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Newborns are highly susceptible to infections and mainly rely on innate immune

functions. Reduced reactivity, delayed activation and subsequent failure to resolve

inflammation however makes the neonatal immune system a very volatile line of defense.

Perinatal microbiota, nutrition and different extra-uterine factors are critical elements that

define long-term outcomes and shape the immune system during the neonatal period.

Neutrophils are first responders and represent a vital component of the immune system

in newborns. They have long been regarded as merely executive immune cells, however

this notion is beginning to shift. Neutrophils are shaped by their surrounding and adaptive

elements have been described. The role of “innate immune memory” and the main

triangle connection microbiome—neutrophil—adaptation will be discussed in this review.

Keywords: microbiota, trained immunity, neutrophil (PMN), innate immunity, immune priming, newborn -
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THE ROLE OF NEUTROPHILS AND THE MICROBIOME IN
NEWBORNS

Neutrophil Function in Newborns
Neutrophils are innate immune cells which primarily act as first responders to invasive infections.
They are the largest subgroup of polymorphonuclear cells (PMNs) and the most abundant type of
immune cell in the peripheral blood. Typically, neutrophils constitute around 50% of bloodstream
leukocytes in humans, however bacterial infections may trigger an increase of up to 80% in order
to eliminate the invading pathogen (1). Neutrophils are terminally differentiated cells mainly
characterized by a short lifespan (around 48 h after release into the circulation) (2, 3). They are
involved in the defense against bacterial, fungal as well viral infections (4, 5). As first line responder
cells, neutrophils harbor an armory of antimicrobial agents including hydrolytic enzymes (i.e.,
defensins), pro-inflammatory mediators and reactive oxygen species (ROS) (3). They possess the
unique capacity to extrude a meshwork of chromatin fibers known as neutrophil extracellular traps
(NETs) aiming to eliminate invading pathogens (6). Dysregulations of neutrophil recruitment,
activation or survival are closely associated with the pathogenesis of various infectious as well
inflammatory diseases (5, 7).
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The neonatal immune system must continuously mount
immune responses against external or internal factors whilst
maturing (8). This immaturity partially accounts for the high
mortality from opportunistic infections and renders the first
year of life the deadliest until the age of 50 (9). Neutrophils as
innate immune cells appear at low counts during gestational week
(GW) 8 and reach the peak of expansion around birth (8, 10).
The most vulnerable population of extremely premature infants
are also born with an immature innate immune system which
is less functional compared to term born neonates. Leukocyte
recruitment is ontogenetically regulated, whereas extremely
premature infants show heavily impaired recruitment, which
gradually matures up to around 35 weeks of gestation (11–14). In
particular, expression of adhesion molecules of both neutrophils
and the endothelium are greatly suppressed in preterm infants as
reviewed in detail previously (13). Further, preterm neutrophils
show a lower phagocytic capacity toward both gram (+) and
gram (–) bacteria compared to both term-born infants and adults,
which may be due to reduced levels of opsonization factors such
as maternal immunoglobulins (15–18). Neonatal neutrophils
have long been considered as primitive and “dysfunctional,”
however studies indicate that they show immunological plasticity
by adapting in response to environmental cues (18). One such
early influence for neutrophil adaptation is the rapidly shifting
composition of the perinatal microbiota.

The Microbiota and the Neonatal Immune
System
Early-life events such as the mode of delivery, maternal
conditions, the use of antibiotics or pre-/probiotics, diet and
many others drive the maturation of the immune system,
especially of innate immune cells during infancy (19–22).
Such perinatal circumstances also imprint themselves on
microbiome composition and can be linked to favorable or
adverse immunological outcomes (23). Proving causality between
perinatal events, microbiome composition and immunity is
difficult. Yet, the so-called “primitive” innate immune system
of newborns may make disentangling such correlations a little
more feasible.

The microbiota consists of many species including bacteria,
viruses, fungi and protozoa. The cell number and the size of the
genome of the human microbiota greatly exceeds the host (24).
This “second genome” has a profound impact on the way we react
to pathogens and how the immune system differentiates between
friend and foe (25, 26). The perinatal period is marked as the
most dramatic shift in both immune function and microbiome
composition. The microbiota rapidly colonizes the newborn
and represents a first challenge to the evolving immunity (27–
29). Prenatally, a low immunological profile with a tolerogenic
phenotype represents a protective intrauterine feature to prevent
rejection of the semi-allogenic fetus by the maternal immune
system (30–32). After birth, the neonatal immune system must
undergo a rapid transition from immune evasion to immune
defense. The neonatal immune system learns to “tolerate” its
microbiota, however abnormal colonization (dysbiosis) may
challenge this adaptation of the host. For example, the mode

