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Abstract

Background: To develop a mathematical model to estimate daily evolution of disease severity using routinely
available parameters in patients admitted to the intensive care unit (ICU).

Methods: Over a 3-year period, we prospectively enrolled consecutive adults with sepsis and categorized patients
as (1) being at risk for developing (more severe) organ dysfunction, (2) having (potentially still reversible) limited
organ failure, or (3) having multiple-organ failure. Daily probabilities for transitions between these disease states,
and to death or discharge, during the first 2 weeks in ICU were calculated using a multi-state model that was
updated every 2 days using both baseline and time-varying information. The model was validated in independent
patients.

Results: We studied 1371 sepsis admissions in 1251 patients. Upon presentation, 53 (4%) were classed at risk, 1151
(84%) had limited organ failure, and 167 (12%) had multiple-organ failure. Among patients with limited organ
failure, 197 (17%) evolved to multiple-organ failure or died and 809 (70%) improved or were discharged alive within
14 days. Among patients with multiple-organ failure, 67 (40%) died and 91 (54%) improved or were discharged.
Treatment response could be predicted with reasonable accuracy (c-statistic ranging from 0.55 to 0.81 for individual
disease states, and 0.67 overall). Model performance in the validation cohort was similar.

Conclusions: This prediction model that estimates daily evolution of disease severity during sepsis may eventually
support clinicians in making better informed treatment decisions and could be used to evaluate prognostic
biomarkers or perform in silico modeling of novel sepsis therapies during trial design.

Clinical trial registration: ClinicalTrials.gov NCT01905033
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Background
Sepsis is defined by life-threatening organ dysfunction
due to a dysregulated host response to infection [1]. The
current sepsis-3 definitions help early recognition of in-
fected patients who are prone to develop a complicated
course in emergency departments and general wards,
but they do not predict the clinical response once initial
resuscitation and organ support in the ICU have been
provided. In fact, in patients with organ dysfunction or
shock of recent onset, averting the progression of

these—potentially still reversible—abnormalities is the
main goal of critical care providers. Unfortunately, it is
very difficult for clinicians to predict at the bedside
which patients will respond favorably to their interven-
tions, and who will deteriorate despite all resuscitative
efforts. Current prognostic models for ICU patients such
as the Acute Physiology and Chronic Health Evaluation
(APACHE) score include only admission data and thus
cannot be updated during the course of the disease.
We therefore developed and validated a model that

uses daily information about the clinical condition of in-
dividual sepsis patients to make updated predictions re-
garding disease progression, by estimating the
transitions between three intermediate states (i.e., differ-
ent levels of organ failure) as well as towards two
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absorbing states (i.e., death and discharge) during the
first 14 days in ICU.

Methods
Study design and population
This work was part of the Molecular Diagnosis and Risk
Stratification of Sepsis (MARS) project, a prospective co-
hort study performed in the mixed ICUs of two tertiary
referral centers in the Netherlands between January
2011 and December 2013 (ClinicalTrials.gov identifier
NCT01905033) [2]. The Institutional Review Board ap-
proved an opt-out method of enrolment (IRB number
10-056C) whereby participants and family members
were notified of the study by a brochure with an at-
tached opt-out card that was provided at ICU admission.
For model derivation, we analyzed all adults with sepsis
as their main reason for presentation who had been ad-
mitted to ICU for ≥ 24 h. For patients in whom life sup-
port was ultimately withdrawn, we excluded all events
following the moment that end-of-life care was initiated
(i.e., ICU days until this time point were used for model
fitting, but observation time was subsequently censored)

for those patients who were discharged alive. Any read-
missions occurring within 24 h of ICU discharge were
merged and considered continuous with the previous ad-
mission period. For model validation, we analyzed an
additional cohort of patients who presented to the UMC
Utrecht between January 2014 and September 2016,
using identical inclusion criteria.

