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The aim of the present work is to design and construct an ex vivo bioreactor system to assess the real time viability of vascular
tissue. Porcine carotid artery as a model tissue was used in the ex vivo bioreactor setup to monitor its viability under physiological
conditions such as oxygen, pressure, temperature, and flow. The real time tissue viability was evaluated by monitoring tissue
metabolism through a fluorescent indicator “resorufin.”Our ex vivo bioreactor allows real timemonitoring of tissue responses along
with physiological conditions. These ex vivo parameters were vital in determining the tissue viability in sensor-enabled bioreactor
and our initial investigations suggest that, porcine tissue viability is considerably affected by high shear forces and low oxygen levels.
Histological evaluations with hematoxylin and eosin and Masson’s trichrome staining show intact endothelium with fresh porcine
tissue whereas tissues after incubation in ex vivo bioreactor studies indicate denuded endothelium supporting the viability results
from real time measurements. Hence, this novel viability sensor-enabled ex vivo bioreactor acts as model to mimic in vivo system
and record vascular responses to biopharmaceutical molecules and biomedical devices.

1. Introduction

In the last couple of years, biomedical research is directed
towards recitation of cells with biomaterials for the thera-
peutic advancement and regeneration of tissues [1, 2]. This
area of research has promoted interaction among scientific
and industrial communities leading to innovation of new
biomaterials in healthcare [1–5]. Various in vivomodels have
been developed to understand vascular biology and effect
of therapeutic agents delivered by biomedical devices [6–8];
among these models, ex vivo tissue culture system has been
described as an alternative model to in vivo animal and in
vitro cell culture models to evaluate vascular responses in
relation to biomechanical and biochemical factors [7, 8].

The ex vivo bioreactor simulates physiological environ-
ment to support testing of tissues and support structures
and organs in vitro. The ex vivo model uses arterial tis-
sues and allows evaluation of cellular interactions in three-
dimensional architecture of tissue; these biological responses
can be performed in controlled physiologic conditions,

namely, oxygen, pressure, temperature, and flow. Yamawaki
et al. [9] and Wright et al. [10] reported applications of ex
vivo tissue culture models to study the proliferative changes
in vascular smooth muscle cells (SMC) as an important
phenomenon in atherosclerosis and neointimal formation in
response to the culture media.

The ex vivo tissue culture model has also been used to
study physiological mechanisms of vascular tissue [11, 12]
and these studies significantly support material-tissue inter-
actions and the role of vascular endothelial layer inmediating
vasodilation [13]. Yazdani and Berry [14] investigated the
effect of stent design on SMC proliferation in ex vivo porcine
carotid arteries using carotid self-expanding stents. The ex
vivo bioreactor with excised tissues can be used to evaluate
and predict clinical outcomes of the biomedical devices. Such
ex vivo bioreactorsmaintain physiological conditions to study
product prototypes for better performance in preclinical
and clinical studies by minimizing product development
cycle; also this step aids in reducing preclinical costs by
implementing different prototype modifications in ex vivo
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Figure 1: Sensor-enabled ex vivo bioreactor setup. (a) Artery fixed in the bioreactor tube supporting the Luer locks; selected artery with
desired dimensions is connected to hypotubes and firmly attached using elastics to avoid leakages. (b) Bioreactor overall setup with sensor
attachment; hypotube containing artery is placed in an aluminum block maintained on temperature controlled heating mantle.The inlet and
outlets of the hypotubes are connected to the media reservoir through peristaltic pump to facilitate circulation of media.

studies.The existing vascular bioreactors lackmonitoring real
time tissue viability in presence of physiological conditions;
to address this challenge, we designed a simple ex vivo
bioreactor set up with biosensors alignment to monitor real
time viability along with physiological conditions. To our
knowledge, the ex vivo tissue culturemodel has not been used
to evaluate real time tissue viability along with physiological
parameters in the sensor-enabled bioreactor. The objective
of the present work is to design and construct a sensor-
enabled ex vivo bioreactor tomonitor real time vascular tissue
responses; our ex vivo perfusion setup provides a new and
cost-effective approach comparedwith current in vivo animal
model by maintaining the physiological parameters oxygen,
pressure, temperature, and flow for various applications,
that is, cold storage solutions for organ transplants [15] or
assessing mitochondrial activity of the neonatal arteries [16]
and toxicity [17].