of delivery is known to prime the neonatal immune system
through alterations in microbiome composition (33). Further,
vaginal birth triggers the release of many stress hormones such
as cortisol and catecholamines that have profound effects on the
phenotype and function of a variety of innate immune cells like
neutrophils, natural killer (NK) cells and monocytes (8, 22). The
excessive use of antibiotics in the neonatal period is another
example of microbiome-disruption with lasting consequences
and has been linked to the development of chronic diseases
(34, 35). Specifically, macrolide antibiotics are known to inhibit
the proper activation and recruitment of neutrophils (34, 36).
These alterations in the interplay of the microbiota and immune
development can significantly impact neonatal morbidity and
mortality. Gut dysbiosis is associated with the development
of necrotizing enterocolitis (NEC), an often-fatal inflammatory
disease of the preterm gut (37). Among very low birthweight
infants (<1,500 grams), who are evolutionary not built to handle
a postnatal microbiome or to deal with amagnitude of pathogens,
alterations in microbiome composition precede the onset of NEC
(38). Distortion of intestinal microbiome composition is also
discussed as a contributing factor to the development of sepsis
(39, 40). Outside immune priming, gut microbiome composition
has been shown to influence growth in infants and to impact
long-term health trajectories as reviewed in detail by Pflughoeft
and Versalovic (41, 42).

The Interplay Between Microbiota and
Neutrophils
Neutrophils as an essential part of the innate immune system are
affected by differentmicrobial components ormetabolites of both
resident microbiota and invading pathogens. Early investigations
have shown that gut microbiota may alter the production of
neutrophils through modulation of myelopoiesis in the bone-
marrow (43–45). Later studies revealed that microbiota depletion
leads to increased susceptibility to infections in neonates
presumably caused by decreased numbers of neutrophils (40,
45, 46). Microbiome-derived mediators such as IL-17, IL-7, IL-
6, stem cell factor (SCF) and thrombopoietin (THPO) affect
the release of granulocyte colony-stimulating factor (G-CSF)
(40, 47). Interestingly, microbiome alterations occurring by a
high-fat diet prevail hematopoiesis by affecting the hematopoietic
niche (48, 49). Apart from affecting neutrophil production, the
microbiota also regulates neutrophil function. Short-chain fatty
acids (SCFAs) as metabolites derived from the gut microbiome,
suppress the activation and recruitment of neutrophils (50,
51) and promote the resolution of inflammation through
induction of apoptosis in neutrophils and its efferocytosis by
macrophages (52, 53). Further, the gut microbiota regulates bile
acid metabolism, which have been shown to impact immune cells
(54). Data from our lab indicates that tauroursodeoxycholate, a
bile acid with chaperoning activity, directly suppresses neutrophil
activation and recruitment to inflamed tissue (manuscript
under submission). Inversely, neutrophils also have the capacity
to modulate the microbiota by removing unwanted species
(49). Despite such individual pathways or mediators that may
facilitate cross talk between the microbiota and neutrophils,
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no systematic analysis has been performed for newborns
or specifically preterm infants. Despite metabolites, another
intriguing hypothesis is the crosstalk between the microbiota and
immune cells via extracellular vesicles (EVs) or more specifically
exosomes (small EVs with a diameter of 30–150 nm) (55).
Whilst there is an ongoing debate as to whether EVs are active
signaling components or mainly a “junk disposal system,” it
is generally accepted that every living cell produces EVs. The
cargo of bacterial EVs depends on the cellular component that
they originate from: in Gram-negative bacteria they mainly
originate from the outer membrane and contain periplasmic
components (outer membrane vesicles, OMVs), whereas Gram-
positive bacteria produce bacterial membrane vesicles (BMVs)
(56). EVs may contain a variety of cargo including proteins,
signaling components, receptors, mRNA and many others. Both
OMVs and BMVs are used by bacteria for communication,
for example for horizontal transfer of genes of resistance to
antibiotics. Further, especially phagocytic immune cells like
macrophages or neutrophils may incorporate BMVs or OMVs.
For example, OMVs containing small RNA from P. aeruginosa
can reduce inflammation of airway epithelial cells as well as
neutrophil activation and infiltration in murine lungs (57). Also,
BMVs from S. aureus were shown to exert a pro-inflammatory
effect on endothelial cells by upregulating the expression of E-
selectin, VCAM-1, ICAM-1 and IL-6 which lead to increased
recruitment of monocytes (58). A direct communication of the
microbiota with neutrophils via EVs would open the door for
interventions or immune modulation using EVs from probiotics
or commensal bacteria.