Classification of organ dysfunction
Since all patients fulfilled basic criteria for organ dys-
function according to sepsis-3 definitions, we sought to
provide further prognostic stratification based on the
number, extent, and potential reversibility of organ fail-
ures (Table 1). For this, we considered several clinical
features and laboratory variables that are beyond the
scope of “simple” SOFA criteria. For instance, all pa-
tients requiring vasopressor infusions and having ele-
vated serum lactate levels > 2 mmol/L were considered
to have cardiovascular dysfunction, yet only patients
with more severe circulatory abnormalities were consid-
ered to have refractory shock. Likewise, we included a
gastro-intestinal failure score as an extra indicator of

Table 1 Classification of new-onset organ failure

No dysfunction Moderate dysfunction Severe dysfunction

Central
nervous
system

Awake and
non-delirious

Delirium (positive CAM-ICU score on ≥ 1 observation) or
use of continuous sedation includes (but not limited to)
the infusion of propofol and midazolam at any dose

Prolonged coma (unresponsiveness to verbal
commands, both with or without the use of
continuous intravenous sedation (RASS ≤ − 4 or
GCS≤ 8) for > 24 h)

Cardiovascular Hemodynamic
stability without
support

Arterial hypotension (SBP < 90mmHg for > 2 h) or use of
inotropes and vasopressors (continuous infusion of
dobutamine, milrinone, and (nor)epinephrine at any
dose or a serum lactate level > 2 mmol/L) or positive
fluid balance (cumulative fluid intake minus output
> 2 L/24 h)

Shock (use of high-dose vasopressors including
(nor)epinephrine at > 0.1 μg/kg/min or arginine
vasopressin at any dose for > 12 h, with concurrent
positive fluid balances > 2 L/24 h and lactatemia >
2mmol/L)

Respiratory Spontaneous
breathing
without
hypoxemia

Mild arterial hypoxemia (use of mechanical
ventilation with a P/F ratio < 300 and PEEP
> 5 cm H2O)

Severe arterial hypoxemia (P/F ratio < 200 despite
mechanical ventilation with PEEP > 8 cm H2O)

Renal Adequate diuresis
with preserved
GFR

Acute oliguria (urine output < 0.5 ml/kg/h for > 6 h,
or < 500ml per day) or GFR decrease > 50%
(> 1.5-fold increase in serum creatinine from
baseline)

Prolonged oliguria/anuria (urine output < 0.3 ml/kg/h
for > 24 h, or < 200ml per day) or GFR decrease > 75%
(> 3-fold increase in serum creatinine from baseline, a
single creatinine level > 350 μmol/L with an acute rise
of > 44 μmol/L, or use of renal replacement therapy)

Coagulation Normal
hemostasis

Mild thrombocytopenia (platelet count < 100,000/μL)
or abnormal coagulation (INR > 1.5 or APTT > 60 s)

Severe thrombocytopenia (platelet count < 50,000/μL)

Liver Normal liver
function

Mild hyperbilirubinemia (plasma total bilirubin
> 30 μmol/L) or abnormal protein synthesis
(plasma albumin concentration < 20 g/L) or mild
transaminitis (AST or ALT blood levels > 500 U/L)

Severe hyperbilirubinemia (plasma total bilirubin >
100 μmol/L) or severe transaminitis (AST or ALT blood
levels > 1000 U/L) or deficient protein synthesis (plasma
albumin concentration < 15 g/L)

Gastro-
intestinal

Normal gut
function

Impaired enteral feeding (daily caloric intake
< 50% of calculated needs)

Prolonged food intolerance (inability to provide enteral
feeding due to high gastric aspirate volume, vomiting,
bowel distension, severe diarrhea, intraabdominal
hypertension or abdominal compartment syndrome
for > 24 h)

In cases where definitions were not mutually exclusive, the worst level of organ dysfunction was assigned
Abbreviations: ALT alanine transaminase, APTT activated partial thromboplastin time, AST aspartate transferase, CAM-ICU confusion assessment method for the
intensive care unit, GCS Glasgow coma scale, GFR glomerular filtration rate, INR international normalized ratio, PEEP positive end-expiratory pressure, P/F partial
pressure arterial oxygen and fraction of inspired oxygen, RASS Richmond agitation sedation scale, SBP systolic blood pressure
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disease severity. To reflect potential reversibility of organ
dysfunction, we incorporated the duration of symptoms
in our definitions. For instance, oliguria or hypotension
lasting only a few hours would indicate a risk of organ
failure, whereas oliguria or hypotension that lasted for >
1 day was regarded to be a marker of established organ
failure. We used the terms “no dysfunction,” “moderate
dysfunction,” and “severe dysfunction” to indicate failure
at the organ level. We subsequently classed patients as
(1) being at risk for organ failure, (2) having limited
organ failure, or (3) having multiple-organ failure
(Table 2). Since the “at risk” category was defined as
“moderate dysfunctions of limited duration in ≤ 2 organ
systems,” all patients who were admitted in the “at risk”
category actually also fulfilled the sepsis-3 definition
(e.g., when organ failure was limited to mechanical ven-
tilation for short durations, patients fulfilled both “at
risk” and sepsis-3 definitions).