2. Experimental Section

2.1. Materials. Masterflex peristaltic pump (EW-77202-50)
along with silicon, Tygon tubings (numbers 16, 25) was
purchased from Cole-Parmer (IL, USA). Electronics com-
ponents consisted of breadboard with DAQ: NI6052E was
obtained from National Instruments (Singapore). Biosensor
components, isolated dissolved oxygen sensor, and pressure
sensor with reusable transducer (RT 2000) were obtained,
respectively, from World Precision Instruments (FL, USA)
and Argon Medical Devices (Singapore). The thermistor
probe (SP4042) used in the bioreactor assembly was obtained
fromThermometrics (CA, USA) and high glucose Dulbecco’s
modified eagle medium (DMEM) was purchased from Invit-
rogen (CA, USA). Hypotubes used in the bioreactor assembly

were custom-made of blunt stainless steel 12 G needle (inner
diameter 2.16mm) to hold swine carotid arteries.

2.2. Tissue Harvesting and Handling. Porcine carotid arteries
were harvested from 80 ± 10 kg, 6-month-old swine of
either sex from Primary Industries Pte Ltd. (Singapore).
Carotid arteries were collected with length varying from 8
to 12 cm from the animals free from any ailment. Arter-
ies without any branches were selected and rinsed with
sterile solution of phosphate buffer saline (pH 7.4) and
2% antibiotic-antimycotic (ABAM, penicillin-streptomycin;
Invitrogen, California). Excess fat was removed from excised
porcine arteries by using scissors and cleaned arteries were
placed in the sterile medium containing Dulbecco’s modified
eagle medium (DMEM, Invitrogen), 10% fetal bovine serum,
and 2% ABAM.

The cleaned arteries were placed in a fresh sterile Teflon
plate and rinsed with sterile PBS and 2%ABAM several times
by flushing inside and surrounding the artery. Further, each
cleaned artery was placed in separate tube containing media
at 4∘C for overnight. The same procedure was repeated to
clean multiple arteries. The cleaned artery with approximate
length of 8–10 cm was selected and connected to the upper
hypotube and tied using elastics as shown in Figure 1(a).
The artery connected to the hypotube was placed inside
the sterile glass chamber containing media (DMEM, 10%
FBS, and 2% ABAM) and transferred to aluminum cage
set at 37∘C. Further, the bioreactor glass chamber tube was
connected to media reservoir and peristaltic pump using
pressure tubings to circulate media in the bioreactor setup.
The media circulated through the perfusion system and
whole setup was observed for intact circulation without any
leaks.
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2.3. Bioreactor Setup and Sensor Attachment. The ex vivo
bioreactor setup with porcine artery was assembled in the
sterile biohood and media reservoir was placed in the glass
beaker containing preheated (37∘C) sterile purified water.
Overall setup of our ex vivo bioreactor is displayed in
Figure 1(b) indicating each part. In the bioreactor, media
inlet was connected to the hypotube port and outlet was
diverted to top of the reservoir using pressure tubing. 5%
CO
2
incubator line was connected to the reservoir through

0.22𝜇m sterile filter. Pressure sensor and in-line temperature
sensors were aligned to the ex vivo setup and oxygen sensor
along with flow meter was connected in line with fluid flow
through the peristaltic pump. Oxygen was monitored by the
OXELP oxygen electrode and ISO2 dissolved oxygen meter
and for pressure and temperature sensing RT 2000 reusable
transducer and injectate sensor cable SP4042 were used.
Indirect flow measurement was carried out by Masterflex
peristaltic pump. Signals were conditioned by an in-house
assembled printed circuit board (PCB) (electronic compo-
nents: Element 14, Singapore; PCB: Seed Technology Inc.,
China) and computer acquisition was performed by the NI
PCI-6052E DAQ (National Instruments).

Media with specific composition (150mL DMEM, 10%
FBS, and 2%ABAM)were circulated to the reservoir by using
peristaltic pump. The bioreactor glass chamber containing
artery was connected to the media reservoir and gradually
pump was adjusted to generate a flow rate of 40mL/min.The
culturemedium used in the bioreactor was replaced for every
24 h and the medium was assessed for any bacterial contami-
nation at the end of every perfusion step.The bioreactor tube
was observed for any leakage for 10 minutes and resazurin
solution was transferred to the circulating media by using
1mL sterile syringe. All the operations involving resazurin
addition, circulation were done in sterile conditions.