Assuming a direct influence of the microbiota on innate
immune function and neutrophils, pre- or probiotics may
be a feasible way to fine-tune the innate immune response,
especially in preterm infants who are at greater risk for
gut dysbiosis. The use of pre- and probiotics as perinatal
supplements has been discussed as a possible way to improve
the composition of microbiota resulting in favorable short
and long-term outcomes (59–61). Specifically Lactobacillus and
Bifidobacteria are reported tomodulate immune responses acting
either as immune activators or immune suppressors (62–65).
Furthermore, the probiotic strain Bifidobacterium longum 51A

has been reported to decline the pro-inflammatory response, as
shown by decreased neutrophil recruitment and accumulation
thus improving the ability of mice to deal with lung infections
induced by Klebsiella pneumoniae (66, 67). Probiotics have been
shown to improve neutrophil function and cytokine response
in patients with alcoholic cirrhosis and Lactobacillus rhamnosus
inhibits Staphylococcus aureus induced NET formation in mice
(68, 69). However, specific reports on the effect of probiotics
on neutrophils in newborns are missing. Looking at EVs from
bacteria, it was shown that OMVs and BMVs derived from
probiotics exert anti-inflammatory effects and promote immune
tolerance (70). The advantage of EVs over probiotics could
be their relative safety (no living bacteria used, especially
in preterm infants), standardization and storage. It would
also allow for individualization and gestational-age specific
treatment. To date however, there have been no clinical trials
for the use of bacteria-derived EVs in humans. As it harbors

less implications, we are eager to develop this novel field
of research.

LONG-TERM ADAPTATION OF
NEUTROPHILS

Despite direct effects of the microbiota on neutrophil function,
the very limited lifespan raises the question whether such
alterations by the microbiota have lasting effects on neutrophil
populations. The notion of neutrophils as mere effector
cells has been challenged and a growing body of evidence
suggests that innate immunity is shaped by surrounding
factors and displays adaptive elements (71). This new field of
immunology is defined as “trained immunity” or “innate immune
memory.” This section will explore, how the triangle connection
microbiome—neutrophil—adaptation may promote plasticity in
the neutrophil population.

Adaptation—A Twist to Innate Immunity
It has been established that innate immune cells continuously
exposed to various pathogens are capable to develop long-term
adaptive features manifested with an increase or decrease in their
responsiveness. This feature of innate immune cells to mount
nonspecific responses displaying thus adaptive characteristics
has been defined as memory-like response (72–75). The ability
to respond with memory-like (adaptive) behaviors resulting
in increased, pro-inflammatory responses after re-challenge by
conserved molecules known as pathogen-associated molecular
patterns (PAMPs) has been termed as trained immunity or
innate memory (74, 76). So, trained immunity has been defined
as a nonspecific immunological memory triggered from long-
term functional rewiring of the epigenetic program, evoked
by different pathogenic insults that results in an altered
response, specifically protection against secondary infections
(71, 77). Furthermore, a set of host biomolecules known
as danger-associated molecular patterns (DAMPs) have been
identified to mount memory-like behaviors in macrophages
(78). In contrast, exposure of innate immune cells to gram
(–) bacterial lipopolysaccharide (LPS) has been reported to
induce endotoxin tolerance (desensitization) characterized by
decreased pro-inflammation and increased anti-inflammatory
responses (79–82).

Initial reports disclosed a PAMP-specific development of
innate memory, where priming by β-glucan and Bacillus
Calmette-Guerin (BCG), after subsequent challenge by LPS,
resulted in increased production of pro-inflammatory cytokines
(i.e., IL-1β, TNF-α, IL-6) (83–85). Further studies displayed a
pathogen dose-dependent induction of either innate memory by
priming with low doses, or tolerance by high doses of sequential
challenges with LPS, especially in macrophages and microglia
(86–88). Moreover, cellular maturation is another important
factor, influencing adaptive features through distinct signaling
mechanisms (89, 90). Activation of the phosphoinositide 3-kinase
(PI3K)/mechanistic target of rapamycin (mTOR) pathway is
critical for the induction of trained immunity in macrophages
leading to an increased inflammatory response (91). Contrary,
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TABLE 1 | Characteristic features of trained immunity and tolerance in innate immune cells.