Prognostic variables
Potential predictor variables were a priori selected and
classified according to the Prediction-Infection-
Response-Organ dysfunction (PIRO) system [3, 4]. These
encompassed both baseline (time-fixed) and daily (time-
varying) variables, including (P) predisposing factors (i.e.,
age, gender, immunodeficiency, cardiovascular disease,
respiratory insufficiency, renal insufficiency, diabetes
mellitus, and current use of corticosteroids), (I) infection
characteristics (i.e., time of acquisition, site of infection,
and causative pathogen), (R) response characteristics
(i.e., C-reactive protein, white blood cell count,
temperature, respiratory rate, and heart rate), and (O)
level of organ dysfunction at the time of prediction. We
did not include composite markers of disease severity,
such as the Simplified Acute Physiology Score (SAPS) or
Acute Physiology and Chronic Health Evaluation (APA-
CHE) score, since these have been formally defined only
for a (first) 24-h observation window in the ICU, and
were, therefore, considered less suitable for “real-time”
bedside prognostication.

Missing data
Patient characteristics (measured at baseline) were virtu-
ally complete, whereas 17% of daily physiological and la-
boratory values were missing overall (median 1%, range
0–80%, for individual variables), with > 50% missingness
on daily measurement of activated partial thromboplas-
tin time, albumin, alanine transaminase, aspartate trans-
aminase, and lactate. Because longitudinal information

was typically available, we performed trend imputations
for a maximum duration of 2 days, according to
methods as described by us previously [5]. As a conse-
quence, the percentage of missing data was reduced to
11%. Of note, there were no missing data regarding dis-
charge and death. We then used multiple imputation
based on the information contained in all variables de-
scribed in Table 3.

Statistical analysis
We estimated for each individual patient with sepsis the
transition probabilities between the three transient states
(at risk, severe organ dysfunction, and established
multiple-organ failure) and the two absorbing states (dis-
charge alive and death in ICU) (Fig. 1). Using these esti-
mates, the absolute probabilities of the final absorbing
states death, discharge, and established multiple-organ
failure after 2 weeks of ICU admission were calculated.
To this end, we applied a continuous-time Markov

multi-state model with piecewise constant intensities [6].
In essence, the model is similar to a multinomial logistic
regression, but has the advantage of being able to pro-
duce transition probabilities for the prediction of disease
progression with a more straightforward estimation of
the standard error, to predict multiple outcomes, and to
include new information on disease severity as it be-
comes available during ICU admission. A Markov model
assumes that future transitions are dependent only on
the current state variable. Carry-over effects may occur
when values of predictor variables are affected by already
“incubating” organ failure, and thus become part of the
outcome rather than being a true prognostic factor.
Transitions were, therefore, only modeled for every
other day (days 1, 3, 5, etcetera until day 15). We fo-
cused on outcomes occurring during the first 2 weeks of
admission only. By this, we prevented modeling out-
comes that were no longer directly related to the sepsis
episode present upon arrival in the ICU. Most deaths
(78%) in our cohort occurred within the first 2 weeks,
suggesting that indeed the majority of relevant outcomes
was captured within this time window.
For model development, we first performed univari-

able analyses to examine associations between outcome
and possible (a priori selected) predictors as described
before. All predictors yielding a significant association (P
value < 0.10) were then included in the final model. Due
to highly computationally intensive analyses (typical runs
took > 4 h), we did not perform any further selections
such as backward or forward selection. Prognostic

Table 2 Classification of organ failure on the patient level

At risk Limited organ failure Multiple-organ failure

No organ dysfunctions or moderate dysfunctions
in ≤ 2 organ systems

Moderate dysfunctions in ≤ 3 organ systems or severe
dysfunctions in ≤ 2 organ systems