2.4. Real Time Tissue Viability Assessment. Resazurin is
reduced to generate highly fluorescent resorufin and this
irreversible reaction of resazurin to resorufin is proportional
to aerobic respiration in the bioreactor system. The long-
wavelength spectral properties of resorufin and high sensitiv-
ity of the assay result in little interference from coloured com-
ponents in the bioreactor samples. We have used resazurin
to resorufin conversion as indicator of tissue viability; in
addition, resorufin in solution is not quenched by oxygen or
chloride and is unaffected by changes inmedia concentration.
The schematic representation of conversion of resazurin to
resorufin by the cell metabolic activity along with flow cell
setup is depicted in Figure 2(a). The fluorescent resorufin
formed in the circulating media was measured by using
fluorimeter set up in Figure 2(b) at specific excitation and
emission wavelengths (𝜆excitation-540 nm; 𝜆emission-590 nm).
In the present bioreactor setup, the flow cells along with
tubings were designed to achieve the inline connection
with the bioreactor system to observe real time porcine
tissue viability. In the current bioreactor setup, sterile filtered
resazurin (50 𝜇M) was used as cell viability indicator and real
time measurements were carried out every five minutes by
measuring fluorescence of the medium using flow cell reader
and slope values were computed at specified time intervals.

2.5. Biosensor Circuits and MATLAB Programming. Al-
though sensors dedicated to each parameter are commer-
cially available, our approach offers a more homogenous,
easily extensible, and cost-efficient solution. The schematic
view of sensor signal assemblage and signal processing
is shown in Figure 3. The first stage of the conditioning
circuit is specific to each sensor and remains limited to a
Wheatstone bridge (4 resistors). In our current biosensor
setup, a differential scheme is altered to accommodate a wide
range of sensors and the analog input signal goes through
antialiasing filters. These signals were amplified and buffered
by an instrumentation amplifier (INA116) with an adjustable
gain and resulting signals were compatible with the DAQ
card inputs in terms of input range, bandwidth to convert
acquired signals into digital domain (see Supplementary
Figures S1 and S2 in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/958170). Finally, raw signals
were processed in our MATLAB bioscope. Signal noise was
reduced by digital filtering process and conversion from
voltage to defined physical quantity was performed and
the bioscope allows instant signal monitoring, synchronized
recording, and assisted sensor calibration.

2.6. Histological Ex Vivo Tissue Evaluation. For histological
assessment, the ring shaped porcine carotid artery tissues
before the experiment and after the viability run were
harvested and fixed in 4% paraformaldehyde for paraffin pro-
cessing. Tissue sections were used for routine hematoxylin
and eosin (H&E) and Masson’s trichrome (MT) staining
(IMCB, Biopolis, Singapore). Two slides per tissue specimen
were prepared and all the slides were screened and analyzed
for the histological findings.

3. Results and Discussion

3.1. Bioreactor Design and Capabilities. The ex vivo biore-
actors function as model to in vivo conditions exerted
in vascular in vivo conditions by simulating physiological
conditions such as oxygen, pressure, temperature, and flow.
These bioreactors significantly influence in recording critical
vascular responses in ex vivo conditions in response to
biomedical devices such as stents and drug eluting balloons
intended for intraluminal delivery. Hence, vascular tissue
viability in such ex vivo bioreactor setup is vital in evaluating
the performance of these devices. Biomedical devices are
evaluated for their performance in terms of tissue viability,
vascular responses, drug release, pharmacokinetics, and tis-
sue penetration [18, 19]. In this work, we have demonstrated
the design and model of sensor-enabled ex vivo bioreactor
system to record real time tissue viability with reference to
physiological parameters.

The biosensors were connected in-line with the circula-
tionmedia to record physiological parameters along with real
time tissue viability. The physiological parameters in the ex
vivo perfusion system were optimized to mimic the in vivo
vascular conditions such as oxygen, pressure, temperature,
and flow.The pulsatile flowwas created with peristaltic pump
by operating at a speed of 25 rpm and oxygen supply from
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Figure 2: Real time tissue viability detection. (a) Resazurin converting to resorufin by cell metabolic activity. (b) Flow cells and fluorimeter
setup for real time measurements of florescent resorufin by flow cells.
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Figure 3: Schematic view of sensor signal assemblage and processing in the ex vivo bioreactor.