Trained immunity Tolerance References

↑ Pro-inflammatory mediators (such as TNF-α, IL-6, IL-1β, IL-12, ROS) ↓ Pro-inflammatory mediators (such as TNF-α, IL-6, IL-1β, IL-12, ROS)

↑ Anti-inflammatory mediators (such as IL-10, Arg-1)

(71, 83, 88, 92, 98)

↑ IRAK-1 and/or NF-kB-p65 (RELA) ↓ NF-kB-p65

↑ NF-kB-RelB

(88, 99, 100)

Promoted by PI3Ks/mTOR Promoted by AMPK (91, 101, 102)

↑ Aerobic glycolysis (increased lactate production)

↓ Fatty acid oxidation (β-oxidation)

↓ Aerobic glycolysis (decreased lactate production)

↑ Fatty acid oxidation

(71, 91, 103, 104)

Glutaminolysis and accumulation of fumarate ↑ Production of itaconate (94, 96, 97)

M1-like phenotype M2-like phenotype (105, 106)

↑ Deposition of H3K4me3 or H3K27ac ↑ Deposition of H3K9me3

Regulated by histone methyltransferase G9a

(107–110)

suppression of the mTOR pathway drives immune tolerance,
characterized by increased anti-inflammatory responses like IL-
10 production and suppression of pro-inflammatory mediators
(92). Interestingly, a study found that reduced synthesis of
LPS-induced TNF-α is associated with increased activity of
AMP-activated protein kinase (AMPK) (93). Several studies
further highlighted, that both adaptive features are accompanied
by epigenetic reprogramming, with resulting distinct changes
in metabolism like increased glycolysis, glutaminolysis or
accumulation of fumarate during trained immunity or increased
itaconate production during tolerance (91, 94–97). A summary of
the metabolic and cellular differences between trained immunity
and tolerance is summarized in Table 1.

These opposing immuno-inflammatory responses shaped by
different external and internal stressors aim at the reduction
and elimination of pathogens—trained immunity as resistance
mechanism, or are responsible for promoting maintenance and
repairing activities in order to facilitate survival—tolerance as
a persistence response (101). In newborns, which are largely
reliant on their innate immune system, the development
of trained immunity may be of crucial importance for
the host survival by providing increased protection against
pathogens. Figure 1 shows a schematic representation of the
development of such adaptive responses in newborns. A
recent study expressed the importance of maternal vaccination
and the possible training effects of the innate immune
system increasing the rate of survival, where children of
BCG-vaccinated mothers had for around 35% less hospital
admissions for infectious diseases and 41% lower mortality then
control groups (111). The crucial role of trained immunity
has also been highlighted in physiological processes during
pregnancy where NK cells promote the vascular sprouting
in the placenta and favor repeated pregnancies (112, 113).
Moreover, NK cells have been observed to improve survival
rates in BCG vaccinated mice lacking functional B and T
cells, stressing the importance of innate memory in NK cells
(84). Akin to BCG vaccinations, infants born to mothers with
hepatitis B infection are prone to develop trained immunity
in neutrophils or other haematopoietic phagocytic cells such

as dendritic cells (DCs) (114). Yet, inappropriate induction of
these opposing reactions (training vs. tolerance), might provoke
maladaptive responses such as hyper-inflammation exhibiting a
close relationship to overflowing resistance responses (trained
immunity), or increased susceptibility to opportunistic infections
(tolerance) (71, 115–117).

Adaptive Responses in Neutrophils—What
Do We Know?
Neutrophils are among the first innate immune cells to enter the
site of infection. They are closely shaped by different interactions
with the microbiota or the extra-uterine environment (118–
121). It was believed that due to their very short live-span
neutrophils were unable to participate in enduring memory-
like responses (122). However, early investigations showed that
neutrophils are prone to be primed by different cytokines,
especially IL-8 and TNF-α, improving the recruitment and
killing activities of neutrophils in neonates (123, 124). As
mentioned above, microbiota-derived mediators may similarly
drive adaptive responses (125). For example, microbiome-
derived metabolites promote production of antimicrobial
peptides such as peptidoglycans that improve the killing capacity
of neutrophils (126–128). In line, disruption of the neonatal
microbiota by antibiotic exposure is linked to decreased numbers
of bone-marrow and peripheral neutrophils, resulting from an
impaired granulopoiesis (40).