Severe dysfunctions in ≥ 3
organ systems
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performance of the model was assessed using the c-
statistic. Typically, in models predicting a dichotomous
outcome, the c-statistic reflects how well a prediction
rule can discriminate between patients who do or do not

have the event (e.g., death). Good discriminatory ability
is typically assumed at values > 0.7 [7]. However, when
predicting multiple (mutually exclusive) outcome states,
computation of a “simple” c-statistic is not feasible and

Table 3 Predisposition, infection, response, and organ failure (PIRO) characteristics of admissions stratified by admission status

Variable At risk, N = 53 Limited organ failure, N = 1151 Multiple-organ failure, N = 167 P value

Predisposition

Age (years) 63 (48–73) 63 (53–71) 63 (52–71) 0.90

Male gender 61 (61) 709 (61) 82 (62) 0.98

Chronic comorbidities

Diabetes mellitus 26 (26) 217 (19) 24 (18) 0.19

Cardiovascular diseasea 28 (28) 318 (27) 30 (23) 0.49

Immunodeficiencyb 33 (33) 316 (27) 41 (31) 0.33

Renal insufficiencyc 23 (23) 192 (16) 20 (15) 0.21

Respiratory insufficiencyd 15 (15) 171 (15) 24 (18) 0.59

Admission type, medical 78 (78) 853 (73) 103 (77) 0.22

Insult

Source (hospital-acquired) 42 (42) 514 (44) 65 (49) 0.51

Site/organ system 0.036

Pulmonary 68 (68) 676 (58) 61 (46)

Abdomen 5 (5) 125 (11) 20 (15)

Urinary tract 6 (6) 67 (6) 11 (8)

Other or unknown 21 (21) 298 (26) 41 (31)

Response

SIRS criteriae

Temperature 53 (53) 683 (59) 92 (69) 0.027

Leukocytes 65 (65) 839 (72) 93 (70) 0.32

Respiratory rate 86 (86) 1122 (96) 130 (98) < 0.001

Heart rate 75 (75) 939 (81) 122 (92) 0.002

C-reactive protein (mg/L) 118 (75–209) 189 (101–296) 225 (123–293) 0.015

Lactate (mmol/L) 2.0 (1.3–2.9) 2.7 (1.7–4.5) 6.2 (4.1–10.7) < 0.001

Organ dysfunction

SOFA score at admission 5 (4–7) 8 (7–10) 12 (11–15) < 0.001

APACHE IV score 70 (60–87) 84 (69–102) 112 (95–130) < 0.001

Outcome

ICU case fatality 5 (9) 180 (16) 67 (40) < 0.001

ICU length of stay (days) 5 (3–12) 7 (3–12) 10 (4–18) < 0.001

Data are numbers (percentage) or median (inter-quartile range)
Abbreviations: APACHE Acute Physiology and Chronic Health Evaluation, ICU intensive care unit, SIRS systemic inflammatory response syndrome
aCardiovascular disease was defined as cerebrovascular disease or chronic cardiovascular insufficiency (New York Heart Association class 4), chronic congestive
heart failure (ejection fraction < 30%), or peripheral vascular disease (intermittent claudication, patients with percutaneous transluminal angioplasty or bypass for
arterial insufficiency)
bImmunodeficiency was defined as having acquired immune deficiency syndrome, the use of corticosteroids in high doses (equivalent to prednisolone of > 75
mg/day for at least 1 week), current use of immunosuppressive drugs, current use of antineoplastic, drugs recent hematologic malignancy, or documented
humoral or cellular deficiency
cRenal insufficiency was defined as chronic renal insufficiency (creatinine > 177 μmol/L) or chronic dialysis
dRespiratory insufficiency was defined as chronic obstructive pulmonary disease or chronic respiratory insufficiency with functional disabilities (chronic mechanical
ventilation, oxygen use at home, or severe pulmonary hypertension)
eSystemic inflammatory response syndrome criteria were defined as temperature < 36.0 or > 38.0 °C during at least 2 and 1 h, respectively; white blood cell count
< 4 or > 12 × 109/L or > 10% immature (band) forms; heart rate > 90/min during at least 1 h; respiratory rate > 20/min during at least 1 h, pCO2 < 32 mmHg, or
mechanical ventilation
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therefore we used an alternative method, which summa-
rizes the c-statistics of all separate transitions [8]. This
c-statistic is a discrimination measure between states
that was calculated using the predicted occupation prob-
abilities. It counts the percentage of patients for whom
the predicted occupation probability of being in, for in-
stance, the state “at risk” is larger than the predicted
probability of being in “persistent organ failure” at a par-
ticular time (averaged with the opposite transition), and
it is also calculated for non-occurring transitions such as
between discharge and death. Since the various transi-
tions might be driven by different predictors, some tran-
sitions may have an unsatisfactory discrimination
resulting in a lower (than expected) c-statistic. The Brier
score was used to compare the prediction accuracy of a
model including only baseline information to the same
model which also included time-varying information [9].
The Brier score is a proper score function measuring the
accuracy of probabilistic predictions. We applied the
final model to the validation cohort and compared pre-
dicted probabilities to observed outcomes. The full pre-
diction model is provided upon request.
Analyses were performed using R studio version 3.0.2