incubator to the reservoir was attained by using air pump. In
ex vivo bioreactor setup hemodynamic environment with a
mean flow of 40mL/min, internal pressure of 120/70mmHg,
and temperature of 37±0.5∘Cwasmaintained.TheMATLAB
interface was designed to account for mean values of physi-
ological parameters with respect to time during the progress
of experiment. The pressure wave forms were optimized by
varying flow rate and size of the pressure tubing to achieve
appropriate physiological conditions [11]. The wave forms
generated in the bioreactor were able to exhibit 100 beats
per minute. However, the physiological conditions reported
in swine carotid artery are blood flow (284mL/minute),
carotid artery pressure (CAP, 101mmHg), internal pressure
(120/80mmHg) (see Supplementary Figure S3), heart rate
(116 beats per minute), and shear stress (26 to 69 dynes/cm2).
Hence, in the current ex vivo sensor-enabled bioreactor,
we have achieved physiological conditions related to CAP,
heart rate, and shear stress. In view of high in vivo flow of
284mL/min it was difficult to set up similar flow in ex vivo
conditions due to media leakages [20–22].

3.2. Factors Affecting Ex Vivo Tissue Viability. To study the
real time tissue response, the harvested artery was fixed to
the bioreactor and circulating media from bioreactor were

aligned to flow via flow cells situated in fluorimeter. The
florescence intensity of resorufin as cell viability indicator
was measured at specific time intervals (Figure 2(a)). In
the present bioreactor system resazurin (50 𝜇M) converts
to fluorescent resorufin in the cell mitochondria; the real
time fluorescent values recorded during ex vivo perfusion
were computed to slope values for control (silicon tube)
and tissue. Figure 4 depicts the tissue response at different
shear stress in the ex vivo perfusion system and approximate
vascular wall shear stress at artery wall was determined by
using Hagen-Poiseuille approximation by computing flow
rate, vessel diameter, and viscosity of the medium [21].
The real time response from the tissue at shear stress of
8 dynes/cm2 and 32 dynes/cm2 indicates effect of shear stress
induced by the perfusion system. In case of control (silicon
tube) the real time measurements show constant fluorescent
values due to absence of any metabolic activity. In case
of relatively higher vascular shear stress (32 dynes/cm2) the
tissue viability dropped higher compared to low vascular
stress of 8 dynes/cm2 and this could lead to denudation of
endothelium [23]. Thus, initiation of SMC death as well
as luminal and abluminal progression of cell death could
suggest the damage to the endothelium initiating chain of
reactions leading to cell death [16]. Hence, the physiological
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Figure 5: Representative graph showing physiological parameters
observed in the ex vivo bioreactor during real time swine tissue
viability measurements. All the data points are average of specified
data points as set in Bioscope with MATLAB program and average
values are reported for every-2-hour intervals.

parameters along with shear stress, tissue harvest time are
vital in deciding the rate of tissue metabolism and viability
in ex vivo perfusion system [19].

The physiological parameters observed in the ex vivo
bioreactor are displayed in Figure 5 and indicate that the
oxygen levels in bioreactor consistently decrease to 20% over
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metabolism in the ex vivo bioreactor.The rate ofmetabolic activity is
given by the slope and metabolic activity per unit time is correlated
to the time duration of viability experiment in ex vivo conditions
similar to those displayed in Figure 5. The media change at each
interval is indicated in the figure with arrow mark.

20 h time interval. The diastolic pressure was 90 ± 10mmHg,
flow is consistent at 40mL/min, and temperature was 37 ±
0.5
∘C.
To further investigate factors affecting the tissue viability,

cell viability indicator resorufin metabolized was analyzed
and presented in 𝜇M/h (Figure 6). At initial time points,
higher resorufin (0.45𝜇M/h) was metabolized indicating
higher tissue viability, but with reduced oxygen levels lower
resorufin was metabolized resulting in low tissue viability.
In the current ex vivo bioreactor setup, we observed a
clear trend as a result of metabolically active cells reducing
nonfluorescent resazurin to pink fluorescent resorufin in
the presence of mitochondrial dehydrogenase enzymes and
over the time interval the metabolic activity is reduced (see
Supplementary Figure S4).

Figure 7 illustrates the effect of oxygen on rate of
metabolic activity of the porcine artery in ex vivo conditions.
As the rate of dissolved oxygen in the perfusing media
increases, there was an increase in fluorescent intensity;
the depletion in oxygen levels was observed at 18 h due to
possible microbial contamination following which there was
an exponential increase in the fluorescence. The oxygen and
fluorescence derivate have consistent values until 18 h of ex
vivo tissue perfusion with real time viability measurements
and thereafter both of the derivatives shift the trend.