It is well-known that the pro-inflammatory activity of various
innate immune cells increases whilst aging (89, 129, 130).
The pro-inflammatory activity of neutrophils characterized
by increased tissue infiltration, phagocytosis and NET
formation expands with age and is regulated particularly
by the TLR4/MyD88 pathway (131). Depletion of the
microbiota reduces the number of aged neutrophils and
dampens inflammation. The study further confirmed that
disruption of the microbiota composition affects the quantity
and functional properties of neutrophils. This study outlines
the crucial role of microbiota regulating different functional
properties of neutrophils, that may drive the inflammatory state
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FIGURE 1 | Schematic representation of priming mechanisms in innate immune cells during infancy. The microbiome and the perinatal environment challenge the

innate immune system through PAMPs and DAMPs (left), driving epigenetic changes that promote metabolic reprogramming (middle). Upon re-challenge, either

trained immunity or tolerance effects may be observed (right). In short-lived neutrophils, it remains unclear, whether “continuous priming” is necessary. If so, a stable

microbiome could greatly influence these adaptive responses.

toward either resistance mechanisms or a tolerant phenotype.
Moreover, microbiota-derived EVs may influence the functional
properties of innate immune cells, in particular neutrophils
(56, 57, 132, 133). EVs contain a variety of cargo including
different proteins, phospholipids, glycolipids, nucleic acids
and polysaccharides that are partially able to directly bind
to pathogen recognition receptors (PRRs) (132, 134, 135).
Furthermore, supplementation by pre- and probiotics may
influence the development of adaptive features by neutrophils
and other innate immune cells (136–138). Recently, a new
concept called “microbiological memory” was introduced
aiming to explain the role of microbiome regulating epigenetic
rearrangements and their impact on different diseases (139).

A study from Mitroulis et al. showed that trained-immunity-
induced effects modulate myeloid progenitors in the bone
marrow, especially influencing the recovery of circulating
neutrophils thus being of crucial importance for the protection
during chemotherapy-induced myelosuppression (140).
Furthermore, they revealed that these beneficial effects are
closely associated with metabolic changes mainly promoted by
altered epigenetic rearrangements. In line with this, another
study showed that BCG-induced trained immunity triggers the
increase of multipotent and hematopoietic progenitors leading
to a sustained myeloid cell expansion (141).

So far it is known that septic reactions in infants are
accompanied by a heightened immune activity driven by

neutrophils, an energy-demanding process that is mainly
promoted by a shift of metabolism toward aerobic glycolysis, a
similar process that trained cells undergo (142–144). In line with
this, accumulation or activation of several metabolic intermediate
products have been shown to either promote the induction of
trained immunity (e.g., accumulation of fumarate) or tolerance
(i.e., itaconate pathway) thus affecting also main cellular actions
of neutrophils thatmay affect the innate immune response during
infancy (94, 97). Priming the niche of neutrophil progenitors
may have lasting effects on long-term adaptation. However, the
microbiota is a versatile source for innate immune priming, as
it may also continuously prime peripheral neutrophils over time
(Figure 1).

Taken together, the discovery of the ability of neutrophils to
exhibit memory-like responses, open new perspectives for further
research in order to understand the impact of trained or tolerized
neutrophils in neonatal conditions. A better characterization of
the relation duo microbiota—neutrophil could yield potential
tailored interventions with probiotics. Here, we are excited to
further explore the potential of probiotic-derived EVs as a
potentially novel class of safe and standardized biologicals to
modulate the immune response. We hope that the PRIMAL
Consortium with a clinical trial under way to establish patterns
and correlations between gut microbiome and immune profiling
may yield answers in the near future (https://primal-studie.de/
primal-consortium/).
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CONCLUSIONS

Due to its immuno-compromised properties, the neonatal
immune system is very susceptible to infectious diseases.
Different perinatal factors shape the immunological response of
innate immune cells including neutrophils. Through regulation
of neutrophil production, function and apoptosis, the microbiota
greatly influences the capacity of both initiation and resolution
of inflammation. Priming and subsequent induction of trained
immunity or tolerance introduces adaptive elements into the
innate immune system and allows for immune memory. This
concept has been described in detail for many innate immune
cells, however only limited insight exists for immune memory
in neutrophils and how the microbiota may act as a modulator.
Their short lifespan makes neutrophils no easy target to study
memory effects and leaves two options by which adaptation
may occur: either by continuous priming or by modulating the
niche of progenitors in the bone marrow. There is evidence

for both, however more studies are needed to shed light on
this novel aspect of innate immunity. A better understanding of
microbiome—neutrophil interactions (for example through EVs)
may support the design of tailored probiotic supplementation
in newborns.
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