(R Core Team 2013, Vienna, Austria) [10] and SAS 9.2
(Cary, NC). The R-package msm [6] was used for imple-
mentation of the models. The SAS module “proc mi”
was used for imputation (5 imputations using a random
seed number and using all predictors). P values < 0.05
were considered to be statistically significant.

Results
Study population
For model development, we studied 1371 ICU admissions
for sepsis in 1251 patients, yielding 10,891 observation days.
Eleven (0.80%) patients on palliative care were discharged
alive from the ICU; 22 days of observation (0.2%) were

therefore excluded from the analysis. ICU mortality by day
14 was 252 (18%), and total ICU mortality was 320 (23%).
Figure 2 shows the classification of patients across the three
categories of organ failure at the time of ICU admission.
Among the 1151 admissions presenting with limited organ
failure, 197 (17%) evolved to a more severe disease stage or
died, 145 (13%) remained in the same stage, and 809 (70%)
improved or were discharged alive by day 14. Among the
167 patients admitted with overt multiple-organ failure, 67
(40%) died, 91 (54%) improved or were discharged alive, and
6% remained in the ICU with organ failure beyond day 14.
For comparison, 38 (72%) of the 53 patients who were con-
sidered to be at risk for organ failure were discharged within
14 days, and only 5 (9%) patients in this subgroup eventually
died. Of note, all latter patients went through more severe
stages of organ failure first. These descriptive results there-
fore indicate that our classification of organ dysfunction re-
flects both improvement and progression of disease well.
Age, gender, presence of chronic comorbidities, and

admission type did not significantly differ between pa-
tients if stratified by the severity of organ failure present
at admission (Table 3). However, length of stay was pro-
longed and case fatality higher in patients in whom
multiple-organ failure was already overt upon ICU ad-
mission (Additional file 1: Figure S1). The evolution of
organ dysfunction for the entire study cohort during the
first 2 weeks in ICU is shown in Additional file 2: Figure
S2. For all individual organ systems, dysfunction was
most prevalent on day 1. Especially cardiovascular dys-
function improved over the first days in ICU, but other
organ systems remained more or less stable during the
first 2 weeks of admission.

Univariable predictors of clinical trajectory
Additional file 3: Table S1 shows the crude hazard ratios
for the various state transitions for potential defined

Fig. 1 Proposed Markov model showing all possible transitions. The arrows represent forward or backward progression between transitional
(disease severity) states, as well as to the final absorbing states death or discharge. The probabilities of advancing to a more advanced stage or
regressing to a less severe stage or to an absorbing state are calculated by the multi-state Markov model with piecewise constant intensities.
Forty-three out of a total of 3855 transitions (1%) were from “at risk” directly to “failure” or death or from “failure” directly to “at risk” or discharge
and were not estimated due to the insufficient number of events
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predictor variables. Age, body mass index, immunocom-
promised state, renal insufficiency, respiratory insuffi-
ciency, site of infection, C-reactive protein, white blood
cell count, fever, new onset atrial fibrillation, ICU-
acquired onset of infection, bacteremia, and corticoster-
oid use were all included based on associations with any
outcome in univariable analysis. The predictors gender,
congestive heart failure, cardiovascular compromise, and
causative pathogen were removed from the model since
they were not significantly associated with any of the
outcomes.