These results imply the vital role of oxygen in maintain-
ing the tissue metabolism to maximum extent; the tissue
metabolism in presence and absence of oxygen with baseline
values is presented in Figure 8. Initially for 1 h the baseline
fluorescence was recorded with silicon tube in place of artery
as control to indicate absence of any metabolic activity in
the bioreactor. After 1 h, the swine artery was connected
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1 2 3 4 5 6 7 8 9 10 11 12
0

5000

10000

15000

 (F
LU

)

Intensity (FLU)
Intensity derivative (FLU/h)

Time (h)

0

500

1000

1500

2000

(F
LU

/h
)

0
20
40
60
80
100
120
140

0

100

200

Oxygen (% O2)
Oxygen derivative (% O2/h)

(%
O
2
)

(%
O
2
/h

)

−100

−200

[

Figure 8: Representative graph showing effect of oxygen, nitrogen on resazurin metabolism and tissue viability. Initial 1 h silicon tube was
used as control to indicate no metabolic activity; after 1 hr swine artery was connected to ex vivo bioreactor under oxygen supply to monitor
tissue metabolic activity until 4 hr. After 4 h oxygen supply was terminated and nitrogen is supplied to observe tissue responses in absence of
oxygen.

and real time fluorescence intensity was monitored; the
values increased drastically due to tissue metabolic activity
in presence of physiological parameters. Further, the oxygen
supply is terminated and nitrogen inflow was maintained in
the bioreactor to observe tissue response; there was sudden
decrease in the fluorescent intensity as a result of lack of any
tissue metabolism.

Our experimental finding clearly shows the effect of
oxygen on the viability of the porcine tissue. The interpreta-
tions of the present tissue viability study in sensor-enabled
bioreactor indicate the feasibility of real time monitoring
of vascular tissue responses with physiological conditions.
The technique used to assess the real time tissue viability by
measurement of fluorescence of the cell viability indicator
is important tool to predict the tissue responses in sensor-
enabled bioreactor.

3.3. Histological Studies. Figure 9 shows the fresh artery
stained with H&E and MT and all the images are facing
the lumen side. In case of H&E staining intact endothelium
is observed with nuclei (blue colour). In case of MT stain,
dark brown spots and blue lining, respectively, indicate the
cell nuclei and collagen, and the light red colour specifies

cytoplasm. The vascular endothelium is clear without any
disruption indicating the intact endothelial layer (intima);
the lumen diameter of arteries was measured in histological
slides and found to be increased in the perfusion system from
2.62mm to 4.52mm due to continuous shear stress induced
by the media flow. Tissue section of the artery was exposed
to DMEM up to 72 h in the bioreactor and histological
studies clearly indicate the disruption of endothelial layer.
This denudation of endothelial layer could be due to injury
caused by the consistent flow and shear stress exerted by
the perfusion system and dimension changes of the artery
in the ex vivo bioreactor. The ex vivo viability is consistently
decreasing to 30% at the end of 72 h; the decreasing oxygen
levels in the bioreactor also aid the decreased viability trend.
The ex vivo bioreactor simulates the physiological conditions
and helps tomaintain the tissue viability, but as consequences
of inherent tissue sensitivity to hypoxia the endothelium is
denuded [16].

4. Conclusions

The present work demonstrates the design and function of ex
vivo bioreactor system capable of maintaining physiological
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Figure 9: Representative histology slides of ex vivo swine carotid artery tissue in bioreactor at 0 h and at 72 h. (a) Hematoxylin and eosin
staining. Intact endothelium at 0 h and denuded endothelium at 72 h, causing a lower tissue viability with increase in artery diameter from
2.62 to 4.52mm. (b)Masson’s trichrome staining; cytoplasm is indicated with red colour, blue colour indicates collagen, and dark brown spots
are nuclei.

conditions along with hemodynamic forces to mimic the
in vivo vascular conditions. We have designed the sensors
and programmed with MATLAB for real time account of
physiological parameters in the ex vivo bioreactor. Tissue
metabolism and real time viability were studied for the first
time with the capability of recording vascular responses in
the ex vivo setup. Initial experiments with porcine carotid
artery indicate that shear stress and oxygen levels in the
bioreactor were vital parameters in deciding the tissue via-
bility. The histological findings in this study support the
real time tissue viability measurements by sensor-enabled
bioreactor. Such systems can play a major role in recording
vascular responses in screening biopharmaceutical drugs and
biomedical devices.
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