly, Figures 4D, 4E and 4F represent the corresponding results for sellers.
doi:10.1371/journal.pone.0102840.g004
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with the highest reward instead of through subjective probability

[32]. Borgers believes that individual learning is a process of idea

evolution as well as habit formation and proves that a continuous-

time reinforcement learning of an individual converges to

equilibrium of replicator dynamics [19]. We adopt replicator

dynamics as the strategy adjustment rule and incorporate

reinforcement learning into the payoff evaluation. The simulation

results suggest that agents using this new learning model achieve

higher payoff, shorter negotiation time, and more stable fairness

than agents using the classic evolutionary approach.

This paper presents two experiments designed to study the

general performance of agents and the impacts of the weight of

historical information on the negotiation result and convergence

strategy. The results indicate that in most cases, learning increases

the payoff of both buyers and sellers. Thus, the learning pattern is

beneficial to both sides, and the growth rate rises with decreasing

discount rate. Ravindra Krovi et al. [33] compare the payoff and

fairness when one or two variables are controlled. However, they

examine the evolution of offer instead of strategy, which is

different from this paper. We evaluate the learning effect from the

perspective of the population instead of the individual agent.

In addition to the market efficiency and fairness, we also

consider long-term strategy evolution. In our model, all the agents

converge to pure strategy and form stable habits. Although

heterogeneous agents have different reservation values and initial

states regarding strategies, the strategy distribution of the whole

market is relatively stable, and the convergent results vary slightly

with the initial settings. Noyda Matos et al. [10] allow the agents to

use mixed strategies, but the proportion of each strategy is similar,

and there is no dominant strategy. In our model, the majority is

the cool-headed strategy, which means that the agents become

rational by learning in the long run, although we do not consider

psychological factors.

The classic evolutionary dynamics without considering histor-

ical information, including replicator dynamics and best response

dynamics, are myopic adjustment dynamics [34–36]. The strategy

adjustment in our model is not myopic because we have

incorporated historical information into the evaluation. The

simulation results indicate that the learning pattern focusing more

heavily on historical information achieves better performance than

its myopic counterparts. If agents ignore previous experience, their

payoff declines, and simultaneously, negotiation time increases and

fairness fluctuates substantially. The weight of prior experience

also affects the strategy equilibrium, which includes mostly the

cool-headed strategy and minor others.

This model still has a few limitations, such as the simple time-

dependent concession function. We will consider more complex

strategies such as behavior-dependent and resource-dependent

concession functions in the future.

Supporting Information

Table S1 Variables and formulas. Average payoff of buyer,

average payoff of seller, joint payoff, average round and fairness

are calculated with the corresponding formulas.
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