Outcomes
The c-statistic of our model in the derivation dataset
was 0.67 (95% CI 0.63–0.70) overall, with c-statistics for
individual daily state transitions ranging between 0.55
and 0.81. For example, the model predicted progression
to established multiple-organ failure on day 14 quite well
(c-statistic 0.77), whereas prediction of death proved
more difficult (c-statistic 0.60). For comparison, the
APACHE IV score was associated with mortality with a
c-statistic of 0.68 (0.65–0.71). The Brier score was 0.64
for a baseline model and 0.60 for the model with time-
varying information, yielding a 7.7% reduction of the
prediction error. As an example of how the model can
be used, Fig. 3 shows the evolution of organ failure and
final outcomes for three individual patients as predicted
on day 1 in the ICU. In addition, Fig. 4 (showing yet an-
other subject) illustrates how the model may be used to
generate updated predictions as the clinical condition of
a patient improves or worsens over time.

Model validation
Five hundred fifty-three patients were included in the
validation cohort. Patient characteristics and the

presence of organ failure upon ICU admission were
similar as in the derivation cohort (Additional file 4:
Table S2); 14 (2.5%) patients were classified at risk, 484
(88%) had organ dysfunction, and 55 (10%) established
multiple-organ failure. ICU mortality was 91 (16%) by
day 14 and 129 (23%) overall. The c-statistic of the
model in this validation cohort was 0.66 (95% CI 0.62–
0.70).

Discussion
We developed a model to predict temporal changes in
disease severity in critically ill patients presenting with
sepsis to our ICU. The model estimates daily probabil-
ities of progression or resolution of organ failure for in-
dividual patients, is updatable with new clinical
information as it becomes available in the ICU, and can
be used to predict the absolute risks of death, discharge,
or remaining in the ICU. Although overall discrimin-
ation for our multi-state model was moderate based on
a c-statistic of 0.66 (95% CI 0.62–0.70) in the validation
dataset, it must be noted that this measure should not
be directly compared to the reported AUCs of trad-
itional regression models with a dichotomous outcome.
Our model predicts five separate outcomes, and the c-
statistic thus merely reflects an “average” accuracy for all
of these. For example, discriminative ability for predict-
ing transition to persisting organ failure was good, yet
we observed less favorable accuracy for predicting death.
In addition, predictive accuracy for mortality was similar
to the widely used APACHE IV score.
With our approach, we aimed to develop a new mod-

eling framework that uses daily updatable information,
since outcome prediction is relevant not only on the first
day of admission, but also later during ICU stay (i.e.,
once initial organ support has been provided). Disease

Fig. 2 Flowchart of patient inclusion with patient disposition at admission
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severity may have changed considerably by then, and ad-
mission data might no longer be sufficiently current nor
comprehensive to accurately predict outcome. In
addition, the model not only predicts death, but also
other important clinical outcomes such as occurrence of
multiple-organ failure. Our model may thus assist clini-
cians during initial resuscitation as well as in later
decision-making or to estimate the added prognostic
value of novel biomarkers. We are aware of only as sin-
gle other study that uses time-varying covariables to esti-
mate the risk of sepsis progression during the first week
in patients treated for infection [11]. They concluded
that intraabdominal and respiratory sources of infection,
independently of SOFA and APACHE scores, increased
the risk of progression to more severe stages of sepsis.
Of note, this study also enrolled less severely ill patients
in hospital wards for whom predictions of clinical re-
sponse might be very different.
Current sepsis-3 criteria categorize patients based on

the dichotomized presence or absence of organ dysfunc-
tion. As a consequence, they do not provide detailed in-
formation about the severity of individual organ failures,
nor their duration (and thus potential reversibility). To
be able to model evolution of disease severity more ac-
curately over time, we used a conceptual approach by
which subjects were classified as being merely at risk of
organ dysfunction, having established organ dysfunction,
or having persisting multiple-organ failure. Although

there is currently no commonly accepted way to accom-
plish this, we based our classification scheme on (an ex-
tended version of) the widely used SOFA score, but also
considered the duration of individual organ failures.
We acknowledge some limitations of our study. First,

this study was performed in two tertiary centers in the
Netherlands and may thus not reflect general ICU prac-
tice in other settings. Both ICUs used selective digestive
tract decontamination (SDD) throughout the study
period, which may also limit generalizability of the study.
Second, predictors were selected using univariable ana-
lysis, but further optimization of the model was not pos-
sible due to computer power constraints. Third, this
model only predicts outcomes up to day 14 and might
not be directly comparable to other studies with longer
term outcomes. However, we opted for a shorter follow-
up time to better capture the direct effects of sepsis oc-
curring at admission; in addition, most discharges and
deaths occurred before day 14 (78%). Fourth, we did not
formally validate our definitions of organ dysfunction.
However, we believe that this does distract neither from
the face validity of the criteria used nor from the main
study findings, since the purpose of this project was
mostly to provide a new conceptual framework for mod-
eling of clinical sepsis responses rather than a directly
applicable prediction algorithm for clinical use. Finally,
although we tested our model using prospectively col-
lected independent data obtained in one of the two

Fig. 3 Modeled incidences of organ failure, death, and discharge in three illustrative patients. Patient 1 is a 72-year-old immunocompromised
male admitted for a community-acquired pneumonia with mild hypoxemia (60% oxygen mask), a lactate level of 0.5 mg/L and a C-reactive
protein level of 153 mg/L upon presentation. He has an absolute risk for discharge alive of 58% and death of 22% at day 14. Patient 2 represents
another (but similar) patient with a community-acquired pneumonia in acute respiratory distress (requiring prompt intubation), hypotension
(requiring norepinephrine), mottled skin, oliguria, lactate 4.2 mg/L, and a C-reactive protein of 268 mg/L. He has a risk for discharge alive of 36%
and death of 40% at day 14. Patient 3 is a 53-year-old previously healthy female patient with a urinary tract infection, lactate of 0.4 mg/L, and a C-
reactive protein of 50 mg/L. She has a probability of discharge alive of 79% and a probability of death of 5% at day 14
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original study centers, it would have been better to valid-
ate our model externally.

Conclusions
We propose a model that predicts daily evolution of dis-
ease severity in critically ill patients with sepsis and can
be used to identify patients who will likely benefit most
from aggressive interventions during the first 2 weeks in
ICU. This model can also potentially be used to simulate
the effects of new treatments, help in the design of new
sepsis trials, and estimate the added prognostic value of
novel biomarkers.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13054-019-2687-z.

Additional file 1: Figure S1. Outcome of patients with sepsis stratified
by severity of organ failure at admission. Representation of the length of

stay and mortality of patients with sepsis admitted with low,
intermediate and high levels of organ failure.

Additional file 2: Figure S2. Evolution of organ failure over time.
Representation of the distribution of the severity of organ failure by
organ system during the first 9 days of admission. Since central nervous
system (CNS), renal and abdominal organ failure had to be present for >
1 day, patients could not be admitted with this type of organ failure. The
last panel shows the level of organ failure and the absorbing states death
and discharge on the patient level. For this panel, “at risk” was defined as
moderate dysfunctions of limited duration in ≤2 organ systems; “limited
organ failure” as moderate dysfunctions of limited duration in ≤3 organ
systems, or severe dysfunctions in ≤2 organ systems, and “multiple-organ
failure” as severe dysfunctions in ≥3 organ systems.

Additional file 3: Table S1. Transition hazard rates for selected
variables. Representation of the crude hazard ratios for the various state
transitions for several potential defined predictor variables in univariable
analysis.

Additional file 4: Table S2. Predisposition, infection, response, and
organ failure (PIRO) characteristics of patients stratified by level of organ
failure at admission in the validation cohort. Data are numbers
(percentage) or median (inter-quartile range). Abbreviations: APACHE
Acute Physiology and Chronic Health Evaluation; ICU Intensive Care Unit;
SIRS Systemic Inflammatory Response Syndrome.

Fig. 4 Outcome of patients who improve or worsen over time. Patient 4 is a 59-year-old male patient admitted for a severe peritonitis requiring
noradrenaline at a rate of 0.05 μg/kg/min, a lactate level of 5.6 mmol/L, and a C-reactive protein level of 256 mg/L. At day 3, the noradrenaline
can be stopped, his lactate levels are 0.5 mmol/L, and his C-reactive protein levels decrease to 170mg/L (indicated by “improvement”), and at day
7, C-reactive protein levels dropped to 50mg/L. However, if the same patient would develop refractory shock and atrial fibrillation at day 3, his
outcome is as shown by “worsening”; at day 7, he develops an ICU-acquired pneumonia but noradrenalin is stopped, showing the net positive
effect of worsening (pneumonia) and improvement (stopping of noradrenalin)